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4. Variograms 
 
The covariogram and its normalized form, the correlogram, are by far the most intuitive 
methods for summarizing the structure of spatial dependencies in a covariance stationary 
process. However, from an estimation viewpoint such functions present certain 
difficulties (as will be discussed further in Section 4.10 below). Hence it is convenient to 
introduce a closely related function known as the variogram, which is widely used for 
estimation purposes.  
 
4.1 Expected Squared Differences 
 
To motivate the notion of a variogram for a covariance stationary process, { ( ) : }Y s s R , 

we begin by considering any pair of component variables, ( )sY Y s  and ( )vY Y v , and 

computing their expected squared difference: 
 
(4.1.1)  2 2 2 2 2[( ) ] [ 2 ] ( ) 2 ( ) ( )s v s s v v s s v vE Y Y E Y Y Y Y E Y E Y Y E Y        

 
To relate this to covariograms, note that if s v h  , then by (3.2.3) and (3.2.4), 

 
(4.1.2)  2( ) cov( , ) [( )( )] [ ]s v s v s v s vC h Y Y E Y Y E Y Y Y Y             

 
                                 2( ) ( ) ( )s v s vE Y Y E Y E Y       

 
                                 2 2 2 2( ) ( )s v s vE Y Y E Y Y          

 
                          2( ) ( )s vE Y Y C h     

 
Exactly the same argument with s v  shows that 
 
(4.1.3)  2 2 2( ) (0) ( )s vE Y C E Y    

 
Hence by substituting (4.1.2) and (4.1.3) into (4.1.1) we see that expected squared 
differences for all ,s v R  with s v h   can be expressed entirely in terms of the 

covariogram, C , as 
 
(4.1.4)  2[( ) ] 2 [ (0) ( )]s vE Y Y C C h     

 
To obtain a slightly simpler relation, it is convenient to suppress the factor “2” by 
defining the associated quantity,   
 
(4.1.5)  21

2( ) [( ) ] ,s vh E Y Y s v h      
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and observing from (4.1.4) that with this definition we obtain the following simple 
identity for all distances , h : 
 
(4.1.6)  2( ) (0) ( ) ( )h C C h C h      
 
From (4.1.6) it is thus evident that the “scaled” expected squared differences in (4.1.5) 
define a unique function of distance which is intimately related to the covariogram. For 
any given covariance stationary process, this function is designated as the variogram,  , 
of the process. Moreover, it is also evident that this variogram is uniquely constructible 
from the covariogram. But the converse is not true. In particular since (4.1.6) also implies 
that 
 
(4.1.7)   2( ) ( )C h h    
 
it is clear that in addition to the variogram,  , one must also know the variance, 2 , in 
order to construct the covariogram.1 Hence this variance will become an important 
parameter to be estimated in all models of variograms developed below. 
 
Before proceeded further with our analysis of variograms it is important to stress that the 
above terminology is not completely standard. In particular, the expected squared 
difference function in (4.1.4) is often designated as the “variogram” of the process, and 
its scaled version in (4.1.5) is called the “semivariogram” [as for example in Cressie 
(1993, p.58-59) and Gotway and Waller (2004, p.274)]. (This same convention is used in 
the Geostatistical Analyst extension in ARCMAP.) But since the scaled version in (4.1.5) 
is the only form used in practice [because of the simple identity in (4.1.7)] it seems most 
natural to use the simple term “variogram” for this function, as for example in [BG, 
p.162].2  
 
4.2 The Standard Model of Spatial Dependence 
 
To illustrate the relation in (4.1.7) it is most convenient to begin with the simplest and 
most commonly employed model of spatial dependence. Recall from the Ocean Depth 
Example in Section 3.3.1 above, that the basic hypothesis there was that nearby locations 
tend to experience similar concentration levels of plankton, while those in more widely 
separated locations have little to do with each other. This can be formalized most easily 
in terms of correlograms by simply postulating that correlations are high (close to unity) 
for small distances, and fall monotonely to zero as distance increases. This same general 
hypothesis applies to a wide range of spatial phenomena, and shall be referred to here as 
the standard model of spatial dependence. Given the relation between correlograms and 
covariograms in (3.3.13), it follows at once that covariograms for the standard model, i.e., 
standard covariograms, must fall monotonely from 2(0)C  toward zero, as illustrated 

                                                 
1 However, assuming that lim ( ) 0

h
C h


 , it follows from (4.1.6) that 2lim ( )

h
h 


 . So 2 is in 

principle obtainable from   as the asymptote (sill) in Figure 4.2 below. 
2  See also the “lament” regarding this terminology in Schabenberger and Gotway (2005, p.135). 



NOTEBOOK FOR SPATIAL DATA ANALYSIS                            Part II. Continuous Spatial Data Analysis 
______________________________________________________________________________________ 
 

________________________________________________________________________ 
 ESE 502                                                     II.4-3                                                Tony E. Smith 

in Figure 4.1 below. The right end of this curve has intentionally been left rather vague. It 
may reach zero at some point, in which case covariances will be exactly zero at all 
greater distances. On the other hand, this curve may approach zero only asymptotically, 
so that covariance is positive at all distances but becomes arbitrarily small. Both cases are 
considered to be possible under the standard model (as will be illustrated in Section 4.6 
below by the “spherical” and “exponential” variogram models). 
 
 
 
 
 
 
 
 
 
 
 
 
 
On the right in Figure 4.2 is the associated standard variogram, which by (4.1.6) above 
must necessarily start at zero and rise monotonely toward the value 2 .  Graphically this 
implies that the standard variogram must either reach the dashed line in Figure 4.2, 
designated as the sill, or must approach this sill asymptotically.3  
 
But while this mathematical correspondence between the standard variogram and 
covariogram is quite simple, there are subtle differences in their interpretation. The 
interpretation of standard covariograms is straightforward, since decreases in (positive) 
covariance at large distances are naturally associated with decreases in spatial 
dependence. But the associated increase in the standard variogram is somewhat more 
difficult to interpret in a simple way. If we recall from (4.1.5) that these variogram values 
are proportional to expected squared differences, then is reasonable to conclude that such 
differences should increase as variables become less similar (i.e., less positively 
dependent). But as a general rule, it would still appear that the simplest approach to 
interpreting variogram behavior is to describe this behavior in terms of the corresponding 
covariogram. 
 
4.3 Non-Standard Spatial Dependence 
 
Since the analysis to follow will focus almost entirely on the standard model, it is of 
interest to consider one example of a naturally occurring stationary process that exhibits 
non-standard behavior. As a more micro version of the Ocean Depth Example in Section 
3.3.1 above, suppose that one is interested in measuring variations in ocean depth due to 
wave action on the surface. Figure 4.3 below depicts an idealized measurement scheme 

                                                 
3 As noted by [BG, p.162] the scaling by ½ in (4.1.5) is precisely to yield a “sill” which is associated with 

2 rather than 22 . 

Figure 4.1. Standard Covariogram 

•

•

•
2 2

h  h  

Figure 4.2. Standard Variogram 

( )   ( )C   

sill 
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involving a set of (yellow) corks at locations { : 1,.., }is i n  that are attached to vertical 

measuring rods, allowing them to bob up and down in the waves. The set of cork heights, 
( )i iH H s , on these n  rods at any point of time can be treated as a sample of size n  

from a spatial stochastic process, { ( ) : }H s s R , of wave heights defined with respect to 
some given ocean region, R .  
 
  
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
Here the fluctuation behavior of corks should be essentially the same over time at each 
location. Moreover, any dependencies among cork heights due to the smoothness of wave 
actions should depend only on the spacing between their positions in Figure 4.3.  Hence 
the homogeneity and isotropy assumptions of spatial stationarity in Section 3.3.1 should 
apply here as well, so that in particular, { ( ) : }H s s R  can be treated as a covariance 
stationary process.  
 
But this process has additional structure implied by the natural spacing of waves. If this 
spacing is denoted by d , then it is clear that for corks separated by distance d , such as 
those at locations 2s  and 6s  in Figure 4.3, whenever a wave crest (or trough) occurs at 

one location it will tend to occur at the other as well.  Hence pairs of location separated 
by a distance d  should exhibit a positive correlation in wave heights, as shown in the 
covariogram of Figure 4.4 below.  However, for locations spaced at around half this 
distance, such as 2s  and 4s  in Figure 4.3, the opposite should be true: whenever a crest 

(or trough) occurs at one location, a wave trough (or crest) will tend to occur at the other. 
Hence the wave heights at such locations can be expected to exhibit negative correlation, 
as is also illustrated by the covariogram in Figure 4.4.  
 
Finally, it should be clear that distances between wave crests are themselves subject to 
some random variation (so that distance d  in Figure 4.3 should be regarded as the 
expected distance between wave crests). Thus, in a manner similar to the standard model, 
one can expect that wave heights a distant locations will be statistically unrelated. This in 
turn implies that the positive and negative correlation effects above will gradually 

1s  
ns  

d  

wave crest 

water  
level 

1H  nH  

Figure 4.3.  Measurement of Wave Heights 

2s  4s  6s  
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dampen as distance increases. Hence this process should be well represented by the 
“damped sine wave” covariogram shown in Figure 4.4.4  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Finally, the associated variogram for this process [as defined by (4.1.6)] is illustrated in 
Figure 4.5 for sake of comparison.  If the variance, 2 , in Figure 4.4 is again take to 
define the appropriate sill for this variogram (as shown by the horizontal dashed line in 
Figure 4.5) then it is clear that the values of this variogram now oscillate around the sill 
rather that approach it monotonely. Hence this sill is only meaningful at larger distances, 
where wave heights no longer exhibit any significant correlation.  
 
4.4  Pure Spatial Independence 
 
A second example of a covariance stationary process, { ( ) : }Y s s R , which is far more 
extreme, is the case of pure spatial independence, in which distinct random components, 

( )Y s  and ( )Y v , have no relation to each other – no matter how close they are in space. 
Mathematically this implies that cov[ ( ), ( )] 0Y s Y v   for all distinct s  and v . But since 

2cov[ ( ), ( )] 0Y s Y s    for all s , this in turn implies that the covariogram, C , for such a 
process must exhibit a discontinuity at the origin, as shown on the left in Figures 4.6. 
 
 
 
 
 
 
 
 
 
 
 
                                                 
4 A mathematical model of this type of covariogram is given in expression 4.6.9 below. 
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Hence by definition, the corresponding variogram,  , for pure spatial spatial 
independence (shown on the right in Figure 4.6) must also exhibit a discontinuity at the 
origin, since (0) 0   and 2( ) 0h    for all 0h  .  
 
Such processes are of course only mathematical idealizations, since literally all physical 
processes must exhibit some degree of smoothness (even at small scales). But if 
independence holds at least approximately at sufficiently small scales then this 
idealization may be reasonable. For example, if one considers a sandy desert region, R , 
and lets ( )D s  denote the depth of sand at any location, s R , then this might well 
constitute a smooth covariance stationary process, { ( ) : }D s s R , which is quite 
consistent with the standard model of Section 3.5 (or perhaps even the “wave model” of 
Section 3.6 if wind effects tend to ripple the sand). But in contrast to this, suppose that 
one considers an alternative process { ( ) : }W s s R  in which ( )W s  now denotes the 
weight of the topmost grain of sand at location s  (or perhaps the diameter or quartz 
content of this grain). Then while is it reasonable to suppose that the distribution of these 
weights is the same at each location s  (and is thus a homogeneous process as in Section 
3.3.1 above), there need be little relation whatsoever between the specific weights of 
adjacent grains of sand. So at this scale, the process { ( ) : }W s s R  is well modeled by 
pure spatial independence.  
 
4.5 The Combined Model 
 
The standard model in Section 4.2 and the model of  pure spatial independence in 
Section 4.4  can be viewed as two extremes: one with continuous positive dependence 
gradually falling to zero, and the other with zero dependence at all positive distances. 
However, many actual processes are well represented by a mixture of the two. This can 
be illustrated by a further refinement of the Ocean Depth Example in Section 3.3.1. 
Observe that while mobile organisms like zooplankton have some ability to cluster in 
response to various stimuli, the ocean also contains a host of inert debree (dust particles 
from the atmosphere, and skeletal remains of organisms, etc.) which bear little relation to 
each other. Hence in addition to the spatially correlated errors in sonar depth 
measurements created by zooplankton, there is a general level of “background noise” 
created by debree particles that is best described in terms of spatially independent errors.   
 
If  these two types of measurement errors at location s  are denoted repectively by 1( )s  

and 2( )s , then a natural refinement of the depth measurement model in (3.3.1) would be 

to postulate that total measurement error, ( )s , is the sum of these two components. 
 
(4.5.1)  1 2( ) ( ) ( ) ,s s s s R      

 
Moreover, it is also reasonable to assume that these error components are independent 
(i.e., that the distribution of zooplankton is not influenced by the presence or absence of 
debree particles). More formally, it may be assumed that 1( )s  and 2( )v  are independent 

random variables for every pair of locations, ,s v R . With this assumption it then 
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follows (see section A2.1 in Appendix A2) that the covariogram, C , of error process   
must be the sum of the separate covariograms, 1C  and 2C , for component processes 1  

and 1 , i.e., that for any 0h  ,  

 
(4.5.2)       1 2( ) ( ) ( )C h C h C h   

 
More generally, any covariance stationary process, { ( ) : }Y s s R , with covariogram of 
the form (4.5.2) will be said to satisfy the combined model of covariance stationary 
processes. Covariogram 1C  then represents the spatially dependent component of this 

process, and covariogram 2C  represents its spatially independent component. 5  

 
To see the graphical form of this combined model, observe first that by setting 0h   in 
(4.5.2) it also follows that 
 
(4.5.3)    2 2 2

1 2 1 2(0) (0) (0)C C C        

 
where 2

1  and 2
2  are the corresponding variances for the spatially dependent and 

independent components, respectively. Hence the covariogram for the combined process 
in (4.5.2) is given by Figure 4.7 below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this graphical form it is clear that the covariogram for the combined model is 
essentially the same as that of the standard model, except that there is now a discontinuity 
at the origin. This local discontinuity is called the nugget effect in the combined model,6 
and the magnitude of this effect (which is simply the variance, 2

2 , of the pure 

independent component) is called the nugget. Note that by definition the ratio, 2 2
2 /  , 

                                                 
5 This combined model is an instance of the more general decomposition in Cressie (1993, pp.112-113) 

with 
1

C  reflecting the “smooth” component, W , and 
2

C  reflecting the “noise” components,    . 
6 This term originally arose in mining applications where there are often microscale variations in ore 
deposits due to the presence of occasional nuggets of ore [as discussed in more detail by Cressie 
(1993,p.59)]. In the present context, such a “nugget effect” would be modeled as an independent micro 
component of a larger (covariance stationary) process describing ore deposits.  

•
2
1

•2
2

2

+ =

1C  
2C C  

Figure 4.7.  Covariogram for Combined Model 

nugget effect 
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gives the relative magnitude of this effect, and is designated as the relative nugget effect. 
For example, if the relative nugget effect for a given covariogram is say .75, then this 
would indicate that the underlying process exhibits relatively little spatial dependence. 
 
Next we consider the associated variogram for the combined model. If   denotes the 
variogram of the combined process in (4.5.1) then we see from (4.1.6) together with 
(4.5.2) and (4.5.3) that 
 
(4.5.4)  2 2 2

1 2 1 2( ) ( ) ( ) [ ( ) ( )]h C h C h C h          

 
                                2 2

1 1 2 2[ ( )] [ ( )]C h C h       

 
                                1 2( ) ( ) ( )h h h      

                                                 
 
where 1  and 2  are the variograms for the spatially dependent and independent 

components, respectively. Hence it follows that variograms add as well, and yield a 
corresponding combined variogram as shown in Figure 4.8 below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.6 Explicit Models of Variograms 
 
While the combined model above provides a useful conceptual framework for variograms 
and covariograms, it is not sufficiently explicit to be estimated statistically. We require 
explicit mathematical models that are (i) qualitatively consistent with the combined 
model, and (ii) are specified in terms of a small number of parameters that can be 
estimated.7  
 

                                                 
7  There is an additional technical requirement covariograms yield well-defined covariance matrices, as 
detailed further in the Appendix to Part III (Corollary 2.p.A3-70).  

•

• 2
2
1  
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Figure 4.8. Summary of the Combined Model 
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4.6.1. The Spherical Model 
 
The simplest and most widely used variogram model is the spherical variogram, defined 
for all 0h   by: 
 
 

(4.6.1)  
3

3

0 , 0

3
( ; , , ) ( ) , 0

2 2

,

h

h h
h r s a a s a h r

r r

s h r




         

 
 

 

 
 
Here parameters ( , , )r s a  of   are assumed to satisfy , 0, 0r s a   with s a . [Note 
that the argument, h , of function   is separated from it parameters, ( , , )r s a , by a 
semicolon8] To interpret these parameters, it is useful to consider the spherical variogram 
shown in Figure 4.9 below with ( 6 , 4 , 1)r s a   : 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
A comparison of Figure 4.9 with the right hand side of Figure 4.8 shows that parameter, 
s , corresponds to the sill of the variogram and parameter, a , corresponds to the nugget 
[as can also be seen by letting h  approach zero in the (4.6.1)]. So for this particular 
example the relative nugget effect is / 1/ 4a s  . Note finally that since the spherical 
variogram reaches the sill at value, r  [as can also be seen by setting h r  in (4.6.1)], 
this implies that the corresponding covariogram in Figure 4.10 falls to zero at r . Hence  
the parameter, r , denotes the maximum range of positive spatial dependencies, and is 

                                                 
8 More generally the expression, 

1 1
( , .., ; , .., )

n k
f x x   , is taken to denote a function, f , with arguments 

1
( , .., )

n
x x and parameters 

1
( , .., )

k
  . 

Figure 4.9. Spherical Variogram 
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Figure 4.10. Spherical Covariogram 
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designated simply as the range of the variogram (and corresponding covariogram). These 
same notational conventions for range, sill and nugget will be used throughout.9 
 
The formal spherical covariogram corresponding to expression (4.6.1) is immediately 
obtainable from (4.1.7) [with 2s  ], and is given by: 
 

 

(4.6.2)  
3

3

, 0

3
( ; , , ) ( ) 1 , 0

2 2

0 ,

s h

h h
C h r s a s a h r

r r

h r




        
 

 

 

 
 

Together, (4.6.1) and (4.6.2) will be called the spherical model. One can gain further 
insight into the nature of this model by differentiating (4.6.2) in the interval, 0 h r  , to 
obtain: 
 

(4.6.3)   
2 2

3 2

3 3 3
( ) ( ) 1

2 2 2

dC h h
s a s a

dh r r r r

             
    

 

 

Hence we see that 
 

(4.6.3)  0
dC

h r
dh

    

 
Moreover, by differentiating once more we see that  
 

(4.6.4)  
2

2 2

3 2
( ) 0

2

d C h
s a

dh r r
      
  

 

 
whenever the sill is greater than the nugget (i.e., 0s a  ). Thus, except for the extreme 
case of pure independence, this function is always “bowl shaped” on the interval 
0 h r  , and has a unique differentiable minimum at h r . Hence this spherical 
covariogram yields a combined-model form with finite range that falls smoothly to zero. 
These properties (together with its mathematical simplicity) account for the popularity of 
the spherical model.  
 
All explicit variogram applications in these notes will employ this spherical model. 
However, it is of interest at this point to consider one alternative model which is also in 
wide use. 
 
                                                 
9 Note that the use of “s” to denote sill should not be confused with the use of “

1 2
( , )s s s ” to denote 

spatial locations. Also, since the symbol, n, is used to denote sample size, we choose to denote the nugget 
by  “a” rather than “n”.  
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4.6.2 The Exponential Model  
 
While the spherical model is smooth in the sense of continuous differentiability, it makes 
the implicit assumption that correlations are exactly zero at all sufficiently large 
distances. But in some cases it may be more appropriate to assume that while correlations 
may become arbitrarily small at large distances, they never vanish. The simplest model 
with this property is the exponential variogram, defined for all 0h   by, 
 
 

(4.6.5)   3 /

0 , 0
( ; , , )

( ) 1 , 0h r

h
h r s a

a s a e h
 

     
 

 
 
with corresponding exponential covariogram, defined for all 0h   by,  
 
 

(4.6.6)  3 /

, 0
( ; , , )

( ) , 0h r

s h
C h r s a

s a e h


   

 

 
 
 
Together, this variogram-covariogram pair is designated as the exponential model, and is 
illustrated in Figures 4.11 and 4.12 below, using the same set of parameter values 
( 6 , 4 , 1)r s a    as for the spherical model above. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here it is clear that the sill, s , and nugget, a , play the same role as in the spherical 
model. However, the “range” parameter, r , is more difficult to interpret in this case since 
spatial dependencies never fall to zero. To motivate the interpretation of this parameter, 

• 

•s s 

a 

s - a 
s - a 

r r 

Figure 4.11. Exponential Variogram Figure 4.12. Exponential Covariogram 
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observe first that since spatial dependencies are only meaningful at positive distances, it 
is natural to regard the quantity s a  in Figure 4.12 as the maximal covariance for the 
underlying process.10 In these terms, the practical range of spatial dependency is 
typically defined to be the smallest distance, r , beyond which covariances are no more 
than 5% of the maximal covariance. To see that r  in (4.6.6) in indeed the practical range 
for this covariogram, observe simply that since .05 ln(.05) 2.9957 3xe x       , it 
follows that  
 
(4.6.7)  3 / .05 ( ) ( )(.05)h rh r e r s a       
 
Note finally that in terms of the corresponding variogram (which plays the primary role 
in statistical estimation of the exponential model), the quantity s a  in Figure 4.11 is 
usually called the partial sill.11 
 
4.6.3 The Wave Model 
 
Finally, it is of interest to consider a mathematical model of the nonstandard “wave” 
dependence example in Section 4.3 above. Here it is not surprising that the appropriate 
variogram for this wave model is given by a damped sin wave as follows,12 
 

 

(4.6.8)  

0 , 0

( ; , , ) sin( / )
( ) 1 , 0

h

h r s a h w
a s a w h

h




         

 

 
 

where the parameter, w , denotes the wave intensity. Here the corresponding covariogram 
is given by: 
 

 

(4.6.9)  

, 0

( ; , , ) sin( / )
( ) , 0

s h

C h r s a h w
s a w h

h


       

 

 
 

The wave covariogram and variograms shown in Figures 4.4 and 4.5 above are in fact the 
instances of this wave model with ( 0.6, 0, 0.6)w a s   . 
 
                                                 
10 More generally, this maximal covariance for any combined model in Figure 4.7 is seen to be given by the 

variance, 2

1
 , of the (continuous) spatially dependent component. 

11 Indeed this quantity plays such a central role that variograms are often defined with the partial sill as an 
explicit parameter rather than the sill itself. See for example the spherical and exponential (semi) variogram 
models in Cressie (1993, p.61). See also the Geostatistical Analyst example in Section 4.9.2 below. 
12 This is also referred to as the hole-effect model [as in Cressie (1993, p.623)], and in particular, is given 
this designation in the Geostatistical Analyst kriging option of ARCMAP. 
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4.7 Fitting Variogram Models to Data 
 
There are many approaches to fitting possible variogram models to spatial data sets, as 
discussed at length in Cressie (1993, section 2.4) and Schabenberger and Gotway (2004, 
sections 4.4-4.6). Here we consider only the standard two-stage approach most 
commonly used in practice (as for example in Geostatistical Analyst). The basic idea of 
this approach is to begin by constructing a direct model-independent estimate of the 
variogram called the “empirical variogram”. This empirical variogram is then used as 
intermediate data to fit specific variogram models. We consider each of these steps in 
turn. 
 
4.7.1  Empirical Variograms 
 
An examination of (4.1.5) suggests that for any given set of spatial data  ( ) : 1,..,iy s i n  

and distance, h , there is an obvious estimator of the variogram value, ( )h , namely “half 

the average value of  2
( ) ( )i jy s y s  for all pairs of locations is  and js  separated by 

distance h ”. However, one problem with this estimator is that (unlike K-functions) the 

value ( )h  refers to point pairs with distance i js s  exactly equal to h . Since in any 

finite sample there will generally be at most one pair that are separated by a given 
distance h  (except for data points on regular grids, as discussed below), one must 
necessarily aggregate point pairs ( , )i js s  with similar distances and hence estimate ( )h  

at only a small number of representative distances for each aggregate. The simplest way 
to do so is to partition distances into intervals, called bins, and take the average distance, 

kh , in each bin k  to be the appropriate representative distances, called  lag distances, as 

shown in Figure 4.13 below:  
 
 
 
 
 
 
 
 
 
 
 
 
More formally, if kN  denotes the set of distance pairs, ( , )i js s , in bin k , [with the size 

(number of pairs) in kN  denoted by | |kN ], and if the distance between each such pair is 

denoted by ij i jh s s  , then the lag distance, kh , for bin k  is defined to be 

 

0 
• • • • 

4h  2h  
3h  1h  

• 
h  • • • • • 

max lag bins 

Figure 4.13. Lag Distances and Bins 

lag distances 
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(4.7.1)   
( , )

1
i j k

k ijs s N
k

h h
N 

   

 
To determine the size of each bin, the most common approach is to make all bins the 
same size, in order to insure a uniform approximation of lag distances within each bin. 
However there is an implicit tradeoff here between approximation of lag distances and 
the number of point pairs used to estimate the variogram at each lag distance. Here the 
standard rule of thumb is that each bin should contain at least 30 point pairs,13 i.e., that  
 

(4.7.2)  30kN   
 

Next observe that the choice of the maximum lag distance (max-lag), h , (in Figure 4.13) 
also involves some implicit restrictions. First, for any given set of sample points, 
{ : 1,.., }is i n R  , one cannot consider lag distances greater than the maximum pairwise 

distance, 
 

(4.7.3)   max max :i jh s s i j n     

 
in this sample since no observations are available. Moreover, practical experience has 
shown that even for lag distances close to maxh  the resulting variogram estimates tend to 

be unstable [Cressie (1985, p.575)]. Hence, in a manner completely analogous to the rule 
of thumb for K-functions [expression (4.5.1) of Part I], it is common practice to restrict 
h  to be no greater than half of maxh , i.e., 

 

(4.7.4)  max

2

h
h   

 
Hence our basic rule for constructing bins is choose a system of bins { : 1,.., }kN k k  of 

uniform size, such that the max-lag, 
k

h h , is as large as possible subject to (4.7.3) and 

(4.7.4). More formally, if the biggest distance in each bin k  is denoted by 

( , )max
i j kk s s N ijd d , then our procedure (in the MATLAB program variogram.m 

discussed below) is to choose a maximum bin number, k , and maximum distance (max-
dist), d ,  such that 14 
 
(4.7.5)  1 30

k
N N    

 
(4.7.6)  

k k
h h d d    

                                                 
13 Notice that this rule of thumb is reminiscent of that for the Central Limit Theorem used in the Clark-
Evans test of Section 3.2.2 in Part I (and in Section 3.1.3 above). Note also that some authors recommend 
there be at least 50 pairs in each bin [as for example in Schabenberger and Gotway (2005, p.153)]. 
14 This is essentially a variation on the “practical rule” suggested by Cressie (1985, p.575). 
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(Here the default value of d  is max / 2h  and the default value of k  is 100 bins.) With 

these rules for constructing bins and associated lag distances, it then follows from (4.1.5) 
that for any given set of sample points, { : 1,.., }is i n R  , with associated data, 

{ ( ) : 1,.., }iy s i n , an appropriate estimate of  the variogram value, ( )kh , at each lag 

distance, kh h , is given by half the average squared differences  2
( ) ( )i jy s y s  over 

all point pairs ( , )i js s  in kN , i.e., 

 
 

(4.7.7)   2

( , )

1
ˆ( ) ( ) ( )

2 i j k
k i js s N

k

h y s y s
N




   

 
 
This set of estimates at each lag distance is designated as the empirical variogram.15 
More formally, if for any given set of (ordered) lag distances, { : 1,.., }kh k k , the 

associated variogram estimates in (4.7.7) are denoted simply by ˆ ˆ( )k kh  , then the 

empirical variogram is given by the set of pairs ˆ{( , ) : 1,.., }k kh k k   . An schematic 

example of this empirical variogram construction is given in Figure 4.14 below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Here the blue dots correspond to squared-difference pairs,  2
( ) ( )i jy s y s , plotted 

against distances, ij i jh s s  , for each point pair, ( , )i js s , [as illustrated for one point in  

the lower left corner of the figure]. The vertical lines separate the bins, as shown for bins 

                                                 
15 The empirical variogram is also known as Matheron’s estimator, in honor of its originator 
[Schabenberger and Gotway (2005, Section 4.4.1)]. 
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Figure 4.14 Empirical Variogram Construction 
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k and k+1. So in bin k, for example, there is one blue dot for every point pair, 
( , )i j ks s N . The red dot in the middle of these points denotes the pair of average values, 

ˆ( , )k kh  , representing all points in that bin. Hence the empirical variogram consists of all 

these average points, one for each bin of points. [Schematics of such empirical 
variograms are shown (as blue dots) in Figure 4.15 below. An actual example of an 
empirical variogram is shown in Figure 4.19 below.] 
 
While this empirical variogram will be used to fit all variograms in these notes, it should 
be mentioned that a number of modifications are possible. First of all, while the use of 
average distances, kh , in each bin k  has certain statistical advantages (to be discussed 

below), one can also use the median distance, or simply the midpoint of the distance 
range. Similarly, while uniformity of bin sizes in (4.7.5) will also turn out to have certain 
statistical advantages for fitting variograms in our framework (as discussed below), one 
can alternatively require uniform widths of bins.  
 
In addition, it has been observed by Cressie and Hawkins (1980) [also Cressie (1993, 
Section 2.4.3)] that estimates involving squared values such as (4.8.7) are often 
dominated by a few large values, and are thus sensitive to outliers. Hence these authors 
propose several “robust” alternatives to (4.7.7) based on square roots and median values 
of absolute differences.   
 
Finally it should be noted that a number of fitting procedures in use actually drop this 
initial stage altogether, and fit variogram models directly in terms of the original data, 
{ ( ) : 1,.., }iy s i n .16 In such approaches, the empirical variogram is essentially replaced 

by a completely disaggregated version called the variogram cloud, where each point pair 

( , )i js s  is treated as a separate “bin”, and where  ij i js s    is estimated by the 

single sample,  2
ˆ ( ) ( )ij i jy s y s   .17 While this approach can in many cases be more 

powerful statistically, it generally requires stronger modeling assumptions. Moreover, it 
turns out that such methods are not only very sensitive to these modeling assumptions, 
but can also be less stable for smaller data sets. Finally, and most important from 
practical viewpoint, plots of the empirical variogram tend to be visually much more 
informative that plots of the entire variogram cloud, and in particular, can often help to 
suggest appropriate model forms for the variogram itself. [An example is given in Figure 
4.20 below.] Hence we choose to focus on the classical empirical-variogram approach.18  
 
 
 
 
                                                 
16 Most prominent among these is the method of maximum likelihood, as detailed for example in 
Schabenberger and Gotway (2005, Section 4.5.2). [This general method of estimation will also be 
developed in more detail in Part III of these notes for fitting spatial regression models.]  
17 An example is given in Figure 4.19 below. 
18 For additional discussion see the section on  “Binning versus Not Binning” in Schabenberger and 
Gotway (2005, Section 4.5.4.3). See also the excellent discussion in Reilly and Gelman (2007). 
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4.7.2  Least-Squares Fitting Procedure 
 
Given an empirical variogram, ˆ{( , ) : 1,.., }k kh k k  , together with a candidate variogram 

model, ( ; , , )h r s a  [such as the spherical model in (4.7.1)], the task remaining is to find 
parameter values, ˆ ˆ ˆ( , , )r s a , for this model that yield a “best fit” to the empirical variogram 
data.  The simplest and most natural approach is to adopt a “least squares” strategy, i.e., 
to seek parameter values, ˆ ˆ ˆ( , , )r s a , that solve the following (nonlinear) least-squares 
problem: 
 
 

(4.7.8)   2

( , , ) 1
ˆmin ( ; , , )

k

r s a k kk
h r s a 


  

 
 
While this procedure will be used to fit all variograms in these notes, it is important to 
note some shortcomings of this approach.  First of all, since squared deviations are being 
used in (4.7.8), it again follows that this least-squares procedure is sensitive to outliers. 
As with all least-squares procedures, one can attempt to mitigate this problem by using an 
appropriate weighting scheme, i.e., by considering the more general weighted least-
squares problem: 
 
 

(4.7.9)   2

( , , ) 1
ˆmin ( ; , , )

k

r s a k k kk
w h r s a 


  

 
 

for some set of appropriate nonnegative weights  : 1,..,kw k k . A very popular choice 

for these weights [first proposed by Cressie (1985)] is to set:19  
 

(4.7.10) 
2

, 1,..,
( ; , , )

k
k

k

N
w k k

h r s a
   

 
Here the numerator simply places more weight on those terms with more samples. The 
denominator is approximately proportional to the variance of the estimates, ˆk ,20 so that 

the effect of both the numerator and denominator is to place more weight on those terms 
for which the estimates, ˆk , are most reliable. However, it has been pointed out by others 

that the inclusion of the unknown parameters ( , , )r s a  in these weights can create certain 
instabilities in the estimation procedure [see for example Zhang et al. (1995) and Müller 
(1999, Section 4)]. Moreover, since our constant bin sizes in (4.7.5) eliminate variation in 
the sample weights, we choose to use the simpler unweighted least-squares procedure in 
(4.7.8).  

                                                 
19  In particular, this is the weighted least-squares procedure used in Geostatistical Analyst. 
20  This approximation is based on the important case of normally distributed spatial data.  
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Finally it should also be noted that this least-square procedure is implicitly a constrained 
minimization problem since it is required that (i) 0r   and (ii) 0s a  . In the present 
setting, however, nonnegativity of both r  and s  is essentially guaranteed by the 
nonnegativity of the empirical variogram itself. But nonnegativity of the nugget, a , is 
much more problematic, and can in some cases fail to hold. This is illustrated by the 
schematic example shown on the left in Figure 4.15 below, where a spherical variogram 
model (red curve) has been fitted to a set of hypothetical empirical variogram data (blue 
dots). Here it is clear that the best fitting spherical variogram does indeed involve a 
negative value for the estimated nugget, â . 
 
 
 
 
 
 
 
 
 
 
 
 
 
Hence in such cases, it is natural to impose the additional constraint that 0a  , and then 
solve the reduced minimization problem in the remaining unknown parameters, ( , )r s : 
 
 

(4.7.11)  2

( , ) 1
ˆmin ( ; , ,0)

k

r s k kk
h r s 


  

 
 
The solution to this reduced problem, shown schematically above will yield the “closest 
approximation” to the solution of (4.8.8) with a feasible value for the nugget, a . It is this 
two-stage fitting procedure that will be used (implicitly) whenever nuggets are negative. 
 
 
4.8  The Constant-Mean Model 
 
Our next objective is to develop a practical illustration of variogram estimation. But to do 
so, it is important to begin by recalling that covariance stationarity was originally 
motivated in the context of our general modeling framework in Section 1.2 above, where 
it was assumed that spatial random variables are of the form: 
 
(4.8.1)  ( ) ( ) ( )Y s s s     ,   s R  
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Figure 4.15. Negative Nugget Problem 
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and where covariance stationarity is actually a property of the unobserved residual 
process,  ( ) :s s R  . Hence variogram estimation for any given set of spatial data, 

 ( ) : 1,..,iy s i n , must generally been done as part of a larger modeling effort in which 

both the variogram and the spatial trend function  ( ) :s s R   are modeled explicitly. 

One can then consider iterative fitting procedures in which the spatial trend function is 
first fitted from the data, say by  ˆ ( ) : 1,..,is i n  , to yield residual estimates,  

 
(4.8.2)  ˆ ˆ( ) ( ) ( ) , 1,..,i i is y s s i n     

 
that are in turn used to fit the variogram model. Much of the present section on 
Continuous Spatial Data Analysis will be devoted to this larger modeling-and-estimation 
problem. Hence to develop a meaningful example of variogram estimation at this point, it 
is necessary to make stronger assumptions about the general framework in (4.9.1) above. 
 
In particular, we now assume that the entire process  ( ) :Y s s R  is itself covariance 

stationary. By (3.2.6) through (3.2.8) this equivalent to assuming that in addition to 
covariance stationarity of the residual process in the second term of (4.8.1), the spatial 
trend function in the first term is constant, so that  
 
(4.8.3)   ( ) ( ) ,Y s s s R     
 
for some (possibly unknown) scalar,  . Under these conditions it follows at once that 
 

(4.8.4)             2 2 2
( ) ( ) ( ) ( ) ( ) ( )E Y s Y v E s v E s v                       

 
for all ,s v R , so that by definition the variograms for the Y -process and the  -process 
are identical: 
 
(4.8.5)  ( ) ( ) , 0Y h h h    

 
Hence, under these assumptions we see that for any given spatial data,  ( ) : 1,..,iy s i n , 

the residual variogram,  , can be estimated directly in terms of the empirical variogram, 

 

(4.8.6)   2

( , ) ( )

1
ˆ ( ) ( ) ( ) , 1,..,

2 ( ) i j k
Y k i js s N h

k

h y s y s k k
N h




    

 
for the observable Y -process. This approach will be illustrated in the following example.  
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4.9  Example: Nickel Deposits on Vancouver Island 
 
The following example is taken from [BG, pp.150-151] and is based on sample data from 
Vancouver Island in British Columbia collected by the Geological Survey of Canada. 
This data set [contained in the ARCMAP file (…\projects\nickel\nickel.mxd)], extends 
over the area at the northern tip of the island shown in Figure 4.16 below. The area 
outlined in red denotes the full extent of the data site. For purposes of this illustration, a 
smaller set of 436 sample sites was selected, as shown by the dots in Figure 4.17.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note the curvilinear patterns of these sample points. As with many geochemical surveys, 
samples are here taken mainly along stream beds and lake shores, where minerals 
deposits are more likely to be found. In particular, samples of five different ore types 
were collected. The present application will focus on deposits of Nickel ore. [In class 
Assignments 3 and 4 you will study deposits of Cobalt and Manganese at slightly 
different site selections.] This Nickel data is shown in the enlarged map below, where 
Nickel concentration in water samples is measured in parts per million (ppm). 
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Figure 4.18. Nickel Data 

!

!!
!

!
!

!!
!!

!

!
!
!

!

!

! !
!

!!!!

!

! !

!!
!
!

!
!

!!

!

!
!
!

!
!

!
!

!

!! !

!!!

!
!!!

!!

!!

!

!!

!
! ! !

!
!

!

!!

!!
!
!

!

!

!

!
!!
!
!

!

!

!

!!

!

!

!

!

!

!!

!!!
!
!
!

!
! !

!!
!!

!!

!
!
!

!!!

!

!

!!

!

!
!

!
!!

!

!!
!!

!

!

!!

!!

!
!!

!!
!

!

!
!!

!!

!

!!

!
!

!!!
!!!
!!
!

!!

!

!

!!
!!

!
!!

!
! !!

!!!

!!!

!! !
!

!!
!!

!!!

!!!
!

!
!

!!
!

!
!!

!!

!
!

!
!

!

!
!

!
!
!

!

!

!

!
!

!!

!!
!!

!
!

!

!
!

!

!
!

!
!

!

!

!

!
!
!!

!

!

!

!

!

!
!!

!
!

!
!

!

!

!!

!
!!!!

!

!

!

!
!!!

!!!!
!

!

!
!!!! ! !!

!
!!!

!
!

!
!!

!

!

!

!

!
!

!!!

!!

!

!
! !

!!

!

!

!

!

!

!

!
!

!
!!!!

!
!!
!

!

!!

!

!
!
!

!

!

!!!!!

!
!

!!

!
!
!

!
!
!

!!
!!

!!
!

!!

!!!

!
!

!

!!

!

!

!
!!

!

!

!

!
!!

!

!

!
!!
!

!!

!

!
!!!

!

!!!

!
!

!

!!!
!!
!

!
!

!

!

!

!
!

!

!
!

!
!

!!
!

!
!

!!!
!

!!!!!!
!

Figure 4.16. Vancouver Sample Area Figure 4.17. Vancouver Sample Area 

• • 0 50 km 



NOTEBOOK FOR SPATIAL DATA ANALYSIS                            Part II. Continuous Spatial Data Analysis 
______________________________________________________________________________________ 
 

________________________________________________________________________ 
 ESE 502                                                     II.4-21                                                Tony E. Smith 

Since the mapped data exhibits strong similarities between neighboring values (at this 
physical scale), we can expect to find a substantial range of spatial dependence in this 
data. Notice however that the covariance-stationarity assumption of Isotropy in (3.3.5) 
[and (3.3.3)] is much more questionable for this data. Indeed there appear to be diagonal 
“waves” of high and low values rippling through the site. An examination of Figure 4.16 
above shows that these waves are roughly parallel to the Pacific coastline, and would 
seem to reflect the history of continental drift in this region.21 Hence our present 
assumption of covariance stationarity is clearly an over-simplification of this spatial data 
pattern. We shall see this more clearly in the variogram estimation procedure to follow. 
 
4.9.1  Empirical Variogram Estimation  
 

Given these 436n   sites ( : 1,.., )is i n  together with their corresponding nickel 

measurements, ( )i iy y s , our first objective is to construct an empirical variogram for 

this data as in (4.8.5) above. This procedure is operationalized in the MATLAB program, 
variogram_plot.m. To use this program, the data from Nickel.mxd has been imported to 
the MATLAB workspace file, nickel.mat. The 436 x 3 matrix, nickel, contains the 
coordinate + nickel data 1 2( , , )i i is s y  for each location 1,..,i n . By opening the program, 

variogram_plot.m, it can be seen that a matrix of this form is the first required input. 
Next, recall from Section 4.7.1 that along with this data, there are two inputs for defining 
an appropriate set of distance bins, namely the maximum bin number, k , and the 
maximum distance (max-dist), d . These parameter options are specified in an opts 
structure (similar to that in the program clust_sim.m of Section 3.5 in Part I). Here we 
shall start with the default values, 100k  , and max / 2 48,203 d h  meters, so that 

there is no need to specify this structure. Hence by typing the simple command: 
 
>> variogram_plot(nickel); 
 
one obtains a plot of the empirical variogram, as shown in Figure 4.19 below.  
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
21 In fact these waves are almost mirror images of the Cascadia subduction zone that follows the coastline 
immediately to the west of Vancouver Island. 
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 Here the point scatter does rise toward a “sill”, as in the classical case illustrated in 
Figure 4.8 above. So it appears that one should obtain a reasonable fit using the spherical 
model in Figure 4.9 [from expression (4.6.1)]. But before fitting this model, there are a 
number of additional observations to be made.  
 
First, for purposes of comparison, the corresponding variogram cloud is plotted in Figure 
4.20.22 Notice first that while the horizontal (distance) scales of these two figures are the 
same, the vertical (squared difference) scales are very different. In order to include the 
full point scatter in the variogram cloud, the maximum squared-difference value has been 
increased from 2000 in Figure 4.19 to around 4120,000 ( 12 10 )   in Figure 4.20.  For 
visual comparison, the value 2000 is shown by a red arrow in both figures. So while the 
empirical variogram does indeed look “classical” in nature, it is difficult to draw many 
inferences about the shape of the true variogram from the wider scatter of points 
exhibited by the variogram cloud. The reason for this is that while the empirical 
variogram shows mean estimates of the variogram at 100k   selected lag distances, the 
variogram cloud contains the squared y-differences for each of the 70,687 individual 
pairs, ( , )i js s , with ijd d . Hence about all that can be seen from this “cloud” of points 

is that there are a considerable number of outliers that are very much larger than the mean 
values at each distance. But fortunately this pattern of outliers is fairly uniform across the 
distance spectrum, and hence should not seriously bias the final result in this particular 
case. On the other hand, if outliers were more concentrated in certain distance ranges (as 
is often typical for the larger distance values), then this might indicate the need to “trim” 
some of these outliers before proceeding. In short, while the variogram cloud may 
provide certain useful diagnostic information, the empirical variogram is usually far more 
informative in terms of the possible shapes of the true variogram. 
 
Next, it should be noted that in addition to the variogram plot, one obtains the following 
screen output  
 

MAXDIST = 48203.698 
 

which is precisely d  above. To compare this with the max-lag distance, h , note first that 
there are a number of optional outputs for this program as well. First, the actual values of 
the empirical variogram, ˆ{( , ) : 1,.., }k kh k k  , are contained in the matrix, DAT, where 

each row contains one ˆ( , )k kh   pair. This can be seen by running the full command, 

 
>> [DAT,maxdist,bin_size,bin_last] = variogram_plot(nickel); 
 
and then clicking on the matrix, DAT, in the workspace to display the empirical 
variogram. In particular, the value h  corresponds to the last element of the first column 
and can be obtained with the command [ >> DAT(end,1) ] yielding 47984h  . This is 
smaller than d  since h  is somewhere in the middle of the last bin (as in Figure 4.13 
above), and d  is by definition the outer edge, 

k
d , of this last bin. 

                                                 
22 This was constructed using the MATLAB program, variogram_cloud_plot.m. 
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As for the additional outputs, maxdist is precisely the screen output above, and the value, 
bin_size = 707, tells you how many point pairs there are in each bin [as in condition 
(4.7.5) above]. In this application there are many more than 30 point pairs in each bin, so 
that the maximum number of bins, 100k  , is precisely the number realized. However, if 
the number of sample points had been sufficiently small, then bin_size = 30 , would be a 
binding constraint in (4.7.5) , and there could well be fewer than 100 bins.23  Finally, the 
value, bin_last, is simply a count of points in the last bin, to check whether it is 
significantly smaller than the rest. This will only occur if d  is chosen to be very close to 
the maximum pairwise distance, maxh , and hence will rarely occur in practice.24 

 
As one last observation, recall from the “wave” pattern in Figure 4.17 above that one may 
ask whether this effect is picked up by the empirical variogram at larger distances. By 
using the measurement tool in ARCMAP and tracing a diagonal line in the direction of 
these waves (from lower left to upper right), it appears that a reasonable value of maxdist 
to try is 80,000d   meters. To do so, we can run the program with this option as 
follows: 
 

>> opts.maxdist = 80000; 
 

>> variogram_plot(nickel,opts); 
 
We then obtain the empirical variogram in Figure 4.21b, where the previous variogram 
has been repeated in Figure 4.21a for ease of comparison: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
23 For example if  n = 50 so that the number of distinct point pairs is 50(49)/2 = 12256 < 30(100), then there 
would surely be fewer than 100 bins. 
24  For example, if one were to set opts.maxdist = 95000, which is very close to 

max
h  in the present 

example, then the last bin will indeed have fewer points than the rest.  
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Notice that while the vertical (squared difference) scales for these two figures are the 
same, the horizontal distance scales are now different (reflecting the different maximum 
distances specified). Moreover, while the segment of Figure 4.21b up to 50,000  

4( 5 10 )   meters is qualitatively similar to Figure 4.210a, the bins and corresponding 
lag distances are not the same as in Figure 4.21a. Hence it is more convenient to show 
separate plots of these two empirical variograms rather than try to superimpose them on 
the same scale. Given this scale difference, it is nonetheless clear that the slight dip in the 
empirical variogram on the left, starting at about 40,000 meters, becomes much more 
pronounced at the larger lag distances shown on the right. Recall (from the corresponding 
covariograms) that this can be interpreted to mean that pairs of y-values (nickel 
measurements) separated by more than 40,000 meters tend to be more similar (positively 
correlated) than those separated by slightly smaller distances. Finally, by again using the 
measurement tool in ARCMAP, it can be seen that the spacing of successive waves is 
about 40,000 meters. So it does appear that this effect is being reflected in the empirical 
variogram.  
 
As a final caveat however, it should be emphasized that the most extreme dip in Figure 
4.21b occurs at lag distances close to maxh , where variogram estimates tend to be very 

unreliable. In addition, there are “edge effects” created by this rectangular sample region 
that may add to the unreliability of comparisons at larger distances.  
 
4.9.2 Fitting a Spherical Variogram 
 
Recall from Section 4.6.1 above that all variogram applications in these notes (as well as 
the class assignments) will involve fitting spherical variogram models to empirical-
variogram data. [Other models can easily be fitted using the Geostatistical Analyst (GA) 
extension in ARCMAP, as illustrated below.] For purposes of the present application, we 
shall adhere to the restriction in (4.7.4) that d not exceed max / 2h , and hence shall use 

only the empirical variogram in Figure 4.19 (and 4.21a) constructed under this condition. 
To fit a spherical variogram model to this empirical-variogram data, we shall use the 
simple nonlinear least-squares procedure in (4.7.8) above.  
 
Fitting Procedure using MATLAB  
 

This is operationalized in the MATLAB program, var_spher_plot.m.25 Since this 
program uses exactly the same inputs as those detailed for variogram_plot.m in Section 
4.9.1 above, there is no need for further discussion of inputs. Hence a spherical variogram 
model can be fitted in the present application with the command: 
 

>> var_spher_plot(nickel); 
 

The first output of this fitting procedure is the spherical variogram plot shown in Figure 
4.22 below, where the blue dots are the empirical variogram points, and the estimated 

                                                 
25  One can also use the weighted nonlinear least-squares procedure in (4.8.9) and (4.8.10) above, which is 
programmed in var_spher_wtd_plot.m. 
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spherical variograms is shown in red. If you click Enter again you will see the associated 
covariogram plot, as shown in Figure 4.23 below.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here it must be emphasized that this covariogram is not being directly estimated. Rather, 
the estimates ˆ ˆ ˆ( , , )r s a  obtained for the spherical variogram are substituted into (4.6.2) in 
order to obtain the corresponding covariogram. Hence it is more properly designated as 
the derived spherical covariogram. Similarly, the blue dots shown in this figure are 
simply an inverted reflection of the empirical variogram shown in Figure 4.22.  However, 
they can indeed be similarly interpreted as the derived empirical covariogram 
corresponding to the empirical variogram in Figure 4.22. To do so, recall first from 
(4.1.7) that for all distances, h , it must be true that 2( ) ( )C h h   . But since each 

empirical variogram point ˆ( , )k kh  by definition yields an estimate of ( )kh , namely 

ˆ ˆ( )k kh  , and since the sill value, ŝ , is by definition an estimate of 2 , i.e., 2ˆ ˆs  , it 

is natural to use (4.1.7) to estimate the covariogram at distance kh  by 

 

(4.9.1)  2ˆ ˆ ˆˆ ˆ( ) ( ) ( )k k kC h h s h       

 

Hence by letting ˆ ˆ ( )k kC C h , it follows that the set of points, ˆ{( , ) : 1,.., }k kh C k k , 

obtained is precisely the derived empirical covariogram in Figure 4.23 corresponding to 
the empirical variogram, ˆ{( , ) : 1,.., }k kh k k  , in Figure 4.22.26  

 
As mentioned earlier, the advantage of displaying this derived covariogram is that it is 
much easier to interpret that the estimated variogram. To do so, we begin by noting that 
in addition to these two diagrams, the program var_spher_plot.m also yields a screen 

                                                 
26 In particular, the vertical component, ˆ

k
 , of each variogram point ˆ( , )

k k
h   has simply been shifted to the 

new value, ˆ ˆˆ
k k

C s   . 

4.22 Fitted Spherical Variogram 4.23 Derived Spherical Covariogram 
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display of the parameter estimates ˆ ˆ ˆ( , , )r s a  [along with maxdist, d , and the number of 
iterations in the optimization procedure27], as shown in Figure 4.24 below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In particular, the RANGE ( ˆ 17769.160r   meters) denotes the distance beyond which 
there is estimated to be no statistical correlation between nickel values.28 In Figure 4.22, 
this corresponds to the distance at which the variogram first “reaches the sill”. But this 
offers little in the way of statistical intuition. In Figure 4.23 on the other hand, it is clear 
that this is the distance at which covariance (and hence correlation) first falls to zero. 
This is the key difference between these two representations. Notice also that the vertical 
axis in Figure 4.23 has been shifted relative to Figure 4.22, in order to depict the negative 
covariance values in the cluster of values around the zero line.   
 
Turning to the other estimated parameters, note first from Figure 4.23 that the SILL 
( ˆ 1554.658s  ) is seen to be precisely the estimated variance of individual nickel values 
(i.e., the estimated covariance at “zero distance”). Similarly, the NUGGET  
( ˆ 618.044a  ) is seen to be that part of the individual variance that not related to spatial 
dependence among neighbors. Since in this case the relative nugget effect, 0.398 ( = 
618.044/1554.658), is well below 0.5, it is evident that there is a substantial degree of 
local spatial dependence among nickel values. So in summary, it should be clear that 
while the variogram model is useful for obtaining these parameter estimates, ˆ ˆ ˆ( , , )r s a , the 
derived covariogram model is far more useful for interpreting them. 
 
Fitting Procedure using ARCMAP  
 

Before proceeding, it is of interest to compare this estimated spherical variogram with the 
fitting procedure used in the Geostatistical Analyst (GA) extension in ARCMAP 
(Version 10).  The results of this procedure applied to the nickel data in the ARCMAP 
file, nickel.mxd, are shown in Figure 4.25 below.  
 

                                                 
27 Note that if ITERATIONS exceeds 600, you will get an error message telling you that the algorithm 
failed to converge in 600 iterations (which is the default maximum number of iterations allowed). 
28 Notice also that this RANGE value is considerably below the MAXDIST (48203.698 meters), indicating 
that the range of spatial dependence among nickel values is well captured by this empirical variogram 

 
SPHERICAL VARIOGRAM: 
         
RANGE             17769.160  
SILL                    1554.658  
NUGGET              618.044  
MAXDIST         48203.698  
 
ITERATIONS = 126 

 
Figure 4.24.  Parameter Estimates 
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Note first that the title of this window is “Semivariogram” rather than “Variogram” (as 
discussed at the end of Section 4.1 above). Since the full details of this variogram fitting 
procedure are given in Assignment 3, it suffices here to concentrate on the estimated 
parameter values. However, it is important to point out one aspect of this procedure that 
is crucial for parameter estimation. Recall from the discussion of Figure 4.13 that one 
must define appropriate bins for the empirical variogram. Since the “default” option for 
bin definitions in GA is rather complex compared to ver_spher_plot.m, it is most 
convenient to define the bin sizes in GA manually in order to make them (roughly) 
comparable to those in ver_spher_plot. To do so, recall from Figure 4.24 the MAXDIST 
value is close to 48000 meters. So by setting the number of lags to 12 and choosing a 
constant bin size of 4000 meters (as seen in the Lag window in the lower right of Figure 
4.25), we will obtain a maximum distance of exactly 48000 meters (as seen on the 
distance axis of the variogram plot). Note also that in the Model #1 window we have 
chosen Type = “Spherical”, indicating that a spherical variogram is to be fitted.  
 
The fitted spherical variogram is shown by the blue curve in the figure, and the empirical 
variogram is shown by red dots. Note that while the number of lags (12) is considerably 
smaller than the number of bins (100) used in ver_spher_plot, there actually appear to be 

Figure 4.25. Spherical Variogram Fit in Geostatistical Analyst 
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more red dots here than there are blue dots in Figure 4.22 above. The reason for this can 
be seen by considering the circular pattern of squares in the lower left corner of the 
figure. Starting from the center and moving to the right, one can count 12 squares, which 
denote the 12 lag distances. Hence as the figure shows, point pairs are here distinguished 
not only by the length of the line between them (distance) but also the direction of this 
line (angle). Each square thus defines a “bin” of point pairs with similar separation 
distances and angles. So the number of bins here is much larger than 12.29 While these 
directional distinctions are important for fitting anisotropic variogram models in which 
the isotropy assumption of covariance stationarity is relaxed, we shall not explore such 
models in these notes.30 Hence, under our present isotropy assumption, the appropriate 
empirical variogram in GA is constructed by using each of these squares as a separate bin 
with “lag distance” equal to the average distance between point pairs with distance-angle 
combinations in that square.  
 
Next observe that in addition to the different binning conventions, the actual estimation 
procedure used in GA is more complex than the simple least-squares procedure used in 
ver_spher_plot [and is essentially an elaboration of the weighted least-squares approach 
of Cressie in shown in expressions (4.7.9) and (4.7.10) above].  So it should be clear that 
the resulting spherical model estimate will not be the same as in Figure 4.22 above.  In 
particular, the estimated range and nugget in this case are given, respectively, by “Major 
Range” (= 17806.86) and “Nugget” (= 617.32). However, the “Sill” is here replaced by 
“Partial Sill” (= 943.17). Hence, recalling from the discussion at the end of Section 4.6.2 
that “Sill = Partial Sill + Nugget”, it follows the corresponding sill is here given by 
1560.5 (= 943.17 + 617.32). A comparison of the parameter estimates using both 
MATLAB and GA in this example (Figure 4.26 below) show that in spite of the 
differences above, they are qualitatively very similar.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                 
29 In this example, the number of bins is given approximately by 212 452  . However the number of red 

dots is actually half  the number of bins, since each bin has a “twin” in the opposite direction. Hence the 
number of red dots in this case is given approximately by 226, which is still much larger than 100.  
30 For a detailed discussion of such anisotropic models see Gotway and Waller (2004, Section 2.8.5). 

 MATLAB     GA 
Range 17769.2 17806.9
Sill   1554.7   1552.6
Nugget     618.0     617.3

Figure 4.26. Parameter Estimates  
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4.10  Variograms versus Covariograms  
 
Before applying these methods to analyze spatially dependent data, it is appropriate to 
return to the question of why variograms are preferable to covariograms in terms of 
estimation. To do so, we start by showing that for any spatial stochastic process, 
 ( ) :Y s s R , satisfying the covariance stationarity condition (3.3.7) above, the 

“standard” sample estimator of covariance is biased.  
 
4.10.1 Biasedness of the Standard Covariance Estimator 
 
First recall from expression (3.3.7) that for any distance 0h   the covariogram value, 

( )C h , is by definition  
 
(4.10.1)  1 2( ) cov ( ), ( )C h Y s Y s  

 
for any 1 2,s s R  with 1 2s s h  . Hence suppose for sake of simplicity that we are able 

to draw n  sample pairs, 1 1 2 2 1 2[ ( ), ( )] ( , )i i i iy s y s y y , from this process with 1 2i is s h   

holding exactly for all 1,..,i n . In this context, the standard sample estimator for the 
covariance value in (4.10.1) is given by 
 

(4.10.2)   1 1 2 21
1

1
ˆ ( )

n

i iinC h y y y y
    

 

with sample means denoted by 
1

(1/ ) , 1,2
n

j jii
y n y j


  . Here division by 1n   (rather 

than the seemingly more natural choice of division by n ) ensures that if these sample 
pairs [ 1 2( , )i iy y , 1,..,i n ] were independent draws from jointly distributed random 

variables 1 2( , )Y Y  with covariance given by (4.10.1), then ˆ ( )C h  in (4.10.2) would be an 

unbiased estimator of  ( )C h .  However, if these pairs are not independent, then it is 

shown in Appendix A2.2 that the actual expectation of ˆ ( )C h  is given by 
 

(4.10.3) 1 21
1

( 1)
ˆ[ ( )] ( ) cov( , )

n

i ji j in nE C h C h Y Y
      

 
Notice first that if these sample pairs were independent then by definition each 
covariance, 1 2cov( , )i jY Y , with i j  must be zero so that (4.10.3) would reduce to  

ˆ[ ( )] ( )E C h C h , and ˆ ( )C h  would indeed be an unbiased estimator. But for the more 
classical case of nonnegative spatial dependences, all covariances in the second term of 
(4.10.3) must either be positive or zero. Hence for this classical case it is clear that there 
will in general be a considerable downward bias in this estimator. Moreover, without 
prior knowledge of the exact nature of such dependencies, it is difficult to correct this 
bias in any simple way. It is precisely this difficulty that motivates the need for 
alternative approaches to modeling spatial dependencies. 
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4.10.2 Unbiasedness of Empirical Variograms for Exact-Distance Samples 
 
To motivate the use of variograms for modeling spatial dependencies, we begin by 
recalling from (4.1.7) that the covariogram, ( )C h , is entirely determined by the 

variogram, ( )h , together with the (nonspatial) variance parameter, 2 . Hence if the 

empirical variogram, ˆ( )h , can be shown to yields a unbiased estimate of ( )h , then this 
will surely offer a better approach to capturing spatial dependencies.  
 
There is one case in which this is possible, namely when there exist multiple pairs, 

1 2[ ( ), ( ) : 1,.., ]i i hY s Y s i n , each separated by the same distance h , i.e., satisfying the 

condition that 1 2i is s h  for all 1,.., hi n . In particular, if spatial samples form a 

regular lattice, as illustrated by the small set of red dots in Figure 4.27 below, then there 
will generally be a set of representative distances for which this is true. In particular, the 
symmetry of such lattices implies that distance values such as 1 2 3, , andh h h  in the figure 

will occur for many different point pairs.  
 
 
 
 
 
 
 
 
 
 
 
 
 
More generally, whenever there exists a representative range of distinct distance values, 
{ : 1,.., }kh k k , at which a substantial set of exact-distance pairs, 

 
(4.10.4) 1 2 1 2{( , ) : }k kN s s s s h     

 
can be sampled at each kh , then the associated empirical variogram, ˆ{( , ) : 1,.., }k kh k k  , 

in (4.7.7) will indeed provide a meaningful unbiased estimate of the true variogram, 
( )kh , at each of these distance values.31 To see this, it is enough to recall from (4.1.5) 

that  2

1 2( ) ( ) 2 ( )i i kE Y s Y s h      for all 1 2( , ) ks s N , and hence that 

 

                                                 
31 Here the qualifier “meaningful” is meant to distinguish this estimator from one in which there is no 

possibility of eventually accumulating a large set of sample pairs, 
k

N , for each 
k

h .  
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Figure 4.27. Regular Lattice of Sample Points 
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(4.10.5)   
1 2

2

1 2( , )

1
ˆ[ ( )] ( ) ( )

2 k
k s s N

k

E h E Y s Y s
N
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1
2 ( )

2 k
ks s N

k

h
N




     

 

                        
2

( ) ( )
2

k
k k

k

N
h h

N
     

 
So regardless of the size of each exact-distance set, kN , this empirical variogram will 

always yield an unbiased estimate of the true variogram, ( )kh , at each distance 

1,..,k k .  Hence if in addition it is true that each of these sets is sufficiently large, say 

30kN  , then this empirical variogram should provide a reliable estimate of the true 

variogram. 
 
Finally, it should be noted that if one is able to choose the pattern of samples to use in 
studying a given spatial stochastic process, ( ( ) : )Y s s R , then such regular lattices have 
the practical advantage of providing a uniform coverage of region R . This is particularly 
desirable for interpolating unobserved values in R  (as discussed in detail in Part 6 
below). It is for this reason that much attention is focused on regular lattice samples of 
such processes [as for example in Cressie (1993, p.69) and Waller and Gotway (2004, 
p.281)].32 
 
4.10.3 Approximate Unbiasedness of General Empirical Variograms 
 
For the general case of irregular samples, where exact-distance sets rarely contain more 
than one observation, it is necessary to rely on the binning procedure developed in 
Section 4.7.1 above. The “Nickel” example in Section 2.4 above provides a good 
illustration of such a case where regular sample patterns are impractical if not impossible. 
In this more typical setting, it is difficult to find much discussion in the literature about 
the bias of empirical variogram estimates created by binning.33  
 
However, it is not difficult to show that if the true variogram is reasonably smooth, then 
one can at least bound the bias in a rather simple way. In particular, if by “smooth” we 

                                                 
32 It should be mentioned again that these references define empirical variograms with respect to the more 
general notion of stationarity mentioned in footnote 6 of Section 3.2 above. So the exact-distance sets used 
here are replaced by “exact-difference sets”. 
33 One noteworthy exception is the interesting analysis of “clustered” sampling schemes by Reilly and 
Gelman (2007). 
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mean that the variogram, ( )h , is locally linear in the sense that its values are well 
approximated by linear functions on sufficiently small intervals, then one can bound the 
bias of the general empirical variogram in (4.7.7) in terms of these linear approximations. 
To be more specific, suppose that the true variogram is given by red curve in Figure 4.27 
below, and that the set of bins chosen for estimating this (unknown) function are shown 
schematically as in Figure 4.28 below [where by definition each bin, 1,..,k k , is 

defined by the interval of separation distances, 1k kd h d    (with 0 0d  )].    

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here the variogram, ( )h , illustrated is assumed to be an instance of the “combined 
model” in  Figure 4.8 above. In addition, it is assumed that ( )h  is sufficiently smooth to 
allow the section of the curve on each bin to be roughly approximated by a linear 
function. This is illustrated for a typical bin interval, 1[ , )k kd d , by the solid blue line in 

Figure 4.29. This linear approximation function, denoted by 
 
(4.10.6) ( )k k kl h a h b    

 
(with slope, ka , and intercept, kb ) has been implicitly chosen to minimize the maximum 

deviation, ( ) ( )kh l h  , over the interval 1k kd h d   . If this maximum deviation is 

denoted by k , then the variogram, ( )h , is said to have an k -linear approximation on 

bin k .  With these definitions, it is shown in Appendix A2.3 that in terms of this k -

linear approximation, the maximum bias in the empirical variogram estimate of ( )kh  

can never exceed 2 k , i.e., 

 
(4.10.7) ˆ[ ( )] ( ) 2k k kE h h      

 

1d  

( )h  

2d  1kd   kd  
k

d     1kd   kd  

k  

Figure 4.28 Bins for Variogram Estimation Figure 4.29. Local Linear Approximation 

0

( )kl h  
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Of course one cannot know the value of k  without knowing the true variogram itself. So 

the bound in (4.10.7) is simply a qualitative result showing that if ( )h  is assumed to be 

sufficiently smooth to ensure that the maximum deviation, max{ : 1,.., }k k k   , for 

the given bin partition is “small”, then the bias in the empirical variogram, 
ˆ{( , ) : 1,.., }k kh k k  , will also be “small”. In other words, for variograms with good 

“piece-wise linear approximations” on the given set of bins, empirical variogram 
estimates can be expected to exhibit only minimal bias. 
 
 
 
 
 


