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6. Simple Spatial Prediction Models 
 

In this section we consider the simplest spatial prediction models that incorporate random 
effects. These spatial prediction models are part of a larger class of models known as 
kriging models [in honor of the South African mining engineer, D.G. Krige, who 
pioneered the use of statistical methods in ore-grade sampling in the early 50’s].1 So 
before launching into the details of the specific models developed in this section, it is 
appropriate to begin with a general overview of kriging models.  
 
6.1 An Overview of Kriging Models 
 
From a formal viewpoint, kriging models are closely related to the kernel smoothing 
models developed in Sections 5.1 and 5.2 above. In particular, the fundamental idea of 
predicting values based on local information is exactly the same. In fact, a slight 
modification of Figure 5.2, as in Figure 6.1 below, serves to illustrate the main ideas. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Given spatial data, ( )y s , at a set of locations, { : 1,.., }is i n R  , we again consider the 

prediction of the unobserved value at some location, 0s R . The first key difference is 

that we now treat the observed data as a finite sample from a spatial stochastic process 
{ ( ) : }Y s s R . As in the case of deterministic interpolation, not all sample data is 

necessarily relevant for prediction at 0s . Hence, for the present, we again assume that 

some appropriate subset of sample locations,  

                                                 
1 For further background discussion of kriging methods see Cressie (1990) and (1993, p.106). 
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Figure 6.1 Basic Kriging Framework 
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(6.1.1)  0( ) { : 1,.., }iS s s i n    

 
has been chosen for prediction, which for convenience we here designate as the 
prediction set at 0s  (rather than “interpolation set”). The choice of 0( )S s  will of course 

play a major role in determining the final prediction value at 0s . But it will turn out that 

the best way to choose these sets is first to determine a “best prediction” for any given 
set, 0( )S s , and then determine a “best prediction set” by comparing these predictions. 

This procedure, known as cross validation, will be developed in Section 6.4 below. 
 
So given prediction set, 

00 1( ) { ,.., }nS s s s , the next question is how to determine a 

prediction, 0ˆ( )y s , based on the sample data, 
01{ ( ),.., ( )}ny s y s . Given the present 

stochastic framework, this question is more properly posed by treating this prediction as a 

random variable, 0
ˆ( )Y s , and asking how it can be determined as a function of the random 

variables, 
01{ ( ),.., ( )}nY s Y s , associated with the observed data. As with kernel smoothers, 

we again hypothesize that 0
ˆ( )Y s  can be represented as some linear combination of these 

random variables, i.e., that 0
ˆ( )Y s  is of the form: 

 

(6.1.2)  0

0 01
ˆ( ) ( )

n

i ii
Y s Y s


    

 
where the weights 0i  are yet to be determined. This fundamental hypothesis shall be 

referred to as the linear prediction hypothesis.  
 
6.1.1  Best Linear Unbiased Predictors 
 
In contrast to kernel smoothing, the unknown weights 0i  in (6.1.2) need not be simple 

functions of distance ( so that 0i  in Figure 6.1 now replaces 0id  in Figure 5.2).2 In any 

case, the key strategy of kriging models is to choose weights that are “statistically 
optimal” in an appropriate sense. To motivate this approach in the simplest way, we 

begin by designating the difference between 0
ˆ( )Y s  and the unknown true random 

variable, 0( )Y s , as the prediction error,  

 

(6.1.3)  0 0 0
ˆ( ) ( ) ( )e s Y s Y s   

 
This prediction error will play a fundamental role in the analysis to follow. But before 
proceeding, it is important to distinguish prediction error, 0( )e s , from the random effects 

                                                 
2 One would expect that points is  closer to 0s  will tend to have larger weights, 

0i
 . However we shall see 

in Section 6.2.3 below that is not true, even when spatial correlations decrease with distance. 
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term, 0( )s , in our basic stochastic model, 0 0 0( ) ( ) ( )Y s s s   . While they can both 

viewed as “random errors”, the random effects term,  0( )s , describes the deviation of 

0( )Y s  from its mean, so that by definition, 0[ ( )] 0E s  . This is certainly not part of the 

definition of prediction error.  
 
However, it is clearly desirable that prediction errors satisfy this zero-mean property, i.e., 
that prediction error on average be zero. Indeed, this is our first statistical optimality 
criterion, usually referred to as the unbiasedness criterion: 
 

(6.1.4)  0 0 0
ˆ[ ( ) ] [ ( ) ( )] 0E e s E Y s Y s    

 

All predictors, 0
ˆ( )Y s , satisfying both (6.1.2) and (6.1.4) are referred to as linear unbiased 

predictors of 0( )Y s . In these terms, our single most important optimality criterion is that 

among all possible linear unbiased predictors, the prediction error of 0
ˆ( )Y s  should be as 

“close to zero” as possible. While there are many ways to define “closeness to zero”, for 
the case of random prediction error it is natural to require that the mean squared error, 

2
0[ ( ) ]E e s , be as small as possible.3 Hence our third criterion, designated as the efficiency 

criterion is that 0
ˆ( )Y s  have minimum mean squared error among all linear unbiased 

predictors.  
 
This criterion is so pervasive in the statistical literature that it is given many different 
names. On the one hand, if we abbreviate “minimum mean squared error” as MMSE, 
then such predictors are often called MMSE predictors. In addition, notice that since 
unbiasedness ( 0[ ( )] 0E e s  ) implies 

 

(6.1.5)   22 2
0 0 0 0var[ ( )] [ ( ) ] [ ( )] [ ( ) ]e s E e s E e s E e s    , 

 
such predictors are also instances of minimum variance predictors. However, to 
emphasize their optimality among all linear unbiased predictors, it is most accurate to 
designate them as best linear unbiased predictors, or BLU predictors. It is this latter 
terminology that we shall use throughout. 
 
6.1.2 Model Comparisons 
 
Within this general framework we consider four different kriging models, proceeding 
from simpler to more general models. These models are each characterized by the 
specific assumptions made about the properties of the underlying spatial stochastic 
process, { ( ) ( ) ( ) : }Y s s s s R    . For all such models, we start with a fundamental 

                                                 
3 Another possibility would be to require that the mean absolute error, 

0
[ | ( ) | ]E e s , be as small as possible. 

However, since the absolute-value function is not differentiable at zero, this criterion turns out to be much 
more difficult to analyze. 
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normality assumption about spatial random effects. In particular, for each finite set of 
locations { : 1,.., }is i n  in region R, it will be assumed that the associated spatial random 

effects [ ( ) : 1,.., ]is i n   are multi-normally distributed.4 Since [ ( )] 0E s  , by definition, 

this distribution is determined entirely by the covariances, cov[ ( ), ( )] , , 1,..,i js s i j n   . 

Hence the assumptions characterizing each model can be summarized in terms of 
assumptions about (i) the spatial trend, ( )s  , and (ii) the covariances, cov[ ( ), ( )]s s   , 
between pairs of random errors.  
 
Before stating these assumptions, it is important to make one additional clarification. 
When a given parameter such a mean value,  , is assumed to be “known” or 
“unknown”, these terms have very specific meanings. In particular, one almost never 
actually “knows” the value of any parameter. Rather, a phrase like “  known” is taken 
to mean that the value of this parameter is determined outside of the given model. 
Similarly, “  unknown” is taken to mean that the value of this parameter is to be 
determined inside (i.e., as part of) the given model.5  
 
Simple Kriging Model 
 
Here “simple” refers to the (rather heroic!) assumption that underlying stochastic process 
itself is entirely known. In addition, it is also assumed that the spatial trend is constant. 
More formally, this amounts to the assumptions: 
 
(6.1.6)  ( ) ,s known s R    
 
(6.1.7)  cov[ ( ), ( )] , ,s s known s s R      
 
Before proceeding, it is reasonable to ask why one would even want to consider this 
model. Since all parameters of the stochastic process are determined outside the model, it 
would appear that there is nothing left to be done. But remember that the underlying 
stochastic process model serves only as a statistical framework for carrying out spatial 
prediction. In particular, given any location, 0s R , and associated prediction set, 

00 1( ) { ,.., }nS s s s , the basic task is to predict a value for 0( )Y s  given observed values of 

01{ ( ),.., ( )}nY s Y s . So in terms of the linear prediction hypothesis in (6.1.2), the key 

prediction weights, 0 0( : 1,.., )i i n  , are still unknown, i.e., are yet to be determined. 

Hence the chief advantage of this simple kriging model from a conceptual viewpoint is to 
                                                 
4 In addition there is an obvious “consistency” condition that must also be satisfied. For example, if 

1 2
{ ( ), ( )}Y s Y s  is bivariate normal, then the univariate normal distributions for subsets 

1
{ ( )}Y s  and 

2
{ ( )}Y s  

must of course be the marginal distributions of 
1 2

{ ( ), ( )}Y s Y s . More generally each subset of size k from 

the n-variate normal, 
1

{ ( ), ..., ( )}
n

Y s Y s  must have precisely the corresponding k-variate marginal normal 

distribution.  
5 A somewhat more accurate terminology would be to use “   exogenous” and “   endogenous”. But the 

terms “known” and “unknown” are so widely used that we choose stay with this convention. 
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allow us to derive optimal prediction weights without having to worry about estimating 
other unknown parameters at the same time. 
 
Ordinary Kriging Model 
 
The only difference between this model and simple kriging is that the constant mean,  , 
is now assumed to be unknown, and hence must be estimated within the model. More 
formally, it is assumed that 
 
(6.1.8)  ( ) ,s unknown s R    
 
(6.1.9)  cov[ ( ), ( )] , ,s s known s s R      
 
This ordinary kriging model in fact the simplest kriging model that is actually used in 
practice. As will be seen below, the constant-mean assumption (6.1.8) allows both the 
mean and covariances to be estimated in a direct way from observed data. So a practical 
estimation procedure is available for this model. However, one may still ask why this 
model is of any interest from a spatial viewpoint when all variations in spatial trends are 
assumed away. The key point to keep in mind here is that spatial variation is still present 
in this model, but all such variation is assumed to be captured by the covariance structure 
of the model. We shall return to this issue in Section 6.3 below.  
 
Universal Kriging Model 
 
We turn now to kriging models that do allow for explicit variation in the trend function, 

( )s . The simplest of these, designated as the universal kriging model, allows the trend 
function to be modeled as a linear function of spatial attributes, but maintains the 
assumption that all covariances are known. More formally, if we now let 

1( ) [ ( ),.., ( )]kx s x s x s  denote a (column) vector of spatial attributes [which may include 

the coordinate attributes, 1 2( , )s s s , themselves], and let 1( ,.., )k     denote a 

corresponding vector of coefficients, then this model is characterized by the assumptions: 
 
(6.1.10) ( ) ( ) , ,s x s unknown s R     
 
(6.1.11) cov[ ( ), ( )] , ,s s known s s R      
 
Here it should be emphasized that “linear” means linear in parameters ( ). For example, 

if 2 2
1 2 1 2 1 2( ) [1, , , , , ]x s s s s s s s  so that 

 
(6.1.12) 2 2

0 1 1 2 2 3 1 4 2 5 1 2( )s s s s s s s             , 

 
then the trend, ( )s , is a quadratic function of the coordinates, 1 2( , )s s s , but is linear 

in the parameter vector, 0 1 2 3 4 5( , , , , , )        . 
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Geostatistical Kriging Model 
 
Our final kriging model relaxes the assumption that covariances are known. More 
formally, this geostatistical kriging model (or simply, geo-kriging model) is characterized 
by the following assumptions: 
 
 
(6.1.13) ( ) ( ) , ,s x s unknown s R     
 
(6.1.14) cov[ ( ), ( )] , ,s s unknown s s R      
 
 
In this model, the spatial trend parameters,  , as well as all covariance parameters must 
be simultaneously estimated. While this procedure is clearly more complex from an 
estimation viewpoint, it provides the most general framework for spatial prediction in 
terms of prior assumptions. Hence our ultimate goal in this part of the NOTEBOOK is to 
develop this geostatistical kriging model in full,  and show how it can be estimated.  
 
6.2  The Simple Kriging Model 
 
To develop the basic idea of kriging, we start by assuming as in (6.1.6) and (6.1.7) above 
that the relevant spatial stochastic process, { ( ) ( ) ( ) : }Y s s s s R     has a constant 
mean, [ ( )] ( )E Y s s   , and that this mean value,  , together with all covariances, 
cov[ ( ), ( )] , ,s s s s R     have already been estimated. We shall return to such estimation 
questions below. But for the present we simply take all these values to be given. In this 
setting, observe that if we want to predict a value, 0( )Y s , at some location, 0s R , then 

since 0( )s   is already known, we see from the identity, 

 
(6.2.1)   0 0( ) ( )Y s s     

 
that it suffices to predict the associated error, 0( )s . Moreover, if we are given a finite 

set of sample points, 1{ ,.., }ns s R  where observations, 1{ ( ),.., ( )}ny s y s  have been made, 

then in fact we have already “observed” values of the associated errors, namely, 
 
(6.2.2)  ( ) ( ) , 1,..,i is y s i n     

 
Hence if 

00 1 1( ) { ,.., } { ,.., }n nS s s s s s   denotes the relevant prediction set at 0s , then the 

linear prediction hypothesis for 0( )s  in this setting reduces to finding a linear 

combination, 
 

(6.2.3)  0

0 01
ˆ( ) ( )

n

i ii
s s  


   
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which yields a Best Linear Unbiased (BLU) predictor of 0( )s . The corresponding 

predictor of 0( )Y s  is then defined to be 

 

(6.2.4)  0 0
ˆ ˆ( ) ( )Y s s    

 
Note since by definition all errors, ( ) ,s s R  , have zero means, it then follows at once 
from (6.2.1) and (6.2.4) together with the linearity of expectations that,  
 

(6.2.5)             0 0 0 0
ˆ ˆ[ ( ) ( )] [ ( ) ( )]E Y s Y s E s s     

 

                                                  0

0 01
[ ( ) ( )]

n

i ii
E s s  


   

 

                                                 0

0 01
[ ( )] [ ( )] 0

n

i ii
E s E s  


    

 

and hence that the unbiasedness condition is automatically satisfied for 0
ˆ( )Y s  [and 

indeed, for every possible linear estimator given by (6.2.3) and (6.2.4)]. This means that 
for simple kriging, BLU prediction reduces precisely to Minimum Mean Squared Error 
(MMSE) prediction. So the task remaining is to find the vector of weights, 

0 0 0( : 1,.., )i i n    in (6.2.3) that minimize mean squared error: 

 

(6.2.6)     2 2
0 0 0 0 0

ˆ ˆ( ) [ ( ) ( )] [ ( ) ( )]MSE E Y s Y s E s s        

 
Here it might seem that without further information about the distributions of these 
errors, one could say very little. But surprisingly, it is enough to know their first and 
second moments [as assumed in (6.1.6) and (6.1.7) above]. To see this, we begin by 
introducing some simplifying notation. First, as in (1.1.1) above, we drop the explicit 
reference to locations and now write simply 
 
(6.2.7)  0( ) , 0,1,..,i is i n    

 
[Here it is worth noting that the choice of “0” for the prediction location is very 
convenient in that it often allows this location to be indexed together with it predictor 
locations, as in (6.2.7).] Next, recalling that ( ) 0iE    it follows that variances and 

covariances for the predictor variables can be represented, respectively, as  
 
(6.2.8)  2

0var( ) ( ) , 1,..,i i iiE i n      

 
(6.2.9)  0cov( , ) ( ) , , 1,.., ( )i j i j ijE i j n j i         
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In addition, the corresponding variance and covariances for unknown error, 0 , to be 

predicted can be written as  
 
(6.2.10) 2 2

0 0var( ) ( )E     

 
(6.2.11) 0 0cov( , ) ,i i    01,..,i n  

 
Notice in particular that in the variance expression (6.2.10) we have omitted subscripts 
and written simply 2

00  . This variance will play a special role in many of the 

expressions to follow. Moreover, since only stationary models of covariance will actually 
be used in our kriging applications, this variance will be independent of location 0s .6 In 

these terms, we can now write mean squared error explicitly in terms of these parameter 
values as follows: 
 

(6.2.12)    0
2

2
0 0 0 0 01

ˆ( ) [ ( ) ( )]
n

i ii
MSE E s s E     



      
  

 

                             0 0
2

2
0 0 0 01 1

2
n n

i i i ii i
E      

 

     
   

 

                                            0 0
2

2
0 0 0 01 1

2
n n

i i i ii i
E E E     

 

      
   

 
But since 
 

(6.2.13)    0 0 0 0

0 0 0 0 0 0 0 01 1 1 1
( )

n n n n

i i i i i i i ii i i i
E E E          

   
       

 
and since the product identity 
 

(6.2.14)       2

1 1 1 1 1 1 1

n n n n n n n

i i j i j i ji i j i j i j
x x x x x x x

      
          

 
implies that 

(6.2.15)     0 0 0
2

0 0 01 1 1

n n n

i i i j i ji i j
E E     

  

    
    

 

                   0 0 0 0

0 0 0 01 1 1 1
( )

n n n n

i j i j i j iji j i j
E      

   
      , 

                                                 
6 Note that this also implies subscripts could be dropped on all predictor variances, ii .  But here it is 

convenient to maintain these subscripts so that expressions involving all predictor variances and 
covariances can be stated more easily 
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it follows by substituting (6.2.13) and (6.2.15) into (6.2.12) that 
 
 

(6.2.16) 0 0 02
0 0 0 0 01 1 1

( ) 2
n n n

i i i j iji i j
MSE       

  
      

 
 
Thus mean squared error, 0( )MSE  , is seen to be a simple quadratic function of the 

unknown vector of weights, 0 0 0( : 1,.., )i i n    , with known coefficients given by the 

variance-covariance parameters in (6.2.8) and (6.2.9). This means that one can actually 
minimize this function explicitly and determine the desired unknown weights. As shown 
in Appendix A2, such quadratic minimization problems are easily solved in terms of 
vector partial differentiation. But to illustrate the main ideas, it is instructive to consider a 
simple case not requiring vector analysis. 
 
 
6.2.1 Simple Kriging with One Predictor 
 
Consider the one-predictor case shown in Figure 6.2 below. Here the task is to predict 

0( )Y s  on the basis of a single observation, 1( )Y s , at a nearby location, 1s  [so the relevant  

prediction set is simply 0 1( ) { }S s s ].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
While such “sparse” predictions are of little interest from a practical viewpoint, the 
derivation of a BLU predictor in this case is completely transparent. If we let  
 
(6.2.17) ( ) ( ) , 0,1i i iY s s i        ,  

 

Figure 6.2  Single Predictor Case 

ˆ ( )Y s0  
01  

( )Y s1  

R 
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then by (6.2.3), the linear prediction hypothesis reduces to 
 
(6.2.18) 0 01 1̂    , 

 
so that the expression for mean squared error takes the simple form 
 

(6.2.19) 2 2
01 0 0 0 01 1

ˆ( ) ( ) ( )MSE E E                

 
        2 2

01 01 01 112        

 
where in this case, 2

0var( )  , 01 0 1cov( , )   , and 11 1 1 1cov( , ) var( )     .  

A representative plot of this simple quadratic function in 01  is shown in Figure 6.2 

below. Here it should be clear that mean squared error, 01( )MSE  , is minimized at the 

point, 01̂ , shown in the figure. 7   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Mathematically, this minimum point, 01̂ , is characterized by the usual first-order 

condition that the derivative (slope) of 01( )MSE   be zero (as shown in the figure), along 

with the second-order condition that that this slope be increasing, i.e., that the second 
derivative of 01( )MSE   be positive. By differentiating (6.2.19) twice, we see that 

 

(6.2.20) 
01

2

201 01 11 01 01 11
01

( ) 2 2 ( ) 2 0d d
d d

MSE and MSE              

 
Hence the second derivative is positive everywhere (as in the figure), and it follows that 

the unique optimal weight, 01̂ , is given by the solution of the first-order condition, 

                                                 
7 In this example, 

11

2 1    and 
01

0.5  , so that the resulting optimal estimate in (6.2.21) is 

01
ˆ 0.5  . 
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Figure 6.3  Optimal Weight Estimate 
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(6.2.21) 1
01 11 01 01 01 11 11 01

ˆ ˆ2 2 0 / ( )              

 
In this simple case, the interpretation of this optimal weight is also clear. Note first that if 
the covariance, 01 0 1cov( , )   , between 0  and 1  is zero (so that these random 

variables are uncorrelated), then  01
ˆ 0  . In other words, if they are uncorrelated then 1  

provides no information for predicting 0 , and one can do no better than to ignore 1  

altogether.8 Moreover, as this covariance increases, 1  is expected to provide more 

information about 0 , and the optimal weight on 1  increases. On the other hand, as the 

variance, 11 1var( )  , of this predictor increases the optimal weight, 01̂ , decreases. 

This reflects the fact that a larger variance in 1  decreases its reliability as a predictor.  

 

Finally, given this optimal weight, 01̂ , it then follows from (6.2.4) together with (6.2.18) 

that the resulting optimal prediction, 0
ˆ( )Y s , in Figure 6.2 is given by 

 
 

(6.2.22)  1
0 0 01 1 11 01 1

ˆˆ ˆ( ) ( ) ( )Y s s               

 
 
As we shall see below, these results are mirrored in the general case of more than one 
predictor. 
 
6.2.2  Simple Kriging with Many Predictors 
 
Given the above results for a single predictor, we now generalize this setting to many 
predictors. The main objective of this section is to reformulate (6.2.16) in vector terms, 
and to use this formulation to extend expression (6.2.22) to the general the vector of 

optimal prediction weights, 0 0 0
ˆ ˆ( : 1,.., )i i n    , for Simple Kriging. A complete 

mathematical derivation of this result is given in Section A2.7.1 of Appendix A2. To 
begin with, let the full covariance matrix for 0 0( )s   together with its corresponding 

prediction set of error values, ( )i is  , be denoted by 

 
 
 
 
 
 
 
 

                                                 
8 Note in particular that for the present case of multi-normally distributed errors, zero correlation is 
equivalent to statistical independence. 

 

0

0

0 0 0 0

2
01 0

01 11 1
0

0 1

6.2.23

n

n

n n n n

C

  

  

  

 
 
   
 
 
 





   

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The partitioning shown in this matrix identifies its relevant components. Given the 
ordering, 00,1,..,i n  of both rows and columns, the upper left hand corner denotes the 

variance of 0 . The column vector below this value (and the row vector to the right) 

identifies the covariances of 0  with each predictor variable, 0, 1,..,i i n  , and is now 

denoted by  
 

(6.2.24) 

0

01

0

0n

c





 
 

  
 
 

  

  
Finally, the matrix to the lower right is the covariance matrix for all predictor variables, 

0, 1,..,i i n  , and is now denoted by 
 

(6.2.25) 
0

0 0 0

11 1

0

1

n

n n n

V

 

 

 
 

  
 
 



  


 

 

In these terms, the full covariance matrix, 0C , can be given the compact form, 

 

(6.2.26) 
2

0
0

0 0

c
C

c V

  
  
 

 

 
It is the components of this partitioned matrix that form the basic elements of all kriging 
analysis. In particular, for the vector of unknown weights, 0 0 0( : 1,.., )i i n    , the mean 

squared error function, 0( )MSE  , in (6.2.16) can now be written in vector terms as 

follows 
 
(6.2.27) 2

0 0 0 0 0 0( ) 2MSE c V         

 
  
[which can be checked by applying (6.2.24) and (6.2.25) together with the rules of matrix 
multiplication]. By minimizing this function with respect to the components of 0 , it is 

shown in expression (A2.7.20) of the Appendix that the optimal weight vector, 

0 0 0
ˆ ˆ( : 1,.., )i i n    , is given by 

 

(6.2.28) 1
0 0 0

ˆ V c   

 
 
Hence, letting 

01( ,.., )n    denote the vector of predictors for 0 , it follows that the 

BLU predictor of 0  is given by 
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(6.2.29) 1
0 0 0 0

ˆˆ c V       

 
and that [as a generalization of (6.2.22)] the corresponding BLU predictor of 0( )Y s  is 

given by 
 

(6.2.30) 1
0 0 0 0

ˆ ˆ( )Y s c V        

 
This predictor will generally be referred to as the Simple Kriging predictor of 0( )Y s . 

 
 
6.2.3  Interpretation of Prediction Weights 
 
By way of comparison with the single-predictor case above, note that in the present 
setting, this case takes the form, 
 

(6.2.31) 
2

01
0

01 11

C
 
 
 

  
 

 

 
so that by (6.2.24), 0 01( )c   and 0 11( )V  . Hence it should now be clear that (6.2.21) 

is simply a special case of (6.2.29). Conversely, the simple interpretation of (6.2.21) can 
be (at least partially) extended to the present case. In particular, if the covariances 
between 0 and all predictor variables, 0, 1,..,i i n  , are zero, i.e., if 0 (0,..,0)c  , then 

by (6.2.28) we see that 0̂ (0,..,0)  . Hence in this case it is again clear that these 

predictors provide no information. More generally, suppose that all predictors are 
uncorrelated, i.e., the 0ij   for all 0, 1,.., ( )i j n i j  . Then 0V  reduces to a positive 

diagonal matrix with inverse given by the diagonal of reciprocals, i.e., 
 

(6.2.32) 

0 0 0 0

1
11 11

1
0 0

1
n n n n

V V

 

 







   
   

     
   
   

   

 
(which can be checked by simply multiplying to obtain 

0

1
0 0 nV V I  ).  Hence by (6.2.24) 

and (6.2.29) we see that in this case all weights are the same as in the single-predictor 
case, i.e., that 
 

(6.2.33) 1
0 0 0

ˆ ( ) , 1,..,i ii i i n     

 
So if all predictors are uncorrelated, then the contribution of each predictor, i , to 0̂  in 

(6.2.3) is the same as if it were a single predictor. In particular, it has zero contribution if 
and only if it is uncorrelated with 0 .  
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However, if such predictors are to some degree correlated, then optimal prediction 
involves a rather complex interaction between the covariances, 0V  , among predictors and 

their covariances, 0c , with 0 . In particular, if 0 0i   then it is possible that interactions 

between both 0  and i  with other predictors may result in either positive or negative 

values for 0̂i . As one illustration, suppose there are two predictors, 1 2( , )  , with   

 

(6.2.34) 0 0

1 1/ 2 0
,

1/ 2 1 1/ 2
V c

   
    
   

 

 
so that 1  is uncorrelated with 0 , but both have positive covariance (1/2) with 2 . Then 

it can be verified in this case that  
 

(6.2.35) 1
0 0 0

4 / 3 2 / 3 0 1/ 3ˆ
2 / 3 4 / 3 1/ 2 2 / 3

V c       
          

 

 
So even though all covariances (and hence correlations) are nonnegative, the optimal 
weight on 1  is actually negative. This shows that in the general case the interpretation of 

individual weights is much more complex. Indeed, it turns out in this case that the only 
quantity than can meaningfully be interpreted is the full linear combination of predictors 
in (6.2.29), i.e., 
 

(6.2.36) 0

0 0 01
ˆ ˆˆ

n

i ii
    


    

 
which in the above example, takes the form, 
 
(6.2.37) 0 1 2

ˆ (1/ 3) (2 / 3)      

 
As expected, we see that 2  contributes positively to the prediction, 0̂ , and makes a 

more influential contribution than 1 . But the negative influence of 1  is less intuitive.  

To gain further insight here, notice that by definition, 
 
(6.2.38) 0 0 0 0 0 0 0 0 0 0

ˆ ˆcov( , ) ( ) ( ) ( )E E E c                 , 

 
and similarly that  
 
(6.2.39) 0 0 0 0 0 0 0

ˆvar( ) var( ) cov( ) V             

 
Hence mean squared error, 0( )MSE  , can also be written as 
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(6.2.40) 2
0 0 0 0ˆ ˆ( ) 2cov( , ) var( )MSE         

 
 

But since 2  is a constant not involving 0̂ , it becomes clear that minimization of 

0( )MSE   essentially involves a tradeoff between the covariance of the predictor 0̂  with 

0  and the variance of the predictor itself. Indeed, this is the proper generalization of the 

original interpretation given in the single predictor case, where the relevant covariance 
and variance in that case were simply 01  and 11 , respectively. Moreover, the form of 

this tradeoff in (6.2.38) makes it clear that to minimize 0( )MSE  , one needs a predictor 

0̂  with positive covariance, 0 0
ˆcov( , )  , as large as possible while at the same time 

having a variance, 0
ˆvar( ) , as small as possible. It is from this viewpoint that the 

negativity of 01̂  in (6.2.35) can be made clear. To see this observe that since 01 0  , 

covariance in this case takes the form 
 
(6.2.41)        0 0 0 0 01 01 02 02 02 02

ˆcov( , ) c             

 
But since 02 1/ 2 0   , it follows that this covariance can only be positive if 02 0  .  

Turning next to variance, observe that for any two-predictor case, 
 

(6.2.42) 0111 12
0 0 0 0 01 02

0212 22

ˆvar( ) ( )V
 

    
 
      

  
 

 

   2 2
01 11 01 02 12 02 222          

 
2 2
01 11 02 22 01 02 12( ) 2          

 
But since the first term is always positive and since 12 1/ 2 0   , we see from the 

positivity of 02  above that 0
ˆvar( )  can only be made small by requiring that 01 0  . In 

short,  since 1  has no effect on the correlation of the predictor, 0̂ , with 0 , its best use 

for prediction is to shrink the variance of 0̂  by setting 01 0  .  

 
Before using these kriging weights for prediction, it is of natural interest to consider their 
spatial nature. In particular, referring again to our initial illustration in Figure 6.1, it 

would seem reasonable that points, is , closer to 0s  should have larger weight, 0̂i . In 

particular, if invoke the “standard covariogram” assumption of Figure 4.1 in Section 4, 
namely that covariances decrease with distance, then points further away should 
contribute less to the prediction of 0( )Y s . But for Simple Kriging predictors this is simply 

not the case.  One simple example is shown in Figure 6.4 below: 
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Here points 1 2 3 4( , , , )s s s s  are ordered in terms of their distance from prediction point, 0s , 

as shown in the second row of the table.9 To calculate weights in this case, a simple 
exponential covariogram was used.10 So in this spatially stationary setting, covariances 
are strictly decreasing in distance. Hence the key point to notice is that the kriging 

weights 01 02 03 04
ˆ ˆ ˆ ˆ( , , , )     in the third row of the table are not decreasing in distance. 

Indeed the second closest point, 2s , here is the least influential of the four (as depicted by 

the ranking of weights in the last row of the table). Notice that since 1s  and 2s  are closer 

to each other than to 0s , and since distances are in this case inversely related to 

correlations,11 the errors 1( )s  and 2( )s  are more correlated with each other than either 

is to 0( )s . So it might be argued here that 2( )s  is adding little prediction information 

for 0( )s  beyond that in 1( )s .  But notice that the influence of points 3s  and 4s  is also 

reversed, and that no such relative correlation effects are present here. So even in this 
simple monotone-covariance setting, it is difficult to draw general conclusions about the 
exact relation between distance and kriging weights. 
 
While these illustrations are necessarily selective in nature, they do serve to emphasize 
the complexity of possible interaction effects in MMSE prediction. Given this 
development of Simple Kriging predictors, we turn now to the single most important 
justification for such stochastic predictors, namely the construction of meaningful 
prediction intervals for possible realized values of 0( )Y s . 

 
6.2.4 Construction of Prediction Intervals 
 
Note that up to this point we have relied only on knowledge of  the means and 
covariances of the spatial error process { ( ): }s s R   to derive optimal predictors. But  to 
develop prediction intervals for these errors, we must now make explicit use of the 

                                                 
9 The actual point coordinates are 

0
(0, 0)s  ,

1
(1,1)s  ,

2
(2,1)s  , 

3
( 1, 2.5)s    and 

4
( 2, 2)s    . 

10 With respect to the notation in expression (4.6.6) of Section 4, the range, sill, and nugget parameters used 
were ( 30, 1, 0)r s a   . 
11 Recall from (3.3.13) in Section 3 that spatially stationary correlations are proportional to covariances. 

point   s1   s2   s3   s4 

distance 1.41 2.24 2.69 2.83 

weight  .53  .05  .13  .30 

rank   1   4   3   2 

 

Figure 6.4 Weighting versus Distance 

s1 s2 

s3 

s4 

s0 
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distributional assumption of multi-normality . In terms of (6.2.26) this assumption implies 
in particular that for any prediction site, 0s R , and corresponding prediction set, 

0 0( ) { : 1,.., }iS s s i n  , the random (column) vector of errors,  

 

(6.2.43) 

0 0

0 0

1 1 0

( )

( )

( )n n

s

s

s

 
  


 

   
   

                  
   

 
 

 
is multi-normally distributed as12 
 

(6.2.44) 
0

2
0 0

0 0

0
~ ,

0n

c
N

c V

 


     
     

      
 

 
Our primary application of this distribution will be to derive the distribution of the 
associated prediction error in (6.1.3), which we now write simply as 0 0( )e e s . But 

before proceeding it is important to emphasize once again the distinction between 0  and 

0e . Recall that 0  is the deviation of 0( )Y s  about its mean [ 0 0( )Y s    ], while 0e  is 

the difference between 0( )Y s  and its predicted value  [ 0 0 0
ˆ( ) ( )e Y s Y s  ].  

 
To derive the distribution of 0e  from that of random error vector, 0( , )  ,13 we begin by 

using (6.2.1), (6.2.4) and (6.2.29) to write 0e  in terms of 0( , )   as follows, 

 

(6.2.45) 0 0 0 0 0 0 0
ˆ ˆ ˆ( ) ( ) ( ) ( )e Y s Y s s s          

 

                             0
0 0 0

ˆ ˆ(1 , )


   


       
 

 

 
Hence 0e  is seen to be a linear compound of 0( , )  . This, together with the multi-

normality of 0( , )  , implies at once from the Invariance Theorem in Section 3.2.2 above 

that 0e  must also be normally distributed. Moreover, since we have already seen in 

(6.1.4) that 0( ) 0E e  , it follows that if we can calculate the variance of 0e , then its 

distribution will be completely determined. 
 

                                                 
12 Here 

0
0n  denotes the 0n -dimensional zero vector. 

13 Note that technically this vector should be written inline as 
0

( , )    to indicate that it is column vector.  

But for sake of visual clarity, we write simply 
0

( , )  . 
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In view of the importance of this particular variance, we derive it in two ways. First we 
derive it directly from the covariance-transformation identity in (3.2.21) of Section 3. In 
particular, for any linear compound, a X , of a random vector, X , with covariance 
matrix,  , it follows at once from (3.2.21) [with A a ] that 
 
(6.2.46) var( )a X a a    
 
Hence by letting 
 

(6.2.47) 
2

0 0

0 00

1
, ,

ˆ
c

X a
c V

 
 

    
             

 

 
it follows from (6.2.45) and (6.2.46) that 
 

(6.2.48) 
2

0
0 0

0 0 0

1
ˆvar( ) (1 , )

ˆ
c

e
c V






           
 

 

                
2

0 0 2
0 0 0 0 0 0 0 0

0 0 0

ˆ
ˆ ˆ ˆ ˆ ˆ(1 , ) ( )

ˆ

c
c c V

c V

 
     



           
 

 
But since for any vectors, 1( ,.., )nx x x   and 1( ,.., )ny y y  , it must be true that 

i i i i i ix y x y y x y x      , we see that (6.2.48) can be reduced to  

 

(6.2.49) 2
0 0 0 0 0 0

ˆ ˆ ˆvar( ) 2e c V       

 
The form of the right hand side should look familiar. In particular, the representation of 
mean squared error, 0( )MSE  , in (6.2.27) now yields the identity, 

 

(6.2.50) 0 0̂var( ) ( )e MSE   

 
This relation is no coincidence. Indeed, recall from (6.1.5) that for any unbiased 
predictor, 0̂ , 

 
(6.2.51) 2 2

0 0 0 0
ˆ[( ) ] ( ) var( )E E e e    ,  

 
so that its mean squared error is identically equal to the variance of its associated 
prediction error. So for the optimal predictor in particular, this variance must be given by 

the mean squared error evaluated at 0̂ . Indeed we could have derived (6.2.49) through 

this line of reasoning. Hence the direct derivation in (6.2.45) through (6.2.48) offers an 
instructive confirmation of this fact.  
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To complete this derivation, it suffices to substitute the solution for 0̂ in (6.2.28) [i.e.,  
1

0 0 0
ˆ V c  ] into (6.2.49) to obtain, 

 

(6.2.52) 2 1 1 1
0 0 0 0 0 0 0 0 0var( ) 2 [ ] [ ] [ ]e c V c V c V V c       

 
   2 1 1 1

0 0 0 0 0 0 0 02 ( )c V c c V V V c        

 
   

0

2 1 1
0 0 0 0 0 02 ( )nc V c c V I c       

 
   2 1 1

0 0 0 0 0 02c V c c V c       

 
By combining the last two terms, we obtain the final expression for prediction error 
variance (also called Kriging variance), 
 
(6.2.53) 2 2 1

0 0 0 0 0var( )e c V c      

 
 

where we have now introduced the simplifying notation ( 2
0 ) for this important quantity.  

While this expression for 2
0  is most useful for computational purposes, it is of interest to 

develop an alternative expression  that is easier to interpret. To do so, if we now use the 
simplifying notation, 0 0( )Y Y s , for the variable to be predicted at location 0s R ,  then 

[as a consequence of (3.2.21)] it follows that the first term in (6.2.53) is simply the 
variance of 0Y , since 

 
(6.2.54)  2

0 0 0var( ) var( ) var( )Y         

 

Similarly, if we also represent the corresponding predictor in (6.2.30) by 0 0
ˆ ˆ( )Y Y s , then 

the second term in (6.2.53) turns out to be precisely the variance of 0̂Y . To see this, note 

simply from (6.2.3) together with (6.2.5) and (3.2.21) that 
 

(6.2.55) 1 1
0 0 0 0 0
ˆvar( ) var( ) var( )Y c V c V        

 
                                    1 1 1 1

0 0 0 0 0 0 0 0 0cov( ) ( )c V V c c V V V c       

 
                                    1 1 1

0 0 0 0 0 0 0 0( )c V V V c c V c      

 
So the prediction error variance in (6.2.53) can be equivalently rewritten as 
 

(6.2.56) 2
0 0 0̂var( ) var( )Y Y    
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In these terms, it is clear that prediction error variance, 2

0 is smaller that than the original 

variance of 0Y . Moreover, the amount of this reduction is seen to be precisely the 

variance “explained” by the predictor, 0̂Y  . Indeed, it can be argued that this reduction in 

variance is the fundamental rationale for kriging predictions, often referred to as 
“borrowing strength from neighbors”.  
 
Given this expression for prediction error variance, it follows at once from the arguments 
above the prediction error, 0e , must be normally distributed as 
 

 
(6.2.57) 2

0 0~ (0, )e N   

 
 

Hence the task remaining is to use this normal distribution of 0 0 0̂[ ]e Y Y   to construct 

prediction intervals for 0Y  in terms of 0̂Y  and 2
0 . To do so, we first recall from Sections 

3.1.1 and 3.1.2 above that the standardization of 0e  must be distributed as (0,1)N . In 

particular, since the mean of 0e  is zero, and since it standard deviation of 0e  is given 

from (6.2.53) by 0 0var( )e  , it follows that  

 

(6.2.58) 0 0 0

0 0

ˆ
~ (0,1)

Y Y e
N

 


  

  

Hence it now becomes clear that, together with 0̂Y , the key distributional parameter is the 

standard deviation, 0 , of 0e , which is usually designated as the standard error of 

prediction. Indeed, as will be seen below, the fundamental outputs of all kriging software 

are precisely estimates of the kriging prediction, 0̂Y , and standard error of prediction, 

0 , at all relevant prediction locations, 0s . 

 
To construct prediction intervals for 0Y  based on (6.2.52), we proceed in a manner 

paralleling the two-tailed Clark-even test procedure in Section 3.2.2 of Part I. In 
particular, by recalling from (3.1.32) that  denotes the cumulative distribution function 
for (0,1)N , and that for any probability,  , the  -critical value, z , is defined by 

( )z    [as in the figure below for / 2 ], it follows that  

 
 

(6.2.59)         0 0
/2 /2

0

ˆ
Pr 1

Y Y
z z  


 
     
 

      

 0 /2
z /2

z  

1   
/ 2  
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But since the following events are equivalent: 
 

(6.2.60) 0 0
/2 /2 0 /2 0 0 0 /2

0

ˆ
ˆY Y

z z z Y Y z    



           

 

                                                           0 0 /2 0 0 0 /2
ˆ ˆY z Y Y z        

 
it follows that their probabilities must be the same, and hence from (6.2.59) that, 
 
 

(6.2.61)  0 0 /2 0 0 0 /2
ˆ ˆPr 1Y z Y Y z          

 
 

In other words, the probability that the value of 0Y  lies between 0 0 /2Ŷ z  and 

0 0 /2Ŷ z  is 1  . In terms of confidence levels, this means that we be 100(1 )%  

confident that 0Y  lies in the prediction interval, 

 

(6.2.62) 0 0 /2 0 0 /2 0 0 /2
ˆ ˆ ˆ,Y z Y z Y z               

             
The single most common instance of (6.2.62) is for the case, 0.05  , with 
corresponding critical value /2 .025 1.96z z   . In this case, one can thus be 95% 

confident that 0Y  lies in the prediction interval, 

 

(6.2.63) 0 0 0 0 0 0
ˆ ˆ ˆ(1.96) , (1.96) (1.96)Y Y Y             

 
 
As with all statistical confidence statements, the phrase “95% confident” here means that 
if we were able carry out this same prediction procedure many times (i.e., to take many 

random samples from the joint distribution of 0Y  and its kriging prediction, 0̂Y ) then we 

would expect the realized values of 0Y  to lie in the corresponding realized intervals  

0 0
ˆ[ (1.96) ]Y   about 95% of the time. 

 
Finally it should again be emphasized that it is the ability to make confidence statements 
of this type that distinguishes stochastic prediction methods from the deterministic 
methods of spatial interpolation developed in Section 5.  
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6.2.5 Implementation of Simple Kriging Models 
 

Given the theoretical development of Simple Kriging above, the task remaining is to 
make this procedure operational. But before doing so, it should again be emphasized, as 
in Section 6.1.2 above, that from a practical viewpoint, Ordinary Kriging is almost 
always used in empirical situations where Simple Kriging is relevant. Hence the main 
relevance of this procedure for our purposes is to develop as many of the basic concepts 
as possible within this simple setting. It should also be noted that this Simple Kriging 
procedure is one of the options available in the Geostatistical Analyst extension of 
ARCMAP. So we will be able to use the implementation developed here to illustrate 
most of the operational procedures involved in the use of this software. With this in mind, 
we now proceed to operationalize Simple Kriging through a series of procedural steps. 
This will be followed in Section 6.2.6 below with an application of this procedure. 
 
In the following development, we again postulate that the values of some variable Y 
defined over a relevant region R can be modeled by a spatial stochastic process, 
{ ( ) ( ) : }Y s s s R    , with constant mean,  . In addition, we assume the existence of 

a given set of n observations (data points), { ( ): 1,.., }i iy y s i n   in R, where of course 

each data point, iy , is taken to be a realization of the corresponding random variable, 

( )i iY Y s  in this spatial stochastic process. Also, for purposes of illustration, we shall 

again consider the problem of predicting, 0( )Y s , at a single given location, 0s R , with 

respect to a given prediction set, 
00 1 1( ) { ,.., } { ,.., }n nS s s s s s  .  Within this framework, 

we can operationalize the Simple Kriging model as follows: 
 
 
Step 1. Estimation of the Mean 
 
Recall from the assumption in (6.1.6) that our first task is to produce an estimate of the 
mean, , outside the Simple Kriging model. Here the obvious choice is just to use the 
sample mean of the given data, i.e., 
 

(6.2.62) 
1 1

1 1ˆ ( )
n n

n i ii in ny y s y
 

      

 
One attractive feature of this estimate is that it is always unbiased since 
 

(6.2.63)  1 1 1
1 1 1ˆ( ) ( )

n n n

i ii i in n nE E Y E Y  
  

       

 
So even though these random variables are spatially correlated, this has no effect on 
unbiasedness. What spatial correlation does imply is that the variance of this estimator is 
much larger than that of the classical sample mean under independence. We shall return 
to this issue in the development of Ordinary Kriging in Section 6.3 below. 
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Step 2. Estimation of Covariances 
 
Recall next from assumption (6.1.7) that the covariances, cov[ ( ), ( )]s s    are assumed to 
be given for all locations, ,s s R . But we must of course provide some prior estimates 
of these covariances. This was in fact one of the primary motivations for the assumption 
of covariance stationarity  in Section 3.3.2 above. Hence we now invoke this assumption 
in order to estimate spatial covariances in a manner that accounts for spatial correlation 
effects. Recall also from Section 4.10.1 that, unlike the mean above, the classical estimate 
of covariance is biased in the presence of spatial correlation. So our estimation procedure 
here will always start with variograms rather than covariograms. Fortunately, this basic 
estimation procedure is exactly the same as that used for Ordinary Kriging, and indeed, 
for all more advanced kriging models. So it is worthwhile to develop this procedure in 
detail here. 
 
To do so, we begin by recalling from (3.3.7) and (3.3.11) in Section 3 that under 
covariance stationarity, all covariances can be summarized by a covariogram, ( )C h . As 
emphasized in Section 4, this is best estimated by first estimating a variogram, 

( ; , , )h r s a  with parameters, r  range, s   sill, and a   nugget. Since the common 

variance, 2(0)C  , is precisely the sill parameter, s , one can then obtain the desired 
covariogram from the identity in (4.1.7) of Section 4, namely14 
 

(6.2.64) 2( ) ( ) ( ; , , )C h h s h r s a       
 

Hence, the estimation procedure starts by using the MATLAB program, var_spher_plot, 
together with the full sample data set above to obtain estimates, ˆ ˆ ˆ( , , )r s a , of the spherical 
variogram parameters. The estimated spherical variogram, ˆ ˆ ˆ( ; , , )h r s a , is then used 

together with (6.2.64) to obtain an estimate, ˆ ( )C h , of the desired covariogram as follows: 
 

(6.2.65) ˆ ˆ( ) ( ;C h s h  ˆ ˆ ˆ, ,r s a )   
 

Recall that for any pair of point, ,s s R  separated by distance, || ||s s h   the quantity, 
ˆ ( )C h , then yields an estimate of cov[ ( ), ( )]s s   , i.e., 

 

(6.2.66)  ˆcov[ ( ), ( )] (|| ||)s s C s s      
 
Using this identity, we can then estimate the full covariance matrix, 0C , relevant for 

prediction  at 0s  [as in (6.2.23) above]. In particular, if we let || ||ij i jd s s   for each pair 

of points, 
00 1, { , ,.., }i j ns s s s s , and [as instances of (6.2.66)] set 

 

(6.2.67) ˆˆ ( )ij ijC d   
 

                                                 
14 Again, remember not to confuse the symbol, s , for “sill” with points, 

1 2
( , )s s s R  . 
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then we immediately obtain the following estimate, 0Ĉ , of 0C , 

 
 
 

(6.2.68) 0Ĉ      

 
 
 
Note in particular, that the common variance, 2 , of all random variables is again 
estimated by the sill, since 
 

(6.2.69) 2 ˆˆ ˆ(0)C s      
 
Step 3.  Estimation of Kriging Predictions 
 
Finally, given these parameter estimates, we are ready to estimate the Simple Kriging 

prediction, 0
ˆ( )Y s , of 0( )Y s .  To do so, begin by recalling that that the deviation error, 

i iy   , at each data point, 01,..,i n , can now be estimated in terms of (6.2.62) by 

 
(6.2.70) ˆ ˆi iy    

 
So if we now designate the corresponding estimate of the deviation predictors, 

01( ,.., )n     for 0 0( )s   by  

 
(6.2.71) 

00 1ˆ ˆ ˆ ˆ[ : ( )] ( ,.., )i i ns S s        

 
then it follows from (6.2.29) that Simple Kriging prediction of 0  is given by 

 

(6.2.72) 1
0 0 0̂ˆ ˆĉ V   

 
Finally, by using (6.2.30) together with these estimates, it follows that the Simple Kriging 
prediction of 0 0( )Y Y s  is given by15 

 

(6.2.73) 1
0 0 0 0
ˆ ˆ ˆ ˆˆ ˆ( )Y Y s c V     

 
To complete the implementation of Simple Kriging, it remains only to estimate the 
corresponding prediction error variance (or Kriging variance) in (6.2.53) by 
  

                                                 
15 Here it should be noted that for simplicity, we have used the same notation for the theoretical and 

estimated Simple Kriging prediction, 
0

Ŷ  (and 
0
̂ ). 

0

0

0 0 0 0

2
01 0

11 110

0 1

ˆ ˆ ˆ

ˆ ˆˆ

ˆ ˆ ˆ

n

n

n n n n

c c

c cc

c c c

 
 
 
 
 
 
 





   


 
2

0

0 0

ˆ ˆ

ˆˆ

c

c V

 
 
 
 
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(6.2.74) 2 1
0 0 0 0

ˆˆ ˆ ˆ ˆs c V c    

 
and take its square root, 
 

(6.2.75) 1
0 0 0 0

ˆˆ ˆ ˆ ˆs c V c    

 
to be the relevant estimate of the standard error of prediction at location 0s . The pair of 

values 0 0
ˆ ˆ( , )Y   can then be used as in (6.2.61) to estimate the (default) 95% prediction 

interval for 0Y , namely,  

 

(6.2.76) 0 0
ˆ ˆ[ (1.96) ]Y   

 
One final comment should be made about these estimates. In the theoretical development 

of Section 6.2.2, the predictors 0̂  and 0̂Y  were derived as Best Linear Unbiased (BLU) 

predictors. This is only accurate if the true mean,  , and covariances, 0C , are known – 

which is of course almost never the case. So to be accurate, the above values 0̂  and 

0̂Y are in fact only estimates of BLU predictors. This distinction is often formalized by 

designating them as Empirical-BLU predictors. Similarly, as with all prediction intervals 
or confidence intervals based on estimated parameters, the variation of these parameter 
estimates is of course not accounted for in these intervals themselves. So again, a more 
precise statement would be to designate (6.2.76) as an estimated 95% prediction interval. 
 
6.2.6  An Example of Simple Kriging 
 
Given the estimation procedure above, we now illustrate an application of Simple Kriging 
in terms of the Vancouver Nickel data in Section 4.9 above. But before developing this 
example, it is important to emphasize that the underlying normality assumption on all 
spatially-dependent random effects, ( )s , is crucial for the estimation of meaningful 
prediction intervals. Moreover, since these random effects are not directly observable, 
this distributional assumption can only be checked indirectly. But by assuming that there 
are no global trends (as in Simple and Ordinary Kriging), it should be clear from the 
identity 
 
(6.2.77) ( ) ( ), 1,..,i iY s s i n     

 
that these random effects differ from the observed data, { ( ) : 1,.., }iy s i n , only by a 

(possibly unobserved) constant,  . Moreover, since the variance, 2 var[ ( )]is   

var[ ( )]iY s  is constant for all covariance-stationary processes, it follows that under this 

additional  assumption, the marginal distributions must be the same for all Y data, 
namely 
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(6.2.78)  2( ) ~ ( , ) , 1,..,iY s N i n    
 

So  even though these are not independent samples from this common distribution, it is 
still reasonable to expect that the histogram of this data should look approximately 
normal. This motivates the following simple test of normality. 
 
Normal Quantile Plots and Transformations 
 
A very simple and appealing test of normality is available in JMP, known as Normal 
Quantile Plots (also called Normal Probability Plots). The main appeal of this test is that 
it is graphical, and in addition, provides global information about possible failures of 
normality. The idea is very simple. Given a set of data 1( ,..., )ny y  from an unknown 

distribution, one first reorders the data (if necessary) so that 1 2 ny y y   , and then 

standardizes it by subtracting the sample mean, 1
1

n
n i iny y  , and dividing by the sample 

standard deviation, 
1/221

11 ( )n
n i i nns y y     , to obtain: 

 

(6.2.79)  , 1,..,i n
i

n

y y
z i n

s


   

 

Now if 1( ,..., )ny y  were coming from a normal distribution, then 1( ,..., )nz z  should be 

approximately distributed as, ~ (0,1), 1,..,iZ N i n  [we are using only estimated means 

and standard deviations here].  So for an independent sample 1( ,.., )nZ Z  of size n from 

(0,1)N , if we compute the theoretical expected values, ( ),i iE Z   1,..,i n , then we 

would expect on average that the observed values iz  in (6.2.79) should be reasonably 

close to their expected values, i . This in turn implies that if plot iz  against i , the points 

should like close to the 45  line. This is illustrated in Figure 6.5 below, where a sample 
of size 100n   has been simulated in JMP (using Formula → Random → Random 
Normal). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.5 Normal Quantile Plot  
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The values on the vertical axis are exactly the iz  values together with their histogram 

shown on the left. The Normal Quantile Plot is displayed on the right (using the 
procedure detailed in Assignment 4). The values on the horizontal axis at the top of the 
figure are precisely the expected values, i , for each iz  ,  1,..,100i  .16 Here it is clear 

that all point pairs are indeed close to the 45  line (shown in red). The dashed lines 
denote 95% probability intervals on the realized values iz , so that if the sample were 

normal (as in this simulation) then each dot should lie between these bands about 95% of 
the time.17 For example, the middle sample value, 50z , with expected value, 

50 50( ) 0E Z   , should lie in the interval between these two bands on the vertical green 

center line about 95% of the time.  So this plot provides compelling evidence that this 
sample is indeed coming from a normal distribution. 
 
We now apply this tool to the Nickel data, as shown in Figure 6.6 below. For ease of 
comparison with Figure 6.7, the histogram and corresponding normal quantile plot are 
show using the horizontal display option18. (The only difference here is that the Normal 
Quantile Plot is now above the histogram, with i  values on the vertical axis to the right.)  

Since most data observed in practice is nonnegative (i.e., is truncated at zero), the 
corresponding histograms tend to be “skewed to the right”, as illustrated by this Nickel 
data.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
16 The values on the bottom horizontal axis are the associated cumulative probabilities, so that “0” on the 
top corresponds to “ (0) .5  ” on the bottom. 
17 Note that such probability intervals are different from confidence intervals. In particular, their end points 
are fixed. Note also that these (Lilliefors) probability bounds actually account for the estimated mean and 
standard-deviation valued used [for more information, Google “Lilliefors test”]. 
18 Right click on the label bar above the histogram and select Display Options → Horizontal Layout.  

Figure 6.6. Nickel Data Figure 6.7. Log-Nickel Data 
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The degree of non-normality of this data is even more evident from the Normal Quantile 
Plot. Here the mid-range values are well above the 45  line (slightly distorted in this 
plot), indicating that there is “too much probability mass to the left of center” relative to 
the normal distribution. Hence it is difficult to krige this data directly, since the 
corresponding prediction intervals would have little validity. 
 

However, if this data is transformed to natural logs, then the familiar “bell shaped” curve 
starts to appear, as seen in Figure 6.7 above. What is happening is that the log 
transformation “shrinks” the upper range of the distribution (above value one) and 
“expands” the lower range (below value one). While other transformations are possible 
here, (such as taking square roots rather than logs), the log transformation is by far the 
most common. It is also used for regression residuals, as we shall see in later sections.  
 

To perform this log transformation in MATLAB, we start with original data set, nickel, 
the MATLAB file, nickel.mat. Next we replace the data column, nickel(:,3) with log 
data, and save as log_nickel using the command: 
 

>> log_nickel = [nickel(:,1:2),log(nickel(:,3))]; 
 

This makes a new matrix consisting of the first two columns of nickel and the log of the 
third column.19  
 
Estimation of the Spherical Variogram and Covariogram 
 

Recall from Section 4.9.2 that the variogram and covariogram were estimated for the 
nickel data, as in Figures 4.22 and 4.23, respectively. We now redo this procedure for the 
log_nickel data in order to obtain initial covariance inputs for Kriging this data. To 
estimate a spherical variogram we start with the default value of maxdist: 
 

>> var_spher_plot(log_nickel); 
  
and obtain the results shown in Figure 6.8 below: 
            
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
19 Note that the log command uses natural logs by default. Logs to the base 10 are obtained with the 
command, log10. 

Figure 6.8. Log Nickel Variogram  Figure 6.9. Log Nickel Covariogram  
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The corresponding covariogram estimate is on the right in Figure 6.9. Here we again see 
a wave effect which is qualitatively very similar to that in Figure 4.22 for the raw nickel 
data. Here the reported maxdist value is 48,204.  However, it appears that up to about 
30,000 meters the empirical variogram is reasonably consistent with a classical spherical 
variogram. Hence to capture this range, we now rerun var_spher_plot with this specified 
maxdist value as follows: 
 
>> opts.maxdist = 30000; 
 
>> OUT = var_spher_plot(log_nickel,opts); 
 
The new covariogram is plotted in Figure 6.10 below, and is seen to be quite in keeping 
with the classical model.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here we no longer show the variogram, since its main purpose was to estimate the 
desired covariogram. By using the estimated range, sill and nugget parameters 

ˆ ˆ ˆ( , , ) (21631, 1 .356 , 0.340)r s a   shown on the right, we can now construct estimates of all 
desired covariances as in (6.2.65) and (6.2.66) above.  
 
To use these parameters in MATLAB, recall that the first cell of the OUT structure above 
contains these parameter values. So we may identify these for later use as: 
 
>> p_log = OUT{1} 
 
Note that by leaving off the semicolon on the command line, the new vector is 
automatically displayed as 
 
      p_log =     21631       1.3561      0.34026 
 
so that the correctness of this command is easily checked from the output above.  

 
   RANGE              21630.857  
   SILL                   1.356  
   NUGGET           0.340  
 
   MAXDIST = 30000 

Figure 6.10. Final Log Nickel Covariogram  
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Simple Kriging at a Selected Point 
 
Given this covariogram estimate, we first apply simple kriging to a single point in order 
to illustrate the procedure. In particular we choose the point, s0 = (659000,586000),20 
shown as a red dot in Figure 6.11 below. Here the nickel values in Figure 4.18 have been 
replaced by log-nickel values. Notice that while the values have changed, the overall 
pattern is essentially the same. With respect to the particular point, s0, it appears that a 
bandwidth of h0 = 5000 meters is sufficient to capture the (12) most important neighbors 
of this point, as shown in the enlarged portion of the map. So for purposes of this 
illustration we take the relevant prediction set, 0( )S s , to be given by these 12 points.  

 
 
 
 
 
 
 
 
 
 
 
 
 
The rest of the simple kriging procedure is operationalized in the MATLAB program, 
krige_simple.m . So to obtain the desired simple kriging prediction and an associated 
estimate of the standard error of prediction at s0, one can use the command: 
 
>> OUT = krige_simple(h0,p_log,log_nickel,s0) 
 
Here the OUT matrix lists the krige prediction in the first column and the standard errors 
in the second column (see also the documentation at the beginning of the program). So in 
the present case, we can simply leave off the semicolon again and see the screen display: 
 
>>  OUT =   3.0488      0.76697 
 
If we now denote nickel values by the random variable, Y, and log_nickel values by 
logY, the kriging prediction of log_nickel at the point s0 is seen to be  
 

(6.2.80) 
0log ( )Y s  3.0488  

 

                                                 
20 In the following discussion we shall refer to the given location as s0 when discussing input/output for  

MATLAB programs, and as 
0

s when referring to the formal development above. The same is true of 

bandwidths, where h0 and 
0

h .will be used respectively. 
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Figure 6.11. Point s0 and its Prediction Set 
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where the “hat” notation, logY , is used to denote a prediction (or estimate) of the 
random variable, logY . The corresponding estimate of the standard error of prediction 
at location s0 is then given by, 
 
(6.2.81) 0̂   0.76697  

 
For our later purposes, it is important to note that as in Step 1 of the estimation procedure 
for simple kriging, this program uses the sample mean of the log_nickel data, which can 
be obtained directly in MATLAB with the command  
 
>> mean(log_nickel(:,3)) 
 
which in this case yields the value, ˆ 3.252  . 
 
Comparison with Geostatistical Analyst 
 
Before analyzing this simple kriging output further, it is instructive to compare it with the 
output obtained by using the simple kriging procedure in Geostatistical Analyst. First it is 
necessary to construct log-nickel values in ARCMAP. This is easily accomplished by 
opening the attribute table for the Vancouver_dat shapefile, making a new field, say 
LOGNI, and using the Calculator to create the logs of Nickel values [written in the 
calculator window as log([NI]) ].21  [These log values are shown in Figure 6.11 above.] 
To perform simple kriging start with the path: 
 
 Geostatistical Analyst → Geostatistical Wizard → Kriging 
 
and use attribute LOGNI for input data Vancouver_dat. In the next window, select 
 
 Simple Kriging →  Prediction Map 
 
Notice that the mean value is displayed as 3.2515, which is precisely the (rounded) 
MATLAB value above. In the next window, be sure to select the “Semivariogram” 
option, to obtain a variogram plot. Recall that the maxdist above was chosen to be 30000 
meters.  
 
To obtain a fit that is roughly comparable in this case set the number of lags to 15 with a 
lag size of 2000 meters (yielding a maxdist of 15 2000 30000   meters) as shown in 
Figure 6.12 below. Here the estimated range of 21706 meters is remarkably close to the 
MATLAB value of 21630 meters in Figure 6.10 above. Similarly, the estimated nugget 
value, 0.3409, and sill value, (.3409 1.0206 1.3615)  , are also very close to those in 
Figure 6.10. So in this case one expects the simple kriging results to be quite similar as 
well. 
 

                                                 
21  As with MATLAB, the “log( )” function in ARCMAP calculates natural logs. 
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This can be verified in the next window, shown in Figure 6.13 below. Here the sample 
point coordinates have been set to X = 659000 and Y = 586000 to agree with the point s0 
above. Similarly, to produce a circular neighborhood of 5000 meters, the “Sector type” is 
set to the simple ellipse form shown, and the axes are both set to 5000 to yield a circle.22  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
22 Be sure to set Copy from Variogram = “False” in order to set these axis values. 

Figure 6.12 Variogram for Log Nickel Data 

Figure 6.13. Kriging Prediction at s0 = (X,Y) 
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Notice also that the maximum “Neighbors to include” has been set to 15 to ensure that all 
points in the circle around point (X,Y) in the preview window will be included.23  
 
The kriging prediction for log nickel is then displayed in Figure 6.13 as “Prediction = 
3.0504`” located below the (X,Y) coordinate values. [Notice also that exactly the 12 
points inside the circle have been used for this kriging prediction.] As expected, this 
value is seen to be quite close to the MATLAB prediction in (6.2.80) above. 
 
Finally, to produce an estimate of the standard error of prediction at (X,Y), click “Back” 
twice to return to the “Step 1” window and now select 
 
 Simple Kriging →  Prediction Standard Error Map 
 
With this selection, return to the “Step 3” window by clicking “Next” twice. Notice that 
that all settings in Steps 2 and 3 have remained constant, so that prediction standard 
errors are now being calculated under the same settings as the kriging prediction. The 
only change is that “Prediction = 3.0504” is now replaced by “Error = 0.7676”. Again, 
this value is quite close to the MATLAB standard error estimate in (6.2.81) above. As 
mentioned above, this close agreement is largely due to the similarity of the variogram 
parameter estimates in this case. Hence such close agreement cannot be expected in 
general. 
 
 
Analysis of the Simple Kriging Results 
 
By applying the prediction interval result in expression (6.2.61) above, we can 
immediately obtain a (default) prediction interval for the log-nickel value at s0. However, 
this is not particularly appropriate, since it is nickel values (in parts per million, ppm) that 
we are really interested in. Indeed the only reason for using log-nickel values was to 
obtain a better normal approximation, so that prediction intervals will have some 
statistical validity. But having obtained such a prediction interval, we now wish to 
transform this interval back to nickel values. Here the idea is very simple. Notice first 
that if ( )g Y  is any monotone increasing function of a random variable [such as log( )Y ] 

then the function g has a well-defined inverse, 1g  , which is also monotone increasing. 

So for any three random variables 1 2 3( , , )Z Z Z  the following “inequality events” must be 

identical  
 
(6.2.82) 1 1 1

1 2 3 1 2 3( ) ( ) [ ( )] ( )Z g Z Z g Z g g Z g Z        
 

                                                         1 1
1 2 3( ) ( )g Z Z g Z     

 

                                                 
23 Note also in Figure 6.13 that the “Enlarge” tool for the preview window has been used to focus in on the 
point (X,Y).  
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where the last line follows from the identity,  1
2 2[ ]g g Z Z  . This in turn implies that 

the probabilities of these events must be identical, so that 
 
(6.2.83) 1 1

1 2 3 1 2 3Pr[ ( ) ] Pr[ ( ) ( )]Z g Z Z g Z Z g Z       

 
Now in the present case, recall from (6.2.59) that the 95%  prediction interval for 

0log ( )Y s  is defined by the relation: 

 

(6.2.84)  
0 0 0 0 0ˆ ˆPr[log ( ) (1.96) log ( ) log ( ) (1.96) ] .95Y s Y s Y s       

 

Hence if we now let 
1 0 0 2 0ˆlog ( ) (1.96) , log ( ),Z Y s Z Y s   

3 0 0ˆlog ( ) (1.96)Z Y s   and 

let ( ) log( )g     so that 1( ) exp( )g     , then it follows at once from (6.2.83) and (6.2.84) 
that 
 

(6.2.85)    0 0 0 0 0ˆ ˆPr exp log ( ) (1.96) ( ) exp log ( ) (1.96) .95Y s Y s Y s         

 
This yields the desired prediction interval for 0( )Y s . In the present case we have the 

estimated values, 
 

(6.2.86)    0 0 0 0ˆ ˆexp log ( ) (1.96) , exp log ( ) (1.96)Y s Y s   
 

 

 

            exp 3.0504 (1.96)(.7676) , exp 3.0504 (1.96)(.7676)      
 

         [ exp(1.5459) ,  exp(4.5549)]   =  [4.6922, 95.097]  
 
and hence can be 95% confident that the true value of 0( )Y s  lies in the interval 

[4.6922, 95.097] . Note finally that [as stated following expression (6.2.61)] this result 
can be interpreted to mean that if we were able to perform this same estimation procedure 
many times, then 0( )Y s  would lie in the estimated interval about 95% of the time. So in 

the present case, one can be reasonably confident that the interval obtained (namely 
[4.6922, 95.097]) does indeed contain 0( )Y s .  

 
 
Full Kriging of Log Nickel 
 
While the restriction to a single point, s0, was valuable as an illustration of the Simple 
Kriging procedure, typically one wishes to predict (estimate) the entire sample area based 
on the observed data points { ( ) : 1,.., }iy s i N . In ARCMAP this is precisely the “default” 

option (where predictions are restricted to the smallest box in the sample area containing 
the observed data). But in MATLAB one must actually specify the set of points where 
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predictions are desired. So a simple procedure here is to use the program, grid_form.m, 
to construct a reasonably fine grid of points in the smallest box containing the data. To 
display this visually, one can then import this data to ARCMAP and use some 
appropriate (non-statistical) interpolation method to interpolate this grid to every pixel. In 
the MATLAB file, nickel.mat, the coordinates of all 437 data points are in the matrix, 
L0. So to form a bounding box, write: 
 
>> Xmin=min(L0(:,1)); 
>> Xmax=max(L0(:,1)); 
>> Ymin=min(L0(:,2)); 
>> Ymax=max(L0(:,2)); 
 
Next, to choose a grid cell size, observe from the map display in ARCMAP that a 
division of the box sides into about 25 segments yields a reasonably fine grid for 
interpolation. So we now set, 
 
>> Xcell = (Xmax-Xmin)/25; 
>> Ycell = (Ymax-Ymin)/25; 
 
and use the command (recall the application on p.4-26 of Part I): 
 
>> G = grid_form(Xmin,Xmax,Xcell,Ymin,Ymax,Ycell); 
 
to construct an appropriate grid, G. This grid is shown in Figure 6.14 below, and is seen 
to just cover the region of the data points. Using grid G as an input rather than the single 
point, s0, we can then obtain a full kriging of all grid points with the command: 
 
>> OUT_G = krige_simple(h0,p_log,log_nickel,G); 
 
[Here we use the semicolon to avoid screen output of all kriging values.] This data can 
then be imported to ARCMAP by making a data table, 
 
>> DAT_G = [G,OUT_G]; 
 
in which the first two columns include the grid coordinate points and the last two include 
the krige and standard error estimates at each grid point. By saving this as an ASCII file; 
 
>> save DAT_G.txt DAT_G -ascii 
 
(and editing the file in EXCEL to include column labels) one can then import 
DAT_G.txt into ARCMAP, make a shapefile Simple_Krige_Grid.shp, and display this 
layer as shown in Figure 6.15 below. 
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To display the simple kriging results from MATLAB, we can then use any of the 
interpolators in Geostatistical Analyst. The contours shown in Figure 6.15 are obtained 
by first interpolating the kriging data in Simple_Krige_Grid with the radial basis 
functions option, and then using the command, Data → Export to Vector. The layer 
produced contains precisely these contours. The reason why contours are used here is to 
allow a visual comparison with a simple kriging of log-nickel in Geostatistical Analyst. 
This is accomplished by completing the simple kriging procedure outlined above [that we 
terminated with Step 3 (Searching Neighborhood) shown in Figure 6.13]. If one places 
the contours above the kriging map displayed,  then both can be seen together.24  
 
Finally, this visual comparison shows that while these two kriging surfaces are not in 
perfect agreement, they are qualitatively very similar. Moreover, while the Geostatistical 
Analyst procedure is clearly easier to perform in this case, the MATLAB “grid” 
procedure will prove to be very useful for universal kriging, where the Geostatistical 
Analyst version is very limited in terms of applications. This will be illustrated by the 
“Venice example” in Section 7.3.5 below. 
 
 
 
 
 
 
 
 
 

                                                 
24 To make the boundaries of the kriging map agree exactly with the contours (as seen in Figure 6.15),  
open the “properties” of the kriging map layer, select “Extent” and set this to “the rectangular extent of 
Simple_Krige_Grid”. 
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Figure 6.14.  Interpolation Grid Figure 6.15.  Simple Kriging Comparison 
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6.3 The Ordinary Kriging Model 
 
The procedural details of Ordinary Kriging are almost identical to those of Simple 
Kriging.  Hence the present development focuses on those aspects that extend the above 
analysis by internalizing the estimation of the unknown mean,  . Here again we start 
with a spatial stochastic process { ( ) ( ) : }Y s s s R     where each finite set of sample 

variates, { ( ) ( ) : 1,.., }i iY s s i n    , is assumed to be multi-normally distribution with 

known covariances, cov[ ( ), ( )], , 1,..,i js s i j n   . Given such a sample, we again 

consider the problem of predicting 0( )Y s  at  some location, 0s R , not in this sample. It 

is also assumed that the relevant prediction set, 
00 1( ) { ,.., }nS s s s , for location 0s  has 

been identified within this set of sample locations. Hence the basic task is to predict a 
value for 0( )Y s  in terms of observed values of the variates 

01{ ( ),.., ( )}nY s Y s . By the linear 

prediction hypothesis in (6.1.2) we then seek a best linear unbiased (BLU) predictor, 
 

(6.3.1)  0

0 01
ˆ( ) ( )

n

i ii
Y s Y s


   

 
of 0( )Y s . To facilitate the interpretation of this predictor, it is convenient to proceed in 

two steps. First we develop a BLU estimator of  , and then use this result to simplify the 

form of the BLU predictor obtained for 0( )Y s . 

 
6.3.1  Best Linear Unbiased Estimation of the Mean 
 
Since the mean,  , is assumed to be constant throughout region R, it is natural to use the 

entire set of sample observations, { ( ) ( ) : 1,.., }i iY s s i n    , to estimate  . To do so, 

we again we start with the linear hypothesis that the desired estimate, ˆn , can be written 

as a linear combination of these observations, say 
 

(6.3.2)  
1

ˆ ( )
n

n i i ni
a Y s a Y


   

 
where 1[ ( ),.., ( )]n nY Y s Y s   denotes the full sample vector of Y-variates, and where 

1( ,.., )na a a   denotes the vector of unknown coefficients. To ensure that this linear 

estimator is unbiased, we then require that 
 
(6.3.3)  ˆ( ) ( ) ( ) ( 1 ) ( 1 ) (1 )n n n n nE E a Y a E Y a a a               

 
where 1 (1,..,1)n   is the unit vector of length n. Hence unbiasedness for all values of   

will be guaranteed if and only if these unknown coefficients sum to one, i.e., 
 
(6.3.4)  1 1n a   
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Among all such linear unbiased estimators, we seek that one with minimum variance. To 
calculate the variance of linear estimators, we start by letting 
 

(6.3.5)  

2
1

2
1

cov( )
n

n

n

V Y

 

 

 
 

   
 
 


  


 

 
denote the full sample covariance matrix (in contrast to the smaller covariance matrices, 

0V , for each predictor set, 0 1( ) { ,.., }nS s s s ). With this definition, it follows at once from 

(3.2.21) that 
  
(6.3.6)  var( ) cov( )n na Y a Y a a Va     

 
Hence to determine the linear unbiased estimator of   with smallest variance, we seek to 
find that coefficient vector, â , that yields a minimum value of (6.3.6) subject to the unit-
sum condition in (6.3.4), i.e., which solves the following constrained minimization 
problem in a : 
 
(6.3.7)  minimize:  a Va          subject to:   1 1n a   

 
In expression (A2.8.23) of the Appendix it is shown that the unique solution of this 
problem is given by the coefficient vector: 
 

(6.3.8)  â  1
1

1
1

1 1 n
n n

V
V




 
  

 

 
Hence for each possible vector of sample variates, 1[ ( ),.., ( )]n nY Y s Y s  , the unique BLU 

estimator for   is given by: 
 

(6.3.9)  
1

1
1 1

1 1
ˆ ˆ 1

1 1 1 1
n n

n n n n
n n n n

V Y
a Y V Y

V V





 

  
      

 

 
To gain some feeling for this estimator, consider the classical case of uncorrelated 
samples, namely where the covariance matrix in (6.3.5) reduces to 
 

(6.3.10) 

2

2

2

0

cov( )

0
n nV Y I






 
 

   
 
 


  


 

 
with nI  denoting the n-square identity matrix. In this case we see that 
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(6.3.11) 
1 ( ) 1

ˆ
1 ( )1 1 1

n n n n n
n

n n n n n

I Y Y

I


 
 

 
 

 

But since 
1

1 1 (1)
n

n n i
n


    and 

1
1 ( )

n

n n ii
Y Y s


   , it follows that 

 

(6.3.12) 
1

1ˆ ( )
n

n i nin Y s Y


   

 
Thus ˆn  reduces to the sample mean, nY , which is of course the unique BLU estimator of 

  for uncorrelated samples. Hence in the presence of spatial correlation, the optimal 
weights in the coefficient vector, â , reflect the covariances among these correlated 
samples. In the case of Simple Kriging, the use of nY  to estimate   necessarily results in 

a linear unbiased estimator with higher variance than ˆn .  

 
6.3.2  Best Linear Unbiased Predictor of Y(s0) 
 
Given this intermediate result, we now formulate the Best Linear Unbiased prediction 
problem for 0( )Y s . Here we again stress that the prediction set, 

00 1( ) { ,.., }nS s s s , for 0s  

is generally smaller than the full sample of size n. So here we focus on the smaller vector 
of sample variates, 

01[ ( ),.., ( )]nY Y s Y s  used for predicting 0( )Y s  in (6.3.1) above. As in 

the case of Simple Kriging, if we again denote the desired vector of prediction weights by 

00 01 0( ,.., )n    , then the desired linear predictor of 0 0( )Y Y s  can be written in vector 

form as  
 

(6.3.13) 0 0Ŷ Y  

 
For purposes of prediction, recall from (6.1.4) that the desired unbiasedness criterion for 

0̂Y  is that expected prediction error be zero, i.e., that 

 

(6.3.14) 0 0 0 0 0
ˆ0 ( ) ( ) ( ) ( )E e E Y Y E Y E Y      

                                                
                                        0 ( )E Y     

00 ( 1 )n     

 
                                        

00(1 1 )n    

 
So, as a parallel to (6.3.4) above, it follows that 0  will yield an unbiased predictor for all 

possible values of   if and only if the bracketed expression is zero, i.e., 
 
(6.3.15) 

0 01 1n    
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Moreover, to satisfy the efficiency criterion it is required that among all linear unbiased 

predictors, 0̂Y  should yield the smallest prediction error variance, which in view of 

(6.3.15) together with (6.2.12) is again seen to be precisely residual mean squared error, 
 

(6.3.16)     
0

2 2 2 2
0 0 0 0 0 0 0

ˆvar( ) ( ) [( ) ] [( ) ] [( ) ( 1 )]ne E e E Y Y E Y Y E                 
 

        
0

2 2
0 0 0 0 0 0[ (1 1 ) ( )] [( ) ] ( )nE E MSE                  

 
But since all covariances in (6.2.26) continue to be given (i.e., are assumed to be known) 
for the case of Ordinary Kriging, the argument leading to (6.2.27) for Simple Kriging still 
holds. Hence we again seek to minimize 
 
(6.3.17) 2

0 0 0 0 0 0( ) 2MSE c V          , 

 

but now subject to the unit sum condition in (6.3.15). Hence the desired weights, 0̂ , for 

Ordinary Kriging are given by the solution of the constrained minimization problem: 
 
(6.3.18) minimize:  2

0 0 0 0 02c V           subject to:  
0 01 1n    

 
The solution to this problem is shown in the Appendix [expression (A2.8.26)] to be given 
by  
 

(6.3.19) 0

0

0 0

1
0 0 1 1

0 0 0 01
0

1 1ˆ 1
1 1

n
n

n n

V c
V V c

V



 



 
    

 

 
By substituting this solution into (6.3.13), one then obtains the following BLU predictor 
of 0Y  [see also expression (A2.8.28) in the Appendix]:  

 

(6.3.20) 0 0

0

0 0 0 0

1 1
0 01 1

0 0 0 0 01 1
0 0

1 1ˆ 1
1 1 1 1

n n
n

n n n n

V Y V Y
Y c V Y c V

V V

 
 

 

    
             

 

 
At first glance, this expression appears rather formidable. But by using the results of  
Section 6.3.1 above, it can be made quite transparent. In particular, suppose that the 
samples available for mean estimation are taken to be given by the prediction sample,Y , 
at 0s  rather than the full sample, nY . Then it follows at once from (6.3.9) that this BLU 

estimator must be of the form 
 

(6.3.21) 0

0

0 0

1
0

1
0

1
ˆ

1 1
n

n
n n

V Y

V










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where n  is now replaced by 0n , and where V  is replaced by 0 cov( )V Y . So by 

substituting (6.3.21) into (6.3.20) , we see that this optimal predictor reduces to  
 

(6.3.22) 
0 0 0

1 1
0 0 0 0 0
ˆ ˆ ˆ( 1 )n n nY c V Y c V       

 
        

0 0 0

1
0 0ˆ ˆ( 1 )n n nc V Y     

 
Finally, if we treat 

0
ˆn as a prior estimate of  , and [as in (6.2.2)] take the corresponding 

sample residuals based on this prior estimate, to be 
 

(6.3.23)  
0 0

ˆ ˆ( ) , 1,..,i i nY s i n     
 

then the vector of these residuals is given by 
 

(6.3.24) 
0

0

0 0 0

11
ˆ( )ˆ

ˆ ˆ 1

ˆ ˆ( )

n

n n

n n n

Y s

Y

Y s


 

 

  
  

     
      

   

 

Similarly, if we let 
00 0̂ˆ ˆnY   denote the residual predictor corresponding to 0̂Y , then  

(6.3.22) is further reduced to 
 
 

(6.3.25) 1
0 0 0ˆ ˆc V   

 

 
But by (6.2.29) this is seen to be precisely the Simple Kriging predictor of 0 0( )s   

based on the vector of residual data, ̂ .  
 
In short, the BLU predictor of 0 0( )Y Y s  in (6.3.20) can be obtained by the following 

two-part procedure: 
 

(i).   Construct the BLU estimator, 
0

ˆn , of   based on the prediction sample data, 

       Y , as in (6.3.21). 
 

(ii). Use the sample residuals, ̂ , in (6.3.24) to obtain the Simple Kriging 

       predictor, 0̂ , of 0  as in (6.3.25), and set 
00 0

ˆ ˆˆnY    . 
 

In retrospect, this procedure seems quite natural. Since all covariance information is 
assumed to be given (as in Simple Kriging) the first step simply uses this information to 
obtain a BLU estimator for  . The second step then uses Simple Kriging to construct the 
predictor. What is remarkable here is that this ad hoc procedure actually yields the Best 
Linear Unbiased predictor for 0( )Y s  based solely on the prediction sample Y . 
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The only shortcoming of this procedure is that it does not use all sample information 
available for estimating  . For since this mean is assumed to be constant over the entire 
region R, it should be clear that a better estimate can be obtained by using the BLU 
estimator, ˆn , based on the full sample, nY . It is this modified procedure that constitutes 

the most commonly used form of Ordinary Kriging.25 To formalize this procedure, it thus 
suffices to modify the two steps above as follows: 
 
 

(1).  Construct the BLU estimator, ˆn , of   based on the full sample data, 

        nY , as in (6.3.9).  
 

(2).  Use the sample residuals, 
0

ˆ ˆ 1n nY    to obtain the Simple Kriging 

        predictor, 0̂ , of 0  as in (6.3.25), and set 0 0
ˆ ˆˆnY    . 

 
 
6.3.3 Standard Error of Prediction 
 
Recall that to obtain prediction intervals, one requires an estimate of the standard error 

of prediction, 0 , as well as 0̂Y . To do so, recall from the argument in (6.3.16) and 

(6.3.17) that prediction error variance for any weight vector, 0 , has the same form as for 

Simple Kriging, i.e., 
 
(6.3.26) 2 2

0 0 0 0 0 0 0var( ) 2e c V          

 
So all that is required to obtain the desired prediction error variance is to substitute the 

optimal weight vector, 0̂ , into this expression. After some manipulation, it can be shown 

[see expression (A2.8.69) in the Appendix] that desired value, 2
0̂ , is given by: 

 

(6.3.27) 2 2
0 0 0 0 0 0

ˆ ˆ ˆˆ 2c V         

                 

                              0

0 0

1 2
0 02 1

0 0 0 1
0

(1 1 )
( )

1 1
n

n n

V c
c V c

V








  


 

 
The key point to notice is that the first bracketed expression is precisely the prediction 
error variance for Simple Kriging in expression (6.2.53). But since the second term is 

                                                 
25 It should noted however that one may consider “local” versions of ordinary kriging in which the mean is 

re-estimated at each prediction site, 
0

s . This yields a set of local mean estimates, 
0

ˆ ( )s , which can be 

regarded as local estimates of a possibly non-constant trend surface. See for example [BG], pp.195-196.   
This idea is also implicit in Section 5.4.2 of Schabenberger and Gotway (2005). 



  NOTEBOOK FOR SPATIAL DATA ANALYSIS                          Part II. Continuous Spatial Data Analysis 
______________________________________________________________________________________ 
 

________________________________________________________________________ 
 ESE 502                                                     II.6-43                                                Tony E. Smith 

always positive,26 it follows that prediction error variance for Ordinary Kriging is always 
larger than for Simple Kriging. The additional positive term turns out to be precisely the 
addition to prediction error variance created by the internal estimation of the mean,  . 
 
Finally, given this expression for prediction error variance, the desired standard error of 
prediction is simply the square root of this expression, namely, 
 

(6.3.28) 0

0 0

1 2
0 02 1

0 0 0 0 1
0

(1 1 )
ˆ ( )

1 1
n

n n

V c
c V c

V
 







  


 

        
6.3.4 Implementation of Ordinary Kriging 

 
From the development above, it should be evident how to implement Ordinary Kriging 
by a direct modification of the three-step procedure for Simple Kriging in Section 6.2.5. 
To do so, we again start by assuming the existence of a given set of n observations (data 
points), { ( ): 1,.., }i iy y s i n   in R, where each iy  is a realization of the corresponding 

random variable, ( )iY s , in the full sample vector, [ ( ) : 1,.., ]n iY Y s i n   , in (6.3.2) above. 

In this context, we again consider the prediction of 0 0( )Y Y s , at a single given location, 

0s R , with respect to a given prediction set, 
00 1 1( ) { ,.., } { ,.., }n nS s s s s s  .  Within this 

framework, we can operationalize the Ordinary Kriging model by re-ordering the three 
steps of the Simple Kriging implementation in Section 6.2.5 as follows: 
 
Step 1.  Estimation of Covariances 
 
This step amounts essentially to a reinterpretation of Step 2 for Simple Kriging, where 
here we focus on Y -process rather than the  -process. To do so, simply recall from 
Section 4.8 that (as with Simple Kriging) Ordinary Kriging assumes a constant-mean 
model [ ( ) ( ) : ]Y s s s R    , so that the variograms for the Y -process and  -process 

are identical. Hence we can again use the sample data 1( ,.., )ny y  in var_spher_plot.m to 

obtain a spherical variogram estimate, ˆ ˆ ˆ( ; , , )h r s a , and derived covariogram estimate as 
in (6.2.65), i.e., 
 

(6.3.29) ˆ ˆ ˆ ˆ ˆ( ) ( ; , , )C h s h r s a     
 

The only difference in the present setting is that we treat the covariances between Y  
values rather than   values.  In particular, we now require estimates of the covariances,  

cov[ ( ), ( )]ij i jY s Y s  , for all sample pairs, ( )iY s  and ( )jY s , in nY . Using (6.3.29), these 

can be estimated precisely as (6.2.66) by setting, 
 

                                                 
26 Positivity of the denominator follows from the fact that it is the variance of the linear compound, 

0

1

0
1

n
V Y , since 

0 0 0 0 0 0 0

1 1 1 1 1 1

0 0 0 0 0 0 0
var(1 ) 1 cov( ) 1 1 ( ) 1 1 1

n n n n n n n
V Y V Y V V V V V           . 
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(6.3.30)  ˆˆ cov[ ( ), ( )] (|| ||)ij i j i jY s Y s C s s     

 
These in turn provide an estimate of the full-sample covariance matrix, cov( )nV Y , in 

(6.3.5) as follows: 

(6.3.31) 

2
1

2
1

ˆ ˆ
ˆ

ˆ ˆ

n

n

V

 

 

 
 

  
 
 


  


 

 
By the same procedure, we can obtain estimates for all covariances between the variable, 

0 0( )Y Y s , to be predicted and the given set of prediction variates, 
01[ ( ),.., ( )]nY Y s Y s  , 

namely, 
 

(6.3.32) 
0 0 0 0

ˆˆ cov[ ( ), ( )] (|| ||) , 1,..,j j jY s Y s C s s j n      

 
By again letting 0 0 0ˆ ˆ( : 1,.., )ic i n   , we can use these together with the appropriate 

sub-matrix, 0̂V , of covariance estimates in (6.3.27) to obtain an estimate, 

 

(6.3.33) 
2

0
0

0 0

ˆ ˆˆ
ˆˆ

c
C

c V

 
 
 
 

 

 
 of the full covariance matrix, 0C , relevant for prediction at 0s . From a computational 

viewpoint, this matrix is numerically identical to the matrix in (6.2.23), with elements 
now interpreted as covariances directly between Y  values rather than   values.  
 
Step 2.  Estimation of the Mean 
  
This step involves the main departure from Simple Kriging. Here we replace the  sample-
mean estimator ( )nY  of   with the BLU estimator, ˆn , in expression (6.3.9) above. By 

using the covariance estimates in (6.3.27) together with the sample data vector, 

1( ,.., )ny y y  , this estimate can be calculated as 

 

(6.3.34) 
1

1

ˆ1
ˆ

ˆ1 1
n

n

n n

V y

V










 

 
 
Step 3.  Estimation of Kriging Predictions 
 
As emphasized in the final two-step procedure of Section 6.3.2 above, this step is 
identical to that in the Simple Kriging procedure. All that it required at this point is to 
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replace the sample-mean estimate, ̂ , with the BLU estimate, ˆn , and redefined the 

appropriate residual estimates in (6.2.70) by 
 
(6.3.35) 0

ˆ ˆ , 1,..,i i ny i n     

 

and again use (6.2.71) and (6.2.72) to construct the desired prediction, 0̂Y , by 

 

(6.3.36) 1
0 0 0 0
ˆ ˆ ˆ ˆˆ ˆ( ) nY Y s c V     

 
 
Finally, the estimated standard error of prediction, 0̂ , is given by substituting the 

covariance estimates into (6.3.28) above to obtain: 
 

(6.3.37) 0

0 0

1 2
0 02 1

0 0 0 0 1
0

ˆ ˆ(1 1 )ˆˆ ˆ ˆ ˆ( )
ˆ1 1

n

n n

V c
c V c

V
 







  


 

 
 

The pair 0 0
ˆ ˆ( , )Y   can then be used to construct prediction intervals for 0 0( )Y Y s  

precisely as in (6.2.62) and (6.2.63) above. 
 
  
6.3.5 An Example of Ordinary Kriging  
 
This implementation of Ordinary Kriging can be illustrated in terms of the Log-Nickel 
example developed for Simple Kriging in Section 6.2.6. As emphasized in the above 
implementation, all covariogram estimates are identical. Hence from a practical 
viewpoint, the only numerical differences between these prediction procedures will result 
from the replacement of the sample-mean estimator, ˆ ny  , in (6.2.62) with the BLU 

estimator, ˆn , in (6.3.30). Recall that in the present case, 3.252ny  . A computation of 

ˆn  using the same data turns out to yield a value ˆ 3.329n  , which is quite similar to 

that of ny . Hence in the present example, one can expect to find very similar predictions 

and standard errors. However, it should be stressed that this by no means true in general. 
Indeed when substantial spatial dependencies are present, the sample mean ny  can yield a 

very poor estimate of   relative to ˆn . 

 
With these general observations, we can now sketch how Ordinary Kriging is done in 
both MATLAB and ARCMAP.  Starting with MATLAB, Ordinary Kriging is 
operationalized in the program, o_krige.m. The inputs are essentially the same as 
simple_krige.m, except that values are made distinct from locations. So here, values are 
given by y = log_nickel(:,3) and locations by L0 = log_nickel(:,1:2). To obtain a 
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prediction at the given location, s0 = (659000,586000), in Figure 6.11 above, one now 
uses the command: 
 
>> OUT = o_krige(y,L0,s0,h0,p_log); 
 
Here the prediction and standard error are the last two cells of the output structure, which 
can be obtained as: 
 
>>  [OUT{3} OUT{4}]  =  3.0461      0.76771 
 
A comparison with the results on p.5-30 above show that (as expected) the Ordinary 
Kriging results are virtually the same. 
 
Finally, to carry out an Ordinary Kriging prediction at s0 in ARCMAP, the procedure 
described for Simple Kriging is again the same, except that at “Kriging Step 2 of 5” one 
now selects Kriging Type = Ordinary  (which is the default choice). By employing all 
the same settings as in the Simple Kriging example (pp.5-31 to 5-32 above), the Ordinary 

Kriging prediction, 0̂Y , and standard error of prediction, 0̂ , at s0 turn out to be 

 

(6.3.38)  0̂ 3.0477Y      0ˆ 0.7683   

 
Hence, as expected, these are again seen to be virtually the same as those for MATLAB. 
 
 
6.4  Selection of Prediction Sets by Cross Validation 
 
Before proceeding to more general kriging models, it is important to consider the 
question of choosing “best” prediction sets, 0( )S s , for each prediction site, 0s R . At 

first glance, it would appear that if the range, r , of the covariogram has been correctly 
estimated by r̂ , then the most natural choice for predictions sets is to include all points in 
closer to 0s  than r̂ . If the set of all n  sample point locations is denoted by  

 
(6.3.39) 1{ ,.., }n nS s s  

 
then this amounts formally to setting 
 
(6.3.40) 0 0 ˆ( ) { : || || }i n iS s s S s s r     

 
[In fact, this option for defining search neighborhoods is available in “Kriging step 4 of 
5” in ARCMAP, as denoted by “Copy from Variogram”.] However, in spite of its 
apparent theoretical appeal, this option generally tends to include “too much”. This will 
become evident in the simulation analysis below. 
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To determine a “best” size for prediction sets, one first defines a set of candidate sizes. In 
the present case, we shall focus on circular prediction sets of the form (6.3.40) for a 
selection of bandwidths, 1{ ,.., }kH h h , and let 

 
(6.3.41) 0 0( ) { : || || } ,h i n iS s s S s s h h H      

 
While it is in principle possible to consider different bandwidths at each prediction site, 
we follow the standard convention of considering only uniform bandwidths (as reflected 
by the bandwidth parameter, h0, used in o_krige.m). The task is then to find a “best” 
bandwidth.  
 
The standard procedures for doing so, known as cross validation procedures, leave out 
part of the data and attempt to predict these values with the rest of the data. By 
calculating the average prediction error for this data, one can then find the bandwidth that 
minimizes this value. The most commonly used procedure, known as leave-one-out cross 
validation, is to systematically omit single data points one at a time, and predict these 
using the rest of the data. Hence, given a candidate bandwidth, h H , one will obtain for 
each data point, ( )i iy y s , a predicted value, say ˆ ( )iy h , by using all other sample data in 

1( ,.., )ny y y  together with the prediction set ( )h iS s . By squaring these prediction 

errors, ˆ ( ), 1,..,i iy y h i n  , and taking the average, one obtains a summary measure that 

can be viewed as a sample version of mean squared error. But in order to preserve units 
(so that values, for example, are in terms of Nickel rather Nickel-squared) the most 
commonly used measure of performance is root mean squared error, as defined for each 
candidate bandwidth, h H , by: 
 

(6.3.42) 2

1
1 ˆ( ) [ ( )]

n

i iinRMSE h y y h


   

 
Hence by systematically calculating ( )RMSE h  for all h H , one can define the best 
bandwidth, *h , to be the one that minimizes (6.3.42), i.e., 
 
(6.3.43) ( *) min ( )h HRMSE h RMSE h  

 
 
6.4.1 Log-Nickel Example 
 
For the case of Ordinary Kriging, this leave-one-out cross validation procedure is 
operationalized in the MATLAB program, o_krige_cross_val.m. To apply this program 
to the log-nickel example, recall that the estimated range was ˆ 21,631r   meters, and that 
the bandwidth chosen for kriging at s0 was h0 5000  meters.  Hence we choose H  to 
be the set of bandwidths increasing from 1000 to 25,000 in increments of 1000, i.e., 
 
>> H = [1000:1000:25000]; 
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If the 436n   locations and log_nickel values are denoted respectively by 
 
>> L = log_nickel(:,1:2); 
 
>> y = log_nickel(:,3); 
 
then the above program can be run for this example using the command 
 
>> o_krige_cross_val(y,L,H); 
 
The output is a graph that plots the values of ( )RMSE h  against bandwidths, h, as shown 
in Figure 6.16(a) below. Here the best bandwidth (shown by the red arrow in the figure) 
is here seen to be 11,000 meters, which is roughly twice the value chosen for kriging at 
point s0 in the examples above.  This larger bandwidth is shown by the larger circle in 
Figure 6.1(b), with the smaller circle denoting the original choice of 5000 meters.  Notice 
that many more data points are now included (33 versus 12 in the original analysis). The 
predictions obtained by o_krige.m using this larger bandwidth are shown below: 
 
>> [OUT{3} OUT{4}]  =   3.1219      0.76365 
 
 So the predicted value is seen to be somewhat higher, and the standard error of 
prediction is slightly smaller.27 Since the latter implies a slight tighter prediction interval, 
this larger bandwidth may indeed be preferable. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
27 The values obtained in ARCMAP are 3.1237 and 0.7643, respectively, and are again seen to be in close 
agreement. 

0 0.5 1 1.5 2 2.5

x 10
4

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

Figure 6.16  Log Nickel Example 
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But the most important point to note here is that this best bandwidth is much smaller than 
the estimate range ( ˆ 21,631r  ). It can of course be argued that in this particular example, 
the estimated range may not be very accurate. Indeed, it is well known that estimates of 
the range tend to be the least stable (most variable) of the three parameter estimates 

ˆ ˆ ˆ( , , )r s a . Hence it is useful to consider this question in simulated data sets where the true 
range is known. 
 
6.4.2 A Simulated Example 
 
To construct a simulated example, we start by generating 500n   random points in a 
100 100  kilometer square with locations denoted by 1( ,.., )nL s s . Next we simulate 

20K   realizations, 1( ,.., )KY y y , of a covariance-stationary process on these points, 

where each column, 1( ,.., )k k kny y y   is a realization on the locations in L. Here we use a 

constant mean of 10   and covariogram with parameters, ( , , ) (25,5,0)p r s a  . The 
simulation was carried out using the MATLAB program, cov_stat.m, with the command: 
 
 >> Y = cov_stat(p,L,20); 
 
A typical realization of this process is shown in Figure 6.17 below.   
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notice that spatial correlation is indeed evident at scales smaller than the 25 km range 
shown. Hence the question of interest is whether bandwidths less than this range value do 
a better job of prediction. The above program, o_krige_cross_val.m, was run for each of 
these 20 simulations. Based on this limited sample, the answer is definitely yes. The 
cross-validation plot for the realization in Figure 6.17 is shown in Figure 6.18 below: 
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Figure 6.17. Simulated Realization 
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So again the best bandwidth is seen to be about half the true range value.  It is also 
important to note that the estimates of the constant mean and covariogram parameters are 
actually quite reasonable: 
 
(6.3.44) ˆ 9.932n  ,   ˆ ˆ ˆ( , , ) (31.638 ,  3.502 , 0.74557)r s a   

 
So it cannot be argued that this is a result of parameter-estimation error. Indeed, given the 
moderate overestimation of the true range in this case, one might have expected larger 
bandwidths to do quite well here. 
 
Finally it should be added that these best bandwidths showed considerable variation over 
the 20 simulated realizations. The lowest was 5 km, and one was actually above the true 
range (27 km), even though the range estimate for this case was almost exactly 25 km. So 
a great deal seems to depend on the spatial structure of the particular pattern realized. But 
this limited investigation does support the commonly held belief that that best bandwidths 
for kriging predictions are generally less that the estimated range value.  

0 5 10 15 20 25 30 35 40
0.95

0.96

0.97

0.98

0.99

1

1.01

range best 

Figure 6.18 Cross Validation Plot 

 


