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7.  General Spatial Prediction Models 
 

Recall that within our general spatial modeling framework, { ( ) ( ) ( ), }Y s s s s R    , 
the global trend, ( )s , is assumed to be constant in both Simple and Ordinary Kriging. 
What this means in practice is that all spatial variations are assumed to be captured by the 
covariance structure among the residuals, ( )s . However, the more general kriging 
models, described as Universal Kriging and Geostatistical Kriging in Section 6.1.2 
above, allow non-constant spatial trend structures. Hence the central task of this section is 
to develop these more general models in detail. 
 
We begin by developing the types of trend functions to be considered. Recall from the 
Sudan Rainfall example in Section 2.1 that a number of such trend functions were 
developed. Here the simplest of these postulated that there was some linear trend over 
space expressible entirely in terms of the spatial coordinates, 1 2( , )s s s , i.e., 

 
(7.1) 0 1 1 2 2( )s s s       

 
An elaboration of this was given by the quadratic trend function, 
 
(7.2) 2 2

0 1 1 2 2 3 1 4 1 2 5 2( )s s s s s s s             

 
More generally, one may consider polynomial trend functions of the form, 
 

(7.3) 0 1 21
( ) j j

k n m

jj
s s s  


    

 
where jn  and jm  are nonnegative integer values. Spatial trends in phenomena that vary 

smoothly over space tend to be well approximated (locally) by such polynomial 
functions.  A good  example is elevation in hilly terrain. The advantage of these functions 
is that they require nothing more than the coordinate data in the map itself. Hence the 
data for constructing such functions is essentially always available. It is for this reason 
that ARCMAP uses polynomial functions as built-in options for modeling spatial trends 
(including all polynomials up to order three, i.e., with 3 , 1,..,j jn m j k   ). A second 

advantage of these functions is that even though they may involve many spatially 
nonlinear terms, they are still linear in parameters. In other words, such functional forms 
are linear in all parameters to be estimated, namely 0 1, ,.., k   . So unlike the nonlinear 

least squares estimation procedure required for the standard variogram models in Section 
4.7.2 above, these models can be estimated by ordinary least squares (OLS).  
 
But while such functions are sufficiently general to fit many types of spatial trends, they 
offer little in the way of explanation regarding the nature of these trends. For example, 
we saw in the introductory California Rainfall example that variables such as “altitude” 
and “rain shadow” were useful predictors of average rainfall that are not captured by 
coordinate positions. Even in the case of Vancouver Nickel used for Simple and Ordinary 
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Kriging above, it may well be that local soil types as well as concentrations of other 
mineral types might yield better predictions of nickel deposits that simple location 
coordinates. So, in the spirit of the regression model used in the California Rainfall 
example, it is of interest to consider linear-in-parameter spatial trend functions involving 
many possible spatial attributes: 
 

(7.4) 0 1
( ) ( )

k

j jj
s x s  


    

 
This is seen to include all examples above, where for example, one may have polynomial 

terms, 1 2( ) j jn m

jx s s s , or more general spatial attributes such as ( )jx s   “altitude at s”, or 

( )jx s   “copper concentration at s” . Moreover, it should be clear that all such trend 

functions yield spatial models  
 

(7.5) 0 1
( ) ( ) ( ) ,

k

j jj
Y s x s s s R  


     

 
which appear to be simply instances of classical linear regression models like the 
California Rain example. However there is one important difference, namely that the 
spatial random effects, ( )s , are allowed to exhibit nonzero covariances. So the key 
difference here is the covariance structure of  the residuals. More formally, such models 
are instances of the general linear regression model that allows for nonzero covariances 
between residuals. Hence to develop spatial prediction models with non-constant trends, 
we turn first to a consideration of the general linear regression model itself. 
 

 
 7.1 The General Linear Regression Model 
 
To formalize such models in the simplest way, it is essential to use vector representations. 
We start with a given finite sample,1 [ ( ) : 1,.., ] ( : 1,.., )i iY Y s i n Y i n      from a spatial 

stochastic process with global trend of the form (7.5). Let 
 
(7.1.1) 0 1 0 1 1( ) [ ( ) , ( ),..., ( )] ( , ,.., ) (1, ,.., )i i i k i i i ik i ikx s x s x s x s x x x x x     

 
denote the vector of relevant attributes at each sample location, 1,..,i n , where by 

convention the “attribute”, 0 1ix  , corresponds to the intercept term 0( )  in (7.5). With 

this convention, the integer k  denotes the actual number of spatial attributes used in the 
model. If 0 1( , ,.., )k     denotes the corresponding vector of coefficients, then (7.6) 

can be rewritten as 
 
(7.1.2) ( ) ( ) ( ), 1,..,i i iY s x s s i n     

                                                 
1 Notice that we now drop the notation, 

n
Y , used for this sample in Section 6 [in order to avoid confusion 

with the data point, ( )
n n

Y Y s ]. 
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This can be further reduced by letting 
 

(7.1.3) 
11 1 1 1 1

1

1 ( ) ( )

,

1 ( ) ( )

k

n nk n n n

x x x s s

X

x x x s s

 


 

       
                 
              


     


 

 
so that (7.8) can be written in compact matrix form as 
 
(7.1.4) Y X     
 
Our primary interest for the moment focuses on the residual vector,  . Recall from 
Section 3 that   is assumed to be multi-normally distributed with mean zero. Moreover, 
the usual multiple regression model (as for example in the California Rain case), assumes 
that the individual components of   are statistically independent, and hence have zero 
covariance. Thus [as in (6.3.10) above] this covariance matrix has the form: 
 

(7.1.5) 

2

2

2

0

cov( )

0
nI


 



 
 

  
 
 


  


 

 

In this spatial context, the classical regression model can be formally summarized as 
follows:  
 
(7.1.6) Y X      ,   2~ (0, )nN I   

 
But as in Section 3.3 above, we wish to extend this model by allowing covariance-
stationary spatial dependencies between the individual components of  . Hence, while 
all diagonal elements will continue to have the constant value, 2 , many of the off-
diagonal elements will now be nonzero.  If we now let ij and ij  denote, respectively, 

the covariance and correlation between residuals i  and j , and recall that [as in 

expression (3.3.13)], 2/ij ij   , then the general covariance matrix, V, for   can be 

written as follows: 
 

(7.1.7) 

2
1 1

2 2

2
1 1

1

cov( )

1

n n

n n

V C

  
  

  

   
         

     

 
     

 
 

 

where C  is the corresponding correlation matrix for  . The advantage of this particular 
representation is that the important variance parameter, 2 , is made explicit. Moreover, 
(7.1.7) is now more easily related to the classical case in (7.1.5) where C  reduces to the 
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identity matrix, nI . In this setting, the general linear regression model can be formally 

summarized for our purposes by simply replacing nI  with C  in (7.1.6), i.e.,2  

 
(7.1.8) Y X      ,   2~ (0, ) (0, )N V N C   
 
 
7.1.1 Generalized Least Squares Estimation 
 

Recall that the classical linear regression model is estimated by the method of ordinary 
least squares. As shown below, this method is directly extendable to the generalized 
linear regression model. In particular, since the correlation matrix, C, is assumed to be 
given (as for example in the Universal Kriging model to be developed below), this model 
can be reduced to an equivalent classical linear regression model. To develop these 
results, we begin with the classical linear regression case, and then proceed to generalized 
linear regression.  
 
OLS Estimators 
 

Given a sample realization, 1( ,.., )ny y y  , of Y in model (7.1.6), the method of ordinary 

least squares (OLS) seeks to determine an estimate of the unknown coefficient vector, 
 , that minimizes the sum of squared deviations between the iy  values and their 

estimated mean values, ( )ix s  . More formally, if the sum-of-squares function (S) is 

defined for all possible   values by: 
 

(7.1.9) 2 2
0 1 11 1

( ) [ ( ) ] [ ( )]
n n

i i i i k iki i
S y x s y x x    

 
          

 

then the OLS estimator, 0 1
ˆ ˆ ˆ ˆ( , ,.., )k     , is taken to be the minimizer of (7.1.9), i.e., 

 

(7.1.10) ˆ( ) min ( )S S   

 
To determine this estimator, we begin by using (7.1.3) to rewrite this function in matrix 
terms as, 
 
(7.1.11) ( ) ( ) ( ) 2S y X y X y y y X X X                 
 
Notice that this is again a quadratic form in the unknown value,  , that is similar to the 

mean squared error function, 0( )MSE  , in expression (6.2.27) above. So the solutions for 

these two problems are also similar. In the present case, it is shown in Section A2.7.3 of 
the Appendix that the solution to (7.1.10) is given by 

                                                 
2 In Part III of this NOTEBOOK we shall return to this general linear regression model in a somewhat 

different context. So both covariance representations, V and 2C , will be useful. For similar treatments see 
expression (9.11) in Gotway and Waller and section 10.1 in Green (2003). 



  NOTEBOOK FOR SPATIAL DATA ANALYSIS                          Part II. Continuous Spatial Data Analysis 
______________________________________________________________________________________ 
 

________________________________________________________________________ 
 ESE 502                                                     II.7-5                                                            Tony E. Smith 

(7.1.12) 1ˆ ( )X X X Y    
 
Notice that we have used the random vector, Y , rather than the realized sample data, y, in 

(7.1.12) in order to view ̂  as a random vector defined for all realizations. [In statistical 

terms, the distinction here is between ̂  as an estimate of   for a given data set, y , and 
its role as an estimator of   for all sample realizations of Y.]  Notice also that for this 
OLS estimator to be well defined, it is necessary that the matrix X X be nonsingular. 
This will almost surely be guaranteed whenever the number of samples is substantially 
greater than the number of parameters to be estimated, i.e., whenever 1n k  .3  More 
generally, statistical estimation of any set of parameters can only be reliable when the 
number of data points well exceeds the number of parameters. In the case of classical 
linear regression, a common rule of thumb is that there be at least 10 samples for every 
parameter, i.e., 10( 1)n k  . 
 

Before proceeding to the more general case, it is important to point out that ̂  is an 
unbiased estimator, since under model (7.1.6), ( )E Y X  implies that 
 

(7.1.13)   1 1 1ˆ( ) [( ) ] ( ) ( ) ( )E E X X X Y X X X E Y X X X X              
 
What is equally important is the fact that (like the sample mean used in Simple Kriging 
predictions) this unbiasedness property is independent of cov( ) . All that is required is 
that the linear trend specification, X , is correct [i.e., that ( ) 0E   ]. So in the case of 
California Rainfall, for example, if the four final variables used were a correct 
specification of the model, then regardless of possible spatial dependencies among 
residuals ignored in this model, the estimated beta coefficients would still be unbiased. 
 
GLS Estimators 
 
To extend these results to generalized linear regression, we employ the fact that every 
(nonsingular) covariance matrix can be decomposed in a very simple way. For the 
covariance matrix, C , in (7.1.7) it is shown in the Appendix [by combining the Positive 
Definiteness Property above expression (A2.7.67) with the Cholesky Theorem following 
expression (A2.7.45)] that there exists a Cholesky decomposition of V, i.e., there exists a 
lower triangular matrix,  
 

(7.1.14) 

11

21 22

1 2

0 0

0

n n nn

t

t t
T

t t t

 
 
 
 
 
 


 

  


 

such that 

                                                 
3 The symbol “ ” is conventionally used to mean “substantially greater then” 
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(7.1.15) C T T   
 
The matrix, T, is usually called the Cholesky matrix for C. While we require no detailed 
knowledge of such matrices here, it is of interest to point out that the desired Cholesky 
matrix is easily obtained in MATLAB by the command,4 
 
>>  T = chol(C); 
 
Perhaps the most attractive feature of the lower triangular matrices is that they are 
extremely easy to invert (and indeed first appeared as part of the classical “Gaussian 
elimination” method for solving systems of linear equations). Moreover, it is this inverse, 

1T  , which is directly useful for out purposes. In particular, since C is given, we can 
compute 1T   prior to any analysis of model (7.1.8). But if we then premultiply both sides 
of the equation in (7.1.8) to obtain, 
 
(7.1.16) 1 1 1T Y T X T       
 
and define the following transformed  quantities, 
 
(7.1.17) 1 1 1, ,Y T Y X T X T          
 
then by (7.1.16) we obtain the following transformed model: 
 
(7.1.18) Y X      
 
Moreover, since   is a linear transformation of  , it follows from the Linear Invariance 
Theorem for multi-normal random vectors [in (3.2.22) above] that   is also multi-
normally distributed with mean zero. But by using (7.1.15) and (3.2.21) [together with 
the matrix identity 1 1( ) ( )T T   ] we can determine the covariance matrix for   as 
follows: 
 
(7.1.19) 1 1 1cov( ) cov( ) cov( ) ( )T T T        
 
                         1 2 1( )( )T C T   
 
                                               2 1 1( )( )T T T T     
 
                                               2 1 1( )[( )( ) ]T T T T     
 
                         2 ( )nI  

                                                 
4 Note the transpose operation here. MATLAB for some reason has chosen to produce T   rather than T. 
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So this transformed model is seen to take the form: 
 
(7.1.20) 2, ~ (0, )nY X N I         

 
Finally, by comparing this with (7.1.6) we see that the generalized linear regression 
model in (7.1.8) has been transformed into a classical linear regression model. This may 
seem a bit like “magic”. But it is simply one of the many consequences of the Linear 
Invariance Theorem for multi-normal random vectors, and serves to underscore the 
power of this theorem. 
 
Given this equivalence, we may again use OLS to estimate  .  In particular, by using the 

transformed data, ( , )X Y   in (7.1.17), it follows at once from (7.1.12) the desired OLS 
estimator is given by 
 

(7.1.21) 1ˆ ( )X X X Y        
 
To distinguish this from the classical linear regression model, it is customary to transform 
this estimator back into the form of the generalized linear regression model. This amounts 
simply to substituting the above relations into (7.1.21) [and using the matrix identity 

1 1 1 1 1( ) ( ) ( ) ( ) ( )T T T T T T        ] to obtain 
 

(7.1.22) 1 1 1 1 1ˆ [( ) ( )] ( ) ( )T X T X T X T Y        
 
                        1 1 1 1 1[ ( ) ( ) ] ( ) ( )X T T X X T T Y         
 
                        1 1 1[ ( ) ] ( )X T T X X T T Y       
 
Finally, recalling from (7.1.15) that C T T  , it follows that 
 

 (7.1.23) 1 1 1ˆ ( )X C X X C Y      
 
which is entirely independent of Cholesky matrices or transformed models. For our later 
purposes, it is convenient to rewrite (7.1.23) using the full covariance matrix, V , for   in 
(7.1.7), i.e., 
  

(7.1.24)  1 1 1ˆ ( )X V X X V Y      
 
 
The latter version is typically designated as the generalized least squares (GLS) estimator 
of  . However, these two versions are in fact equivalent representations of the GLS 

estimator since the substitution, 2V C , in (7.1.24) shows that 
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(7.1.25) 2 1 1 2 1 1 1 1ˆ ( [ ] ) [ ] ( )X C X X C Y X C X X C Y             
 

Note that this identity also shows that the GLS estimator, ̂ , is functionally independent 

of 2 . This independence will prove to be enormously useful in later applications. 
 

Note also that even though ̂  is still dependent on the covariance matrix, V,  this 

dependence has no effect on the unbiasedness of ̂ . This should be obvious from its 
equivalence to an OLS estimator. But in any case, by taking expectations in (7.1.24) we 
see that 
 

(7.1.26)       1 1 1 1 1 1ˆ( ) [( ) ] ( ) ( )E E X C X X C Y X C X X C E Y               
 
                          1 1 1 1 1 1( ) ( ) ( ) ( )X C X X C X X C X X C X              
 
So regardless of how badly this covariance matrix is misspecified (including nC I ), this 

by itself creates no biasedness. (Rather it creates inefficiency of the estimator, ̂ ) 
 
Finally it should be noted that by letting 1y T y , one can also transform the sum-of-
squares function, S, (by using the same matrix identities above) to obtain: 
 
(7.1.27) 1 1 1 1( ) ( ) ( ) ( ) ( )S y X y X T y T X T y T X                 
 
                              1 1 1 1[ ( )] [ ( )] ( ) ( ) ( )( )T y X T y X y X T T y X               
 
                              1 1( ) ( ) ( ) ( ) ( )y X TT y X y X C y X             
 
Note again that since C  differs from 2V C  by a positive scalar, it can be replaced by 
V in (7.1.27) without altering the solution. Both forms are seen to be weighted versions of 
(7.1.11). For this reason, GLS estimation is often referred to as weighted least squares. In 
any case, it should be clear that by minimizing (7.1.27) to obtain (7.1.23) [or (7.1.24)], 
one need never mention Cholesky matrices or transformed models. But this underlying 
equivalence between OLS and GLS has many consequences that are not readily 
perceived otherwise (as will be seen, for example, in Section 7.3.4 below). 
 
7.1.2  Best Linear Unbiasedness Property 
 
Having derived these estimators in terms of standard least squares procedures, it is 
important to consider their optimality properties as estimators. Our objective is to show 
that these estimators have the same BLU properties of Simple and Ordinary Kriging 
above. But to do so, it is necessary to extend the notion of Best Linear Unbiased 
estimation to vectors of parameters such as  . Here one might simply argue that we 



  NOTEBOOK FOR SPATIAL DATA ANALYSIS                          Part II. Continuous Spatial Data Analysis 
______________________________________________________________________________________ 
 

________________________________________________________________________ 
 ESE 502                                                     II.7-9                                                            Tony E. Smith 

should consider the estimation of each component, , 0,1,..,j j k  , separately. But it 

turns out that one can do much better than this. In particular if we were trying to estimate 
the expected value of a particular component of Y , say ( )i iY Y s , then by (7.1.2) this 

takes the form of a condition mean 
 
(7.1.28) [ | ( )] ( )i i iE Y x s x s   

 

Here the standard regression procedure is simply to plug in the beta estimators, ̂ , and 
use the derived “Yhat” estimator, 
 

(7.1.29) 0 1
ˆ ˆ ˆˆ ( ) ( )

k

i i j i jj
Y x s x s  


     

 
Hence, even if one were able to establish optimality properties for individual estimators, 
ˆ

j , there would remain the question as to whether linear combinations of estimators such 

as in (7.1.28) were still optimal in any sense.  
 
It is for this reason that a much more powerful way to characterize optimality properties 
of vector estimators is in terms of all possible linear combinations of these estimators. In 
the present case, observe that if we now focus on GLS estimators and consider any linear 
combination of the unknown   vector, say a  , then by (7.1.24)  the corresponding 

estimator, ˆa  , takes the form 
 

(7.1.30) 1 1 1 1 1 1ˆ ( ) [ ( ) ] aa a X V X X V Y a X V X X C Y Y                 

 
 where 1 1 1( )a a X V X X V       . But since ( , , )a X V  are all known values, this estimator 

is indeed seen to be a linear estimator of a  , i.e., a linear function of the Y  vector (in a 
manner completely analogous to Simple and Ordinary Kriging weights). Moreover, by 
the argument in (7.1.26) it follows at once that  
 

(7.1.31) ˆ ˆ( ) ( )E a a E a       
 

Hence the “plug-in” estimator, ˆa  , is seen to be a linear unbiased estimator of a  , for 
all possible choices of a .  But the real power of this “linear compound” approach is that 
it provides natural definition of best linear unbiased estimators in this vector setting. In 

particular, we now say that ̂  is a Best Linear Unbiased (BLU) estimator of  , if and 

only if in addition to (7.1.30) and (7.1.31) is also true that the variance of ˆa   is smallest 
among all such linear unbiased estimators. More formally, if we now denote the class of 

all linear unbiased estimators,  , of   by 
 

(7.1.32)  1( ) ( , , ): [ ]&[ ( ) ] , k
aLU X V Y a Y E a a a                     
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then ̂  is said to be a Best Linear Unbiased (BLU) estimator of   if and only if for all 

linear compounds, 1ka  ,  
 

(7.1.33) ˆvar( ) min{var( ): ( )}a a LU        
 
While this definition looks rather ambitious, it is shown in the Appendix (see the first 
subsection of Section A2.8.3) that the unique estimator in ( )LU   satisfying this 

minimum variance condition for all 1ka   is precisely the GLS estimator in (7.1.24).  
 
7.1.3  Regression Consequences of Spatially Dependent Random Effects 
 
As discussed in detail in Section 3 above, our primary interest in GLS models is to allow 
covariance structures to reflect spatially dependent random effects. We are now in a 
position to see the consequences of such effects in more detail. To do so, we begin with 
the simplest possible spatial regression model, where such effects can be seen explicitly.  
We then examine these effects in a more complex setting by means of simulation. 
 
Simple Constant-Mean Example.  
 
Here we start with the simplest possible spatial regression model with a constant mean, 
i.e., with no “explanatory variables” at all: 
 
(7.1.34) 1( ) ( ) , { ,.., }nY s s s s s R      

 
In this context, suppose we ignore possible spatial dependencies among residuals, and 
assume simply that the residuals in  (7.1.34) are independent, say 2( ) ~ (0, )

iid
s N  . Then  

in matrix form, we have the regression model: 
 
(7.1.35) 21 , ~ (0, )n nY N I       

 
where in this case, 1 (1,..,1)nX    and   . Hence for this case it follows from 

(7.1.24) that the BLU estimator of   is given by: 
 

(7.1.36)  1 1

1 1
1ˆ (1 1 ) 1 ( )

n n

n n n i ii inY n Y Y Y  
 

        

 
which is of course simply the sample mean . [Recall also expressions (6.3.11) and 
(6.3.12)]. Moreover, recall from (3.1.19) that the variance of this estimator must be given 
by 
 

(7.1.37) 
2

var( )Y
n


  
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So all inferences about the true value of   will be based on the estimator, Y , and its 
variance in (7.1.37).   
 
But suppose that in reality there are positive spatial dependencies among the residuals in 
(7.1.35) so that in fact the covariance of   has the form, 
 

(7.1.38) cov( ) 

2
1 1 1 1

2

2
1 1

cov( , ) cov( , )

cov( , ) cov( , )

n n

n

n n n n

I
     


     

  
           

 
     

 
  

 
with 0ij  for many distinct ( , )i j  pairs. Then, in a manner similar to expression 

(4.10.3) above, it follows that since cov( ) cov( )Y  , the true variance of Y  is given by 
 
 

(7.1.38)    21 1
1 1var( ) var var( ) cov( , )

n n

i i i ji i i j in nY Y Y Y Y
  

       

                                                 

                        2 21
1 1var( ) cov( , )

n

i i ji i j in nY Y Y
 

     2 2

2

1
1 1n

iji i j in n 
 

     

 

                        2 2

21 1( ) iji j in nn 


      2

2
1

iji j inn

 


     

 
 
which, in the presence of  many positive spatial dependencies, implies that, 
 

(7.1.39) 
2

var( )Y
n


  

                                                   
  
and hence that standard deviation, ( )Y , is much larger than assumed, i.e., 
 

(7.1.40) ( )Y
n

   

 
This means, for example, that if we consider a 95% confidence interval for the true mean, 
 , then the actual interval is given by 
 
(7.1.41)  [ (1.96) ( )]actualCI Y Y     

 
rather than the assumed interval 
 

(7.1.42) (1.96)assumed nCI Y      



  NOTEBOOK FOR SPATIAL DATA ANALYSIS                          Part II. Continuous Spatial Data Analysis 
______________________________________________________________________________________ 
 

________________________________________________________________________ 
 ESE 502                                                     II.7-12                                                            Tony E. Smith 

 
So for any given estimate, y , this implies from (7.1.40) that the actual confidence 
intervals for   are much larger than those calculated, as depicted schematically below: 
 
 
 
 
 
 
 
 
 
Thus if such spatial dependencies are not accounted for, then the results obtained will 
tend to look “too good”. It is this type of false significance that motivates the need to 
remove the effects of spatial dependencies in residuals before attempting to draw 
statistical inferences. 
 
More Complex Example. 
 
As one illustration of a more complex spatial example, consider a spatial regression 
model with data points, 1 2{ ( , ) : 1,..,100}i i is x x i  , forming a 10 10  unit grid on the 

plane, and with iY  defined by a linear function of these grid points,  

 
(7.1.43)  0 1 1 2 2 , 1,..,100i i i iY x x u i        

 
with specific parameter values, 0 11 , .04 ,   and 2 .08  . Suppose moreover that 

the residuals { : 1,..,100}iu i   are part of an underlying covariance-stationary spatial 

stochastic process with covariogram, ( )C h , parameterized by [ 5, 1, 0]r s a   , as 
shown in Figure 7.1 below. 
 
 
 
 
 
 
       
 
 
 
 
 
 
 
 

 
y  

 [  [  ]  ] 

Assumed CI 

Actual CI 

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1s  

r  

Figure 7.1. Example Covariogram 

h   

( )C h  
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Given this model, one can in principle calculate the theoretical estimates and standard 
errors for any given set of data { : 1,..,100}iy i   under the (OLS) assumption of 

independent errors, and under the true (GLS) model itself. But it is more instructive to 
simulate this model many times and compare the OLS and GLS estimates of beta 
parameters.  In Table 7.1 below, the average results of 100 simulations are shown,  where 
the “GLS Est” column shows the average GLS estimates of each beta parameter, the 
“GLS Std Err” column shows the corresponding average standard errors of these 
estimates, and similarly for the OLS columns.    
 
 

 GLS Est GLS Std Err OLS Est OLS Std Err 
const  0.9284     0.4802  0.9156     0.2396 
  X1  0.0564     0.0565  0.0568     0.0289 
  X2  0.0897     0.0565  0.0934     0.0289 

 
 
 
 
Notice first that while the GLS estimates are on average slightly better than the OLS 
estimates, both sets of estimates are unbiased (regardless of the true covariance) and 
should tend to be roughly the same. The real difference is in the estimated standard 
errors for each of these models. Here it is clear that the GLS estimates are about twice as 
large as the OLS estimates. So as a direct parallel to expression (7.1.40) above, it is now 
clear that by ignoring the true spatial dependencies, OLS is severely underestimating the 
true standard deviations. So the confidence intervals on true beta values are again much 
tighter than they should be.  
 
To illustrate the consequences of such underestimation, we consider one specific instance 
of the simulations above (number 47 in the set of 100 simulations). Here the specific 
estimates and standard errors are shown in Table 7.2 below: 
 
 

 GLS Est GLS Std Err OLS Est OLS Std Err 
const  1.5197     0.6754  2.0143     0.2669 
X1 -0.0062     0.0789 -0.1228     0.0352 
X2  0.0913     0.0789  0.0981     0.0352 

 
 
 
 
This example illustrates a particularly bad case in which the estimates of 1  actually have 

the wrong sign in both OLS and GLS. But if we display the 95% confidence intervals for 
each case, we can see a substantial difference in the conclusions reached. First for the 
GLS case we have: 
 

Table 7.1. Average Values for 100 Simulations 

Table 7.2. Specific Values for a “Bad Case” 
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(7.1.44) 1 1.0062 (1.96)(.0789) [ .1607,.1485]        

 
In particular, since the true value, .04, is contained it this interval, this value cannot be 
ruled out by these results. More generally, since zero is also contained in this interval, it 
can certainly not be concluded that 1x  is negatively related to y . On the other hand, since 

the corresponding OLS confidence interval is given by: 
 
(7.1.45) 1 1.1228 (1.96)(.0352) [ .1917, .0537]         

 
it must here be concluded that 1 .0537   , and thus that 1x  is significantly negatively 

related to y. This is precisely the type of false significance that one seeks to avoid by 
allowing for the possibility of spatially-dependent errors in estimation procedures. 
 
Given this general linear regression framework, together with our present emphasis on 
modeling spatially-dependent errors,  the task remaining is to develop specific methods 
for spatial prediction within this setting. Recall from our general classification of Kriging 
models in Section 6.1.2 that the method for doing so is known as Universal Kriging. 
Hence we now develop this spatial prediction model in more detail.  
 
 
7.2  The Universal Kriging Model 
 
Recall from (6.1.10) and (6.1.11) that the basic probability model underlying Universal 
Kriging is essentially the general linear regression model in (7.1.2) above. Within this 
probabilistic framework, the task of spatial prediction (as in both Simple and Ordinary 
Kriging) is to determine a BLU predictor for values, 0( )Y s , at locations 0s  not in the 

given sample data set,  [ ( ) : 1,.., ]n iY Y s i n   . As we shall see in the next section, this 

essentially amounts to an appropriate extension of the analysis for Ordinary Kriging. 
Following this development we derive the appropriate standard error of prediction for 
Universal Kriging. As with Simple Kriging, our main interest in Universal Kriging is that 
it provides the simplest setting within which one can include the types of spatial trend 
models developed above. Because this model is included as part of ARCMAP, we also 
outline the procedure for implementing this model. However, the main role of this model 
for our present purposes is to serve as an introduction to Geostatistical Regression and 
Kriging, as developed in Section 7.3 below.  
 
7.2.1 Best Linear Unbiased Prediction 
 
Here we again start with a given prediction set, 0 0 1( ) { : 1,.., } { ,.., }i nS s s i n s s   , for 0s  

together with corresponding prediction samples, 0[ ( ) : 1,.., ]iY Y s i n   .5 Moreover, by 

                                                 
5 Note that we have now returned to the convention that 

n
Y  denotes the full sample vector and Y is the 

prediction sample vector for 
0

s . As with Ordinary Kriging, both random vectors will be used here. 
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again appealing to the linear prediction hypothesis, it is assumed that the desired 

predictor, 0 0
ˆ ˆ( )Y Y s , is of the form:  

 

(7.2.1) 0 0Ŷ Y  

 
for some appropriate weight vector, 

00 1( ,.., ) .n     Turning next to the unbiasedness 

condition, it follows from condition (6.3.14) for Ordinary Kriging, that this unbiasedness 
condition again takes the basic form: 
 

(7.2.2) 0 0 0 0 0 0 0
ˆ0 ( ) ( ) [ ] [ ] ( )E e E Y Y E Y Y E Y E Y          

 
But now these expectations are more complex. By (7.1.2) we see that 
 
(7.2.3)  0 0 0( ) [ ( )] ( )E Y E Y s x s    

 
and similarly that  
 

(7.2.4) 0 0

0 0 01 1
( ) [ ( )] ( )

n n

i i i ii i
E Y E Y s x s   

 
                       

 
So to write (7.2.2) more explicitly, it is convenient to introduce the following notational 
conventions. First let the vector of  attributes at the prediction location, 0s , be denoted by 

 

(7.2.5) 01
0 0

0

1

( )

k

x
x s x

x

 
 
  
 
 
 


 

 
and similarly, let the matrix of attributes for locations in 0( )S s  be denoted by 

 

(7.2.6) 

0 0 0

1 11 1

0

1

( ) 1

( ) 1

k

n n n k

x s x x

X

x s x x

   
   

    
      


   


 

 

Then since 
 

(7.2.7) 0

0

0

1

0 01 0 0 01

( )

( ) ( ,.., )

( )

n

i i ni

n

x s

x s X

x s

      


 
    
  

   

 
it follows that (7.2.2) can be written in an explicit compact form as 



  NOTEBOOK FOR SPATIAL DATA ANALYSIS                          Part II. Continuous Spatial Data Analysis 
______________________________________________________________________________________ 
 

________________________________________________________________________ 
 ESE 502                                                     II.7-16                                                            Tony E. Smith 

 
(7.2.8) 0  0 0 0 0 0 0( )x X x X           

 
But since this unbiasedness condition is required to hold for all  , it should be clear that 

this is only possible if 0 0 0 0x X   , or equivalently, if and only if 

 
(7.2.9) 0 0 0X x   

 
Turning finally to the efficiency condition, the argument in (6.3.17) for Ordinary Kriging 
can now be extended by using (7.2.8) to show that prediction error variance continues to 
be the same as residual mean squared error:  
 

(7.2.10)  2 2 2
0 0 0 0 0 0

ˆvar( ) ( ) [( ) ] [( ) ]e E e E Y Y E Y Y       

 

                                         2
0 0 0 0[( ) ( )]E x X          

 

                                                             2
0 0 0 0 0[( ) ( )]E x X           

 

                  2
0 0 0[( ) ] ( )E MSE       

 
But since all covariances are given, it follows by setting 0 cov( )V Y  that (as with both 

Simple and Ordinary Kriging) prediction error variance must again be given by, 
 
(7.2.11) 2

0 0 0 0 0 0var( ) 2e c V        

 

Hence the optimal weight vector, 0̂ , for the case of Universal Kriging must be the 

solution to the following constrained minimization problem: 
 
(7.2.12) minimize:  2

0 0 0 0 02c V           subject to:  0 0 0X x   

 
At this point, it should be clear that Ordinary Kriging is simply a special case of 
Universal Kriging. Indeed, if one eliminates all explanatory variables and keeps only the 
intercept term in (7.1.2), then by (7.2.5) and (7.2.6), 0x  reduces to 1 and 0X   reduces to 

0
1n , so that the constraint in (7.2.12) reduces to 

0 01 1n   ,which is precisely (6.3.18). This 

is a consequence of the fact that under the assumptions of Ordinary Kriging, this reduced 
model implies that 0  , i.e., 

 
(7.2.13) 0 0( ) ( ) [ ( )]Y s s E Y s           

 

Turning now to the solution, 0̂ , of (7.2.12), it is shown in the Appendix [expression 

(A2.8.58)] that 
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(7.2.14) 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0

ˆ ( ) ( )V X X V X x X V c V c          

 

By substituting 0̂  into (7.2.1) we then obtain the following BLU predictor of 0 0( )Y Y s  

for Universal Kriging [see also expression (A2.8.59) in the Appendix]: 
 

(7.2.15)            1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ˆ ( ) [ ( ) ]Y x X V X X V Y c V Y X X V X X V Y               

 
While this solution appears to be even more complex than expression (6.3.20) for the 
Ordinary Kriging case, it turns out to have an equally simple interpretation. To show this, 
we start by noting that as a parallel to (6.2.21), if we now estimate   based solely on the 

prediction sample, 0[ ( ) : 1,.., ]iY Y s i n  , for 0Y  (with attribute data, 0X , and covariance 

matrix, 0V ) then it follows from (7.1.24) that the resulting GLS estimator of  , say 
0

ˆ
n ,  

must be given by, 
 

(7.2.16) 
0

1 1 1
0 0 0 0 0

ˆ ( )n X V X X V Y      
 

Moreover, by the results of Section 7.1.2 above, this must be the BLU estimator of   

based on this sample data. But by substituting (7.2.16) into (7.2.15), we then see that 0̂Y  

has the simpler form, 
 

(7.2.17)            
0 0

1
0 0 0 0 0

ˆ ˆˆ ( )n nY x c V Y X      

 
Finally, since the last expression in brackets is simply the vector of estimated residuals,  
 

(7.2.18)   
00

ˆˆ nY X    

 

generated by ̂ , it follows that 0̂Y  takes the following form: 

 

(7.2.19)            
0

1
0 0 0 0

ˆˆ ˆnY x c V     

 
So as with Ordinary Kriging, the construction of Universal Kriging predictors is seen to 
have a appealing two-step interpretation: 
 

(i).   Construct the BLU estimator, 
0

ˆ
n , of   based on the prediction sample data, 

       Y , as in (7.2.16). 
 

(ii). Use the sample residuals, ̂ , in (7.2.18) to obtain the Universal Kriging 

       predictor, 1
0 0 0

ˆ ˆc V  , of 0  and set 
00 0 0

ˆˆ ˆnY x    . 
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But as with Ordinary Kriging, it can also be argued that if   characterizes the global 
trend over the entire region, R, then a better estimate can be obtained by using the GLS 
estimator,  
 

(7.2.20)  1 1 1ˆ ( )n nX V X X V Y      

 
based on the full set of samples, nY , with attribute data, X . It is this modified procedure 

that constitutes the most commonly used form of Universal Kriging.6 To formalize this 
procedure, it thus suffices to modify the two steps above as follows: 
 
 

(1).  Construct the BLU estimator, ˆ
n , of   based on the full sample data, 

        nY , as in (7.2.20).  
 

(2).  Use the sample residuals, 0
ˆˆ nY X   , to obtain the Universal Kriging 

        predictor, 1
0 0 0ˆ ˆc V  , of 0  and set 0 0 0

ˆˆ ˆnY x    . 

 
 
 
7.2.2  Standard Error of Prediction 
 
As with Ordinary Kriging, one can obtain prediction error variance for the optimal weight 

vector, 0̂ , by substituting (7.2.14) into (7.2.11). As is shown in the Appendix [see 

expression (A2.8.69)] this yields the follow explicit expression for prediction error 
variance in the general case of Universal Kriging: 
 
(7.2.21) 2 2 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0ˆ ( ) ( ) ( ) ( )c V c x X V c X V X x X V c                

 
Paralleling the interpretation 2

0̂  for Ordinary Kriging, the first bracketed expression in 

(7.2.21) is again prediction error variance for Simple Kriging, and the second expression 
is again positive. This second term now accounts for the additional variance created by 
estimating   internally. Finally, the resulting standard error of prediction for Universal 
Kriging is by definition the square root of (7.2.21), i.e., 
 
 

(7.2.22)   2 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0ˆ ( ) ( ) ( ) ( )c V c x X V c X V X x X V c                

 
 
 
                                                 
6 As with Ordinary Kriging, there are again arguments for using the local version in [(i),(ii)] above. In fact, 
many treatments of Universal Kriging implicitly use this local version, as for example in Section 5.3.3 of 
Schabenberger and Gotway (2005). 
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7.2.3 Implementation of Universal Kriging 
 
In many respects, the implementation of Universal Kriging closely parallels that of 
Ordinary Kriging. But the key difference is that when global trends are not constant, the 
fundamental identity between differences of Y-values and  -values in (4.8.4) breaks 
down. So prior estimation of the variogram becomes quite problematic in this more 
general setting. Indeed, this is the primary motivation for the method of Geostatistical 
Kriging to be developed in Section 7.3 below.  The most common procedure here is to 
start with OLS estimation of  , which assumes all covariances are zero. This will yield a 
set of OLS residuals that can then be used to estimate a spherical variogram. Given this 
estimate, the procedure closely follows that of Ordinary Kriging.  
 
With these preliminary observations, the implementation procedure for Universal Kriging 
can be specified as follows. We again start with a given set of sample data, 

( ( ): 1,.., )n iy y s i n    in R, where each iy  is taken to be a realization of the 

corresponding random variable, ( )iY s , in a sample vector, [ ( ) : 1,.., ]n iY Y s i n   . This 

sample vector, nY , is now hypothesized to satisfy the generalized linear regression model 

in (7.1.8) with attribute data, X, and covariance matrix, V . In this context, we again 
consider the prediction of 0 0( )Y Y s , at a given location, 0s R . This prediction is 

carried out through the following series of steps: 
 
Step 1. OLS Estimation 
 
Construct an OLS estimate, 
 

(7.2.23) 1ˆ ( )OLS nX X X y    
 

of   and form the corresponding residuals 
 

(7.2.24) ˆˆOLS OLSy X    

 
Step 2.  Covariance Estimation 
 

Using these residuals, [ ( ) : 1,.., ]OLS i is i n      , proceed as in Step 2 for Simple 

Kriging by estimating a spherical variogram, ˆ ˆ ˆ( ; , , )h r s a , and associated covariogram,  
 

(7.2.25) ˆ ˆ ˆ ˆ ˆ( ) ( ; , , )C h s h r s a   
 

as in (6.2.65). Then using the identity 
 

(7.2.26)  ˆˆ cov[ ( ), ( )] (|| ||)ij i j i js s C s s      
 

as in (6.2.66), construct an estimate: 
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(7.2.27) 

2
1

2
1

ˆ ˆ
ˆ

ˆ ˆ

n

n

V

 

 

 
 

  
 
 


  


 

 
of the full-sample covariance matrix, V .  
 
Step 3. GLS Estimation 
 
Now use (7.2.26) to construct a final GLS estimate of   as in (7.2.20),  
 

(7.2.28) 1 1 1ˆ ˆ ˆ( )n nX V X X V Y      

 

with V̂  replacing V  in (7.2.20).  
 
Step 4.  Selection of a Prediction Set for Y(s0) 
 
Given the development of prediction set selection in Section 6.4 above, we can now 
consider this selection problem more explicitly for Universal Kriging. In particular, we 
now assume that the appropriate prediction set, 0( )S s , is defined by an appropriate 

bandwidth, 0h , as follows,   

 
(7.2.29) 0 0 0( ) { : || || }i n iS s s S s s h     

 
where 1{ ,.., }n nS s s  is again the full sample set of locations. Ideally this bandwidth 

should be selected by a cross-validation procedure such as in Section 6.4. But given the 
computation intensity of such procedures, we here assume that 0h  is selected simply by a 

visual inspection of the mapped data surrounding site, 0s .  

 
However, there is one additional requirement that must be met by prediction sets, 

00 1( ) { ,.., }nS s s s , in the case of Universal Kriging. Recall that if the attribute vector at 

0s  is denoted by 0x  as in (7.2.5), then the unbiasedness condition for Universal Kriging 

in (7.2.9) requires that 
 
(7.2.30) 0 0 0X x   

 
where the transpose, 0X  , of prediction attribute matrix, 0X , in (7.2.6) has 1k   rows 

(one for each attribute) and 0n  columns (one for each prediction point). But (7.2.30) 

formally requires that the given ( 1k  )-vector, 0x , of attributes at 0s  be a linear 
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combination of the columns of 0X  . This can only be guaranteed in general if  0 1n k  . 

Moreover, to avoid trivial solutions, we require that 0 2n k  . 7  

 
Step 5. Construction of Estimated Prediction Covariances 
 
Given a prediction set, 

00 1( ) { ,.., }nS s s s , one can then use (7.2.26) above to construct 

estimates of the set of covariances, 
 

(7.2.31) 
2

0
0

0 0

ˆ ˆˆ
ˆˆ

c
C

c V

 
 
 
 

 

 
relevant for prediction of 0( )Y s  [as in (6.3.33)]. These can in turn be to krige residuals as 

in the second step of the basic two-step procedure for Universal Kriging above. Here the 
procedure is as follows: 
 
Step 6.  Kriging Prediction Residuals at s0 

 
If the prediction sample data relevant for 0s  is denoted by

01( ,.., )ny y y  , and if the 

corresponding prediction residuals are estimated by, 
 

(7.2.32) 0
ˆˆ ny X    

 

then the residual, 0̂ , predicted at 0s  can be constructed by Simple Kriging of ̂  as 

follows: 
 

(7.2.33)  1
0 0 0

ˆ ˆc V   

 
 
Step 7.  Constructing the Prediction of Y(s0) 
 
Finally, (7.2.33) can be combined with (7.2.28) to obtain the desired prediction of the 
unobserved value, 0 0 0( )Y s x    , at 0s , namely 

 

(7.2.34) 0 0 0
ˆˆ ˆnY x     

 
 

                                                 
7 More precisely, 

0
x is required to lie in the span of theses column vectors. Hence there must be at least 

1k  linearly independent columns of 
0

X  to insure this condition. But if this number were exactly 

0 1n k   then 
0
 would be uniquely determined by 1

0 0 0
( )X x  . So for nontrivial solutions one must 

require that 
0

2n k  . 
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Step 8. Prediction Intervals 
 
By combining this with the corresponding estimate of prediction standard error, 
 

(7.2.35) 0̂  2 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )c V c x X V c X V X x X V c              

 

one can use the pair 0 0
ˆ ˆ( , )Y   to construct prediction intervals for 0( )Y s . As in (6.2.63), 

the default interval takes the form: 
 

(7.2.36) 0 0 0 0
ˆ ˆˆ ˆ[ (1.96) , (1.96) ]Y Y    

 
 
7.3  Geostatistical Regression and Kriging 
 
As mentioned at the beginning of Section 7.2.3 above, the estimation of variograms for 
Universal Kriging is somewhat problematic. In particular, observe that the OLS residuals 
in (7.2.24) used for estimation of variograms are generally not consistent with the final 
GLS residuals in (7.2.32). So if the variogram were re-estimated on the basis of these 
residuals, then generally this would not agree with the variogram used. This 
inconsistency is simply ignored in the implementation of Universal Kriging outlined 
above, and hence renders this procedure somewhat ad hoc. To be more precise, if now 
denote the parameter vector for the spherical variogram by 
 
(7.3.1) ( , , )r s a    , 
 
then one the one hand, if   were known (as is implicit in the “known covariance” 

assumption of Universal Kriging) one could employ GLS estimation to determine ̂ . On 
the other hand, if   were known, then the residual “data”, Y X   , could be used to 

construct a consistent estimate, ̂ , of the variogram parameters,  . Hence the real 

difficulty here is trying to obtain simultaneous estimates, ˆ ˆ( , )  , of these two sets of 
parameters. In Schabenberger and Gotway (2005, p.257) ) this circular argument is aptly 
described as the “cat and mouse game of Universal Kriging”. While it is possible to 
reformulate this entire estimation problem in terms of more general maximum-likelihood 
methods,8 a more practical approach is simply to construct an iterative estimation 
procedure in which each parameter vector is estimated given some current value of the 
other. It is this procedure that we now develop in more detail.9  
 

                                                 
8 For further discussion of such methods, see Section 9.2.1 in Waller and Gotway (2004). Here it should 
also be noted that a maximum-likelihood estimation approach of this type will be developed to estimate 
spatial autoregressive models in Part III of this NOTEBOOK. 
9 This procedure is also developed in Section 9.2.11 in Waller and Gotway (2004), where it is designated as 
the Iteratively Re-Weighted Generalized Least Squares (IRWGLS) procedure. A less formal presentation of 
the same idea is given in [BG], p.189.   
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Before doing so, it is important to emphasize that the type of spatial model developed 
here has uses other than simply predicting values of Y at unobserved locations. A good 
example is the California Rainfall study, already used to motivate the present class of 
more general spatial trend functions. In this study, the main focus was on identifying 
spatial attributes that are significant predictors of rainfall at each data location. While one 
could also attempt to predict rainfall levels at locations not in the data set, this was not the 
main objective. Hence it is useful to distinguish between two types of spatial applications 
here. We begin with a general linear regression model as in (7.1.8), where it is now 
assumed that the covariance matrix, V , is generated by an underlying covariogram with 
parameter vector,  , in (7.3.1), which we now write explicitly as, 
 
(7.3.2) , ~ [0, ( )]Y X N V      
 
This is of course precisely the type of model postulated for Universal Kriging above. 
However, since the iterative estimation procedure developed below differs from the 
implementation of Universal Kriging as developed in Section 7.2.3, it is convenient to 
distinguish between these two models. Hence we now designate model (7.3.2) [together 
with its iterative implementation developed below] as a Geostatistical Regression model. 
In the California Rainfall example, such a model might well be used to incorporate 
possible spatial dependencies between rainfall in cities close to one another. The 
emphasis here is on estimating   in a manner that will allow proper statistical inferences 
to be drawn about each of its components. On the other hand, such a model might also be 
used for prediction purposes. Hence when such geostatistical regression models are used 
for spatial prediction, they will be designated as Geostatistical Kriging models.10  
 
With these preliminary observations, we can now develop an implementation of both 
these models. As in Section 7.2.3, we start with a given set of sample data, 

( ( ): 1,.., )iy y s i n    in R, where each iy  is taken to be a realization of the corresponding 

random variable, ( )iY s , in a sample vector, [ ( ) : 1,.., ]iY Y s i n   .11 This sample vector, 

Y , is now hypothesized to satisfy the generalized linear regression model in (7.3.2) with 
attribute data, X, and covariance matrix, ( )V  . 
 
7.3.1 Iterative Estimation of    and   
 
We first give an overview of the estimation procedure and then formalize its individual 
steps. Every iterative estimation procedure must start with some initial value. Here, as 
with Universal Kriging, the initialization used (step [1] below) is to estimate   by OLS, 

which we designate as 0̂ . The residuals 0̂  generated by 0̂  are then used to obtain an 

                                                 
10 It should be noted that in other treatments, such as Schabenberger and Gotway (2005), all such 
implementations are regarded simply as different ways of estimating the same “Universal Kriging model”. 
However, for our purposes it seems best to avoid confusion by reserving the term “Universal Kriging” for 
the implementation adopted in ARCMAP, as outlined in Section 7.2.3 above.  
11 Note again that we here use Y for the full sample rather than 

n
Y . The latter is only required when we need 

to distinguish between the full sample and subsamples used for prediction at each location. 
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estimate, 0̂  , of the spherical variogram parameters in (7.3.1). These are in turn used (in 

steps [2] to [6] below) to obtain a GLS estimate, 1̂  of   using the covariance matrix, 

0̂( )V  . Up to this point, the implementation is identical with that in Section 7.2.3. But the 

purpose of the present numbering of these estimators is to formalize a continuation of this 

procedure. Here the residuals, 1̂ , generated by 1̂  are next used (in step [7]) to obtain a 

new estimate, 1̂ , of the spherical variogram parameter. If the estimates 1 1
ˆ ˆ( , )   are 

deemed (as in steps [8] to [9] below) to be “sufficiently similar” to 0 0
ˆ ˆ( , )  , then the 

estimation procedure terminates with these as final values. Otherwise it continues until 
such values are found. With this overview, we now formalize these steps as follows: 
 
[1]   First construct an OLS estimate,  
 

(7.3.3)  1
0

ˆ ( )X X X y     

 
 of   with corresponding residuals,  
 

(7.3.4)  0 0
ˆˆ y X   . 

 
[2]   Use these residuals to estimate an empirical variogram, 0

ˆ ( )h , at some set of  

        selected distance values, ( : 1,.., )ih i q . 

 
[3]   Next use this empirical variogram data 0

ˆ( , ) , 1,..,i ih i q   to fit (by nonlinear least 

        squares) a spherical variogram, 0̂( ; )h  , with parameter vector, 

 

(7.3.4)  0 0 0 0
ˆ ˆ ˆ ˆ( , , )r s a    . 

 
[4]   Then use the identity, 2( ) ( )C h h   , to construct the corresponding spherical 
        covariogram,  
 

(7.3.5)  0 0 0 0 0
ˆ ˆ ˆ ˆ ˆ( ) ( ; , , )C h s h r s a    

 
 for all distances h . 
 
[5]    If the distance between each pair of data points, is  and js  is denoted by ijh , then 

 the covariance, cov( , )ij i j   , between the residuals at is  and js is estimated by 
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0 0
ˆˆ ( )ij ijC h   [where by definition, 2 2

0 0 0ˆ ˆ ˆii ii s       ],  and the resulting 

estimate of the covariance matrix, ( ) cov( )V   , between residuals at all data 
points 1,..,i n  is given by12 

 

(7.3.6)  

2
0 01

0 0
2

0 1 0

ˆ ˆ
ˆˆ ( )

ˆ ˆ

n

n

V V

 


 

 
 

   
 
 


  


 

 
[6]    Using this covariance matrix, now apply GLS to obtain a new estimate of  : 
 

(7.3.7)  1 1 1
1 0 0

ˆ ˆ ˆ( )X V X X V y         . 

       
 with corresponding residuals, 
 

(7.3.8)  1 1̂
ˆ y X    

 
[7]    Then replace 0̂  by 1̂  and apply steps [2] and [3] to obtain a new spherical 

 variogram,  1̂( ; )h  , with parameter vector, 

 

(7.3.9)  1 1 1 1
ˆ ˆ ˆ ˆ( , , )r s a   

 
[8] At this point, one can check to see if there are any “significant” differences between 

 the initial parameter estimates, 0 0
ˆ ˆ( , )  , and the new estimates, 1 1

ˆ ˆ( , )  . Here there 

 are many criteria to check for differences. If one is primarily interested in the   
 parameters (as is typical in regression), the simplest approach is to focus on 
 fractional changes in these estimates by letting13 
 

(7.3.10) 1 0
1

0

ˆ ˆ
max : 0,1,..,

ˆ
j j

j

j k
 


     
  

 

 
 One may then choose an appropriate threshold value,   (say .001  ) and define a 
 significant change to be 1   . If one is also interested in the variogram parameters, 

        ( , , )r s a  , then one may replace (7.3.10) by the broader set of fractional changes  
 

                                                 
12 Be careful not to confuse this initial estimate, 

0
V̂ , with the estimated sub-matrix of covariances, 

0
V̂ , used 

to predict 
0

( )Y s  in previous sections. 
13 For a possible modification of this simple criterion, see Schabenberger and Gotway (2005, p.259). 
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(7.3.11) 1 0 1 0 1 0
1 1

0 0 0

ˆ ˆ ˆ ˆ ˆ ˆ
max , , ,

ˆ ˆ ˆ
r r s s a a

r s a

       
  

  

 
[9] If there is no significant change, i.e., if 1    (or 1   ), then stop the iterative 

 estimation procedure and set the final parameter estimates to be 
 

(7.3.12) 1 1
ˆ ˆ ˆ ˆ( , ) ( , )     . 

  
[10]   On the other hand, if 1   (or 1   ), then continue the iterative estimation 

 procedure by replacing 0̂  with 1̂  in steps [4] through [7] to obtain a new   

 estimate,  
 

(7.2.13) 1 1 1
2 1 1

ˆ ˆ ˆ( )X V X X V y      

 

 [based on the new covariance matrix, 1 1̂
ˆ ( )V V  ], and new variogram 

 parameter estimates 
 

(7.2.14) 2 2 2 2
ˆ ˆ ˆ ˆ( , , )r s a    

 

 [based on the new residuals, 2 2
ˆˆ y X   ].  

 
[11] With these new parameters, define 2  (or 2 ) as in step [8]. If 2    (or 2   ) 

 then stop the procedure and set the final parameter estimates to 
 

(7.2.15) 2 2
ˆ ˆ ˆ ˆ( , ) ( , )     . 

 
[12] On the other hand, if 2   (or 2   ), then continue the iterative estimation 

 procedure by replacing 1 1
ˆ ˆ( , )   with 2 2

ˆ ˆ( , )   in steps [4] through [7]. 

 

[13]   Continue in the same way until a set of parameters ˆ ˆ( , )m m   is found for which 

 m    (or m   ). Then stop the procedure and set the final estimates to 

 

(7.3.16) ˆ ˆ ˆ ˆ( , ) ( , )m m     . 

 
 These final parameter estimates are said to be mutually consistent in the sense 

         that the covariance matrix, ˆˆ ( )V V  , will (approximately) reproduce ̂  as,  
 

(7.3.17) 1 1 1ˆ ˆ ˆ( )X V X X V y      
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 and similarly, that the residuals, ˆˆ y X   , yield an empirical variogram, ˆ( )h , 

 that will (approximately) reproduce the parameter estimates, ˆ ˆ ˆ ˆ( , , )r s a  , of the 

         spherical variogram yielding Ĉ .  
 
Here it should be emphasized that while this mutual consistency property is certainly 
desirable from a conceptual viewpoint, there is no guarantee that any of the  Best Linear 

Unbiased estimation properties for GLS estimators will continue to hold for ̂ . Hence, as 
discussed at the end of the implementation for Simple Kriging in Section 6.2.5 above, 
these are often designated as Empirical GLS estimators.14  
 
 
7.3.2. Implementation of Geostatistical Regression (Geo-Regression) 
 

Given the regression estimates, ̂ ,  one can use the parameter estimates, ˆ ˆ ˆ ˆ( , , )r s a  , to 
construct the final covariogram as follows: 
 

(7.3.18) ˆ ˆ ˆ ˆ ˆ( ) ( ; , , )C h s h r s a   
 
This covariogram is in turn used to obtain a final estimate, 
 

(7.3.19) 

2
1

2
1

ˆ ˆ
ˆˆ ( )

ˆ ˆ

n

n

V V

 


 

 
 

   
 
 


  


 

 
of the residual covariance matrix, ( ) cov( )V V     [mentioned above (7.3.17)].   
 
To employ these estimates for inference about the components of   in geo-regression 

applications, one must estimate the covariance matrix of the estimator, ̂ , say 
ˆcov( )  . Following standard GLS procedures, one can determine   as follows. By 

definition, 
 
 

(7.3.20) 1 1 1 1 1 1ˆ ( ) ( ) ( )X V X X V Y X V X X V X              
 
                  1 1 1 1 1 1( ) ( ) ( )X V X X V X X V X X V            
 
                            1 1 1( )X V X X V       
 

                                                 
14 See for example the discussion in Waller and Gotway (2004, p.337). 
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But by the Linear Invariance Theorem for multi-normal random vectors [in (3.2.22)], it 

then follows that ̂  is multi-normally distributed with mean 
 

(7.3.21) 1 1 1ˆ( ) ( ) ( ) (0)E X V X X V E             
 
and covariance, 
 

(7.3.22)     1 1 1ˆcov( ) cov ( )X V X X V           
 

                                1 1 1 1 1 1( ) cov( ) ( )X V X X V V X X V X         
 

                        1 1 1 1 1 1( ) ( )X V X X V V V X X V X         
 

                                1 1 1 1 1( ) ( ) ( )X V X X V X X V X        
 
                                1 1( )X V X   
 
Hence (7.3.19) yields the following estimate of  ,  
 

(7.3.24) 
11 1

1 1

1

ˆ ˆ
ˆˆ ( )

ˆ ˆ

k

k kk

v v

X V X

v v

 

 
     
 
 


  


  

 

which in turn yields standard error estimates  
 

(7.3.25) ˆj jjs v  
 

for each beta parameter estimate, ˆ , 0,1,..,j j k  . These standard errors can then be used 

to construct p-values for significance tests of these coefficients based on the t-ratios: 
 

(7.3.26) ˆ / , 0,1,..,j j jt s j k   

 
Hence, standard tests of significance can be carried out in terms of these estimates.15 This 
procedure is implemented in the MATLAB program, geo_regr.m, and will be illustrated 
in Section 7.3.4 below. 
 
7.3.3. Implementation of Geostatistical Kriging (Geo-Kriging) 
 
Recall that Universal Kriging used a prior estimate of the variogram parameters based on 
OLS residuals. But one can now improve this procedure by using the mutually consistent 
estimates obtained above. In doing so, we must again distinguish between the full sample 
                                                 
15 As with OLS, jt  is t-distributed with ( 1)n k   degrees of freedom under the null hypothesis, 0j  . 

See also expressions (9.16) through (9.18) in Waller and Gotway (2004). 
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vector, nY , and the prediction sample vector, Y , used for predicting 0 0( )Y Y s  at a 

selected site, 0s R . So for convenience we now rewrite model (7.3.2) as: 

 
(7.3.27) , ~ (0, ) [0, ( )]nY X N V N V       

 
to emphasize that this model refers to the full sample. Hence for the mutually consistent 

estimates, ˆ ˆ ˆ ˆ ˆ ˆ( , ) [ ,( , , )]r s a   , obtained from the iterative procedure above, the estimate, 

̂ , now yields the (full sample) GLS estimate, ˆ
n , in (7.2.28), and the estimated 

covariance matrix, ˆ( )V  , yields the appropriate V̂  matrix.  So by mutual consistency, we 
may write16 
 

(7.3.28) 1 1 1ˆ ˆ ˆ( )n nX V X X V Y      

 
At this point, Steps 4 through 8 in the implementation of Universal Kriging can now be 

carried out in tact [where the prediction covariance estimates, 0Ĉ , in (7.2.31) are again 

assumed to be constructed using the variogram parameters, ˆ ˆ ˆ ˆ( , , )r s a  , from the 
iterative estimation procedure].  
 
In summary, while the iterative estimation procedure in Geo-Kriging is computationally 
more intensive than that of Universal Kriging,  the mutual consistency of all estimated 
parameters should in principle yield more satisfactory spatial predictions. This procedure 
is implemented in the MATLAB program, geo_krige.m, and will be illustrated briefly at 
the end of Section 7.3.5 below. 
 
7.3.4  Cobalt Example of Geo-Regression  
 
As an illustration of geo-regression, a small rectangular region of Vancouver Island has 
been selected in which Cobalt (Co) values appear to exhibit a interesting spatial trend, as 
shown in Figure 7.2(a) below. Notice in particular that the highest values tend to be in the 
northwest and southeast corners of this rectangle, while the lowest values tend to be in 
the southwest and northeast corners. This suggests a “saddle” shape, as depicted in Figure 
7.2(b) below. Such saddle shapes, known technically as hyperbolic paraboloids, are 
instances of quadratic functions in the underlying coordinate variables, ( , )s x y . This 
suggests that spatial trends in this data might be well fitted by a geo-regression with a 
quadratic spatial trend function of the form, 
 
(7.3.29) 2 2

0 1 2 3 4 5Co x y x y x y              

 
The Cobalt data for this example is in the JMP file, Cobalt_1.JMP. Before proceeding,  
it is worthwhile noticing from this data that the coordinates locations are in feet, so that  

                                                 
16 Here the equality in (7.3.28) is implicitly taken to be “approximately equal” in the sense defined by the 
mutual consistency condition in the iterative estimation procedure above. 
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their values are quite large. For example, the first point is 1 1( 651612, 566520)x y  . 

More importantly, when one forms a quadratic function, these values are squared in order 
of magnitude. So for example the cross product term in (7.3.29) is 11

1 1 3.69 10x y   . 

Since the cobalt magnitudes are drastically smaller (in this case, 1 36Co  ), it should be 

clear that some of the beta slope coefficients in (7.3.29) will be vanishingly small 
(roughly of order 810 ). Such values are so close to zero that they are awkward to 
analyze.  More importantly, since the intercept is by definition a data vector of ones, 
1 (1,..,1)n  , this column in the data matrix, X , is vanishing small compared to other data 

columns like, xy . This can create numerical instabilities in the regression itself.17 So 
before beginning the present analysis, it is advisable to rescale the coordinate data to a 
more reasonable range. In the present case, we have divided all coordinate values by 
10,000, so that terms like the cross product above now have more tractable values 
( 1 1 3691.5x y  ). With these values, the OLS regression in (7.3.29) yields the following 

results (where xx denotes 2x , and so on): 
 
 
 
 
 
 
 
 
 
 
 
                                                 
17 Software such as JMP is usually sophisticated enough to employ internal rescaling procedures to avoid 
such obvious instabilities. But this is not true of all regression software. 
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 (b) Spatial Trend  (a) Cobalt Data Map 

Figure 7.2. Cobalt Data Example   

Intercept
x
y
xy
xx
yy

Term
-10652.86
278.31445
59.926559
-2.379182
-1.103166
0.8149638

Estimate
3026.992
61.45749
63.53409
0.407688
0.426945
0.493603

Std Error
-3.52
4.53
0.94

-5.84
-2.58
1.65

t Ratio
0.0006*
<.0001*
0.3469
<.0001*
0.0106*
0.1006

Prob>|t|
RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

0.21032
0.187094
8.213746
24.78409

176

Table 7.3. Initial OLS Regression   
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Notice that y is not significant, and that 2y  is only weakly significant. But since there are 
clear nonlinearities in the y direction, this suggests that the collinearity between y  and 

2y  in this region are masking the effect of 2y . If the insignificant y  variable is removed, 
then one obtains the new regression shown below. 
 
 
 
 
 
 
 
 
 
 
Notice that 2y  is now very significant, and moreover, that the adjusted 2R  value has 
increased by removing y . This is a clear indication that the present model is capturing 

this spatial trend more accurately. Note finally that the coefficients on 2x  and 2y  have 
opposite signs. This is a characteristic of hyperbolic paraboloids.18 
 
However, there still remains the question of possible spatial dependencies among the 
unobserved residuals,  , in (7.3.29). We can check this in the usual way by regressing 
these residuals on their nearest-neighbor residuals. The result of this regression are shown 
below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here it is clear that there does indeed exist significant spatial dependency among these 
residuals. As discussed in Section 7.1.3, this can in turn inflate the significance levels 

                                                 
18 See for example http://mathworld.wolfram.com/HyperbolicParaboloid.html. 

Intercept
x
xy
xx
yy

Term
-8439.792
262.9905

-2.204434
-1.062146
1.2389119

Estimate
1911.869
59.25208
0.363043
0.424588
0.203946

Std Error
-4.41
4.44

-6.07
-2.50
6.07

t Ratio
<.0001*
<.0001*
<.0001*
0.0133*
<.0001*

Prob>|t|
RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

0.206187
0.187618
8.211095
24.78409

176

Table 7.4. Final OLS Regression   

Figure 7.3. OLS Residual Analysis   
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nn_res

Term
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t Ratio
0.8278
0.0002*
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obtained in Table 7.4. So this motivates an extended analysis using geo-regression to 
account for these dependencies. 
 
To do so, this cobalt data has been transported to MATLAB, and is found in the 
workspace, Cobalt_1.mat. Here the 176 locations are stored in the matrix, L0, with 
corresponding cobalt values in y0 and data [x, xy, xx, yy] in the matrix, X0. The geo-
regression is run with the command, 
 
 >> OUT = geo_regr(y0,X0,L0,vnames); 
 
where vnames contains the variable names, and is constructed by the command: 
 
>> vnames = strvcat('X','XY','XX','YY'); 
 
The actual regression portion of the screen output for this iterative estimation procedure 
is as follows: 
 
 

FINAL REGRESSION RESULTS: 
  
VAR           COEFF            T-VAL         PROB  
const    -6848.808565       -1.877835      0.062106  
X             212.895520         1.881204      0.061644  
XY             -1.813464       -2.509593      0.013017  
XX             -0.843514       -1.028343      0.305241  
YY              1.021249         2.519087      0.012683 

 
 
 
 
 
Notice first that the basic signs of all beta coefficient are the same, so that this new spatial 
trend is again a “saddle” shape. In fact this is precisely the saddle shape plotted in Figure 
7.2(b) above.  But the main thing to notice is that all variables are now less significant 
than they were under OLS. In particular, 2x  is no longer even weakly significant. 
However, the relative ordering among the p-values (as seen more clearly from the 
absolute t-values)  is essentially the same. So there appears to have been a fairly uniform 
deflation of all significance levels under OLS. While this will certainly not always be 
true, in the present case it suggests that spatial dependencies in these OLS residuals are 
relatively isotropic (i.e., the same in the x and y directions), and hence are consistent with 
the covariance stationarity assumption underlying geo-regression.  
 
Before interpreting these results, it is important to check to see whether this geo-
regression has in fact removed the spatial dependencies among residuals. Here it is 
important to stress that this cannot be done by simply examining the residuals of the geo-

Table 7.5. Regression Output of Geo_Regr 
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regression. Indeed these residuals exhibit precisely the spatial covariance structure 
estimated by the geo-regression as displayed in Figure 7.4 below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
So the task remaining is to remove this estimated spatial covariance structure and 
determine whether any spatial dependencies remain. This can be accomplished by 
recalling that every GLS model can be reduced to an equivalent OLS model by the 
Cholesky procedure in (7.1.15) through (7.1.20) above. By way of review, let us now 
write the appropriate GLS model as 
 
(7.3.30) , ~ (0, )Y X N V     
 
where in this case, Y is the random vector of 176n   cobalt levels, X is the ( 4)n  
matrix of coordinate variables (labeled as X0 above), and   is the spatially dependent 
residual vector with unknown covariance matrix, V . As in (7.1.15), if T  denotes the 
Cholesky matrix for V , so that V TT  , then as in (7.1.16) and (7.1.17), if we multiply 
both sides of (7.3.30) by 1T  , and let 1

TY T Y , 1
TX T X , and 1

T T  , then we 

obtain a new linear model, 
 
(7.3.31) , ~ (0, )T T T T TY X N V     

 
where   is exactly the same as in (7.3.30), but where the argument in (7.1.19) now 

shows that the covariance matrix, TV , is simply the identity matrix, i.e., 

 
(7.3.32) 1 1 1 1( ) ( )( )T nV T V T T TT T I         

 
In particular, this implies that the components of the transformed residual vector, T , are 

independent. Of course, the true covariance matrix, V , and its Cholesky matrix, T , are 
unknown. But if the geo-regression above was successful, then the covariogram estimate 

in Figure 7.4 should generate a reasonably good estimate, V̂ , of this covariance matrix 

[by the same procedure as in (7.2.25) through (7.2.27) above]. If so, then by letting T̂   
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Figure 7.4.  Covariogram Estimate 
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denote the Cholesky matrix for V̂ , we can use this to transform the given data into an 
OLS regression problem. In particular, if [ , ]y X  denotes the given cobalt and coordinate 
data (represented by [y0,X0] above), then the transformed data for the present case is 
given by, 
 

(7.3.33)  1 1ˆ ˆ ˆˆ ,T Ty T y X T X      

 
Hence if the geo-regression above was successful, then this data should yield an OLS 
regression with approximately independent residuals.  This can be checked by the 
nearest-neighbor regression procedure above, and provides a useful diagnostic for geo-
regression. To do so, the transformed data in (7.3.33) is saved as part of the output of 
geo-regression. By examining the program description of geo_regr.m, it can be seen that 
the fifth component, OUT{5}, of the output cell structure, OUT, contains precisely the 

matrix ˆˆ[ , ]T Ty X . This can be imported to JMP and run as a regression. In doing so, it is 

important to note that the first column of the data matrix, X , in (7.3.30) is necessarily the 

unit vector, 1n , corresponding to the intercept coefficient, 0 . But in ˆ
TX  this is 

transformed to the vector, 1ˆ 1nT  , which is not a unit vector. So if this regression were run 

in JMP without modification, then JMP would add a unit vector which is not present in 
(7.3.30). This means that JMP must be run using the “No Intercept” option (at the bottom 
of the Fit Model window).19 The results of this no-intercept regression must produce 
exactly the same beta estimates as the geo-regression output above (except for possible 
rounding errors in transporting the data from MATLAB). So this in itself is a good check 
to be sure that the data has been transported properly. The results of this nearest-neighbor 
residual regression are shown below:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
19 We shall see this option used again in Section 4.1.1 of Part III. 
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Figure 7.5.  Transformed Residual Analysis 
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Here it should be clear that the geo-regression above has indeed been successful in 
removing any trace of spatial dependencies among residuals. However, there is one 
additional check that is worth mentioning. Notice in (7.3.32) that these transformed 
residuals are not only independent, but in fact all have unit variance ( 2 1  ) so that the 
associated standard deviation is also one ( 1  ). This means that the estimated standard 
deviation, ̂ , known as “Root Mean Squared Error” should be close to one. This value is 
reported in the regression output right under Adjusted 2R . In the present case, 
ˆ 0.995  , which provides additional support for the success of this geo-regression. 

 
By way of summary, this cobalt example provides a simple illustration of the use of geo-
regression. Here the objective has been simply to capture the overall shape of spatial 
trends in this data. (A more substantive example will be given in the next section.) But 
aside from the geo-regression procedure itself, this example serves to illustrate a number 
of  more general issues that are common to all spatial regressions. First notice from the 
initial OLS regression itself that this spatial trend captures less than 20% of the overall 
variation in this cobalt data (with an adjusted 2R of 0.188). So even though a visual 
inspection of Figure 7.2(a) suggests an overall “saddle” shape for these trends, the 
present quadratic specification is at best only a rough approximation. Thus for purposes 
of spatial prediction, it is vital that the residual structure be modeled in a careful way. 
This is a further motivation for techniques like geo-regression.  
 
From an even more general perspective, this example illustrates the fundamental problem 
of separating “trends” from “residuals”. To what extent is the spatial pattern of cobalt 
values in Figure 7.4(a) the result of some underlying trend, or simply the result of 
correlations between cobalt values at nearby locations? If one were able to examine many 
“replications” of the underlying spatial process, then such separation would be a 
relatively simple matter. Indeed, if most replications produced similar “saddle-like” 
patterns, then this would suggest the presence of a dominant spatial trend along the lines 
that we have modeled. On the other hand, if such replications produced a wide variety of 
similarly correlated patterns (including “mountains” and “valleys” as well as “saddles’), 
then this would suggest the presence of a dominant covariance stationary process, 
possibly even with a constant mean (as postulated in Ordinary Kriging for example). But 
since direct replications are not possible, the best that one can do is to be aware of these 
problems, and to treat all model specifications with some degree of suspicion. To 
paraphrase the famous remark of George Box,20 “all models are wrong, but some are 
more useful than others”.  
 
7.3.5  Venice Example of Geo-Regression and Geo-Kriging 
 
The following example of geo-regression is more substantive in nature, and is based on 
the “Ground Water in Venice” data from [BG, pp.147-148]. This data set originally 
appeared in the two-part article by Gambolati and Volpi (1979) [which is included as 

                                                 
20 See for example http://en.wikipedia.org/wiki/George_E._P._Box. 
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References 7 and 8 in the class reference material].21 The area around Venice Island in 
Italy is shown (schematically) in Figure 7.6 below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Venice Island (shown in red) lies in a shallow lagoon, and has been slowly sinking for 
many decades. In 1973 there was a suspicion that the Puerto Marghera industrial area to 
the west of Venice was contributing to this rate of sinking. The reason for this suspicion 
can be seen from the schematic depiction of the groundwater structure underlying the  
Venice Lagoon shown in Figure 7.6 below.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
21 This paper also contains an excellent overview of Kriging methods, as well as the groundwater problem 
in Venice. 

VENICE INDUSTRY LIDO 

Aquifers 

Aquitards 

Figure 7.6. Venice Aquifer System 

Figure 7.5. Venice Island and Lagoon 
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Here the blue bands denote porous water-filled layers of soil called aquifers that are 
separated by denser layers called aquitards. Industry consumes water by drilling wells 
into the aquifer layers (as depicted by the red shaft in the figure). This lowered the level 
of the water table, potentially contributing to the sinking of Venice. Thus the question in 
1973 was whether or not this industrial draw-down of water was a significant factor in 
the sinking of Venice.  
 
Geo-Regression Model 
 
To study this question, data was gathered on water table levels, iL  , from 40 bore hole 

sites, 1,..,40i  , in existing wells throughout the Venice Lagoon area (shown by the dots 
in Figure 7.5 above with colors ranging from red to blue denoting higher to lower levels). 
[This data, along with the coordinate locations of well sites, can be found in the ( 40 3 ) 
matrix, venice, in the workspace, venice.mat.] The objective of this study was to identify 
the key factors influencing these water table levels by applying geo-regression methods. 
Here it was hypothesized that the key factors influencing the water table level,  ( )L s , at 

any location, 1 2( , )s s s , were the elevation, ( )Ev s , above sea level at s, together with 

local draw-down effects both from industry, ( )ID s , and from local water consumption, 

( )VD s , in Venice itself. To model ID  a convenient coordinate system was chosen, with 

origin centered in the Industrial Area as shown in Figure 7.7 below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For later use, we now record this coordinate transformation as follows: 
 
  1 1 21 (0.01) [0.873( 418) 0.488( 458)]( ) s sc c s      

(7.3.34) 
  2 1 22 (0.01)[0.488( 418) 0.873( 458)]( ) s sc c s      

0 5   Miles

Figure 7.7. Spatial Coordinates for Analysis 
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The orientation of these axes is designed to simplify the model representation of both 
elevation and industrial draw-down effects. Starting with the Industrial draw-down 
function, ID , this can be essentially approximated by a decreasing function with elliptical 

contours centered on the  axes. The present equation used is the following:22 
 

(7.3.35)   2 2
1 2 1 2( ) [ ( ), ( )] exp [(1.5) ]I ID s D c s c s c c     

 
A similar draw-down function, VD ,  was constructed for Venice Island and has the 

following form: 
 

(7.3.36)   8
2 2

1 2 1 2( ) ( , ) exp ( 560) ( 390) 35V VD s D s s s s       
 

 

 
Here the large exponent, 8( ) , is designed to drive this function to zero outside of Venice 
Island, where local water consumption has little effect. The procedure for calculating 
these functions (as well as the elevation function below) can be found in the MATLAB 
script, venice_funcs.m. The resulting contours of these two functions are shown in 
Figures 7.8 and 7.9 below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As mentioned above, there is a third effect that cannot be overlooked, namely elevation. 
Though detailed data on elevation was not available in this data set, the elevation 
contours are roughly parallel to the 2c  axis in Figure 7.7, and increase in elevation more 

                                                 
22 The actual functions used in Gambolati and Volpi (1979) are based on more complex hydrological 
models. So the present simplified functions are for illustrative purposes only.  

Figure 7.8. Industry Draw-Down Figure 7.9. Venice Draw-Down 
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rapidly to the west. So the following simple (local) approximation to elevation, ( )Ev s , at 
locations, s, was adopted,23 
 
(7.3.37)  1 1( ) [ ( )] 10 exp( )Ev s Ev c s c    

 
If the data sites (well locations) are denoted by 1 2( , ) , 1,..,40i i is s s i  , and if the 

computed values of the above functions at these locations are denoted by 
( , , ) [ ( ), ( ), ( )] , 1,..,40Ii Vi i I i V i iD D Ev D s D s Ev s i  , then these values can now serve as the 

explanatory variables in a linear regression model of this water table data as follows: 
 
(7.3.38)  0 , 1,..,40.i I Ii V Vi Ev i iL D D Ev i           

 
As with the Cobalt example above, this model was run using both OLS and the iterative 
Geostatistical Regression Procedure implemented in geo_regr.m, with the command 
 
>>  geo_regr(y0,X0,L0,vnames); 
 
where y0 is the L data, X0 the computed ( , , )I VD D Ev  data, and L0 the coordinate data at 

each of the 40 well sites. A comparison of the parameter estimates and significance levels 
in shown in Tables 7.6 and 7.7 below; 
 
 
 
 
 
 
 
 
 
 
 
 
Note that as in the Cobalt case above, the signs of all coefficients are consistent in both 
procedures, but the t-ratios are generally lower (in absolute magnitude) for GLS. Notice 
however that the Venice drawdown effect provides an exception to this rule, and shows 
that significance levels need not always be higher for OLS. As a final consistency check, 
note that the signs of these coefficients are as expected, namely that mean water table 
levels rise with higher elevations and that greater levels of water drawdown lower the 
mean water table level. 
 
Before analyzing the consequences of these results, it is important to determine whether 
spatial correlation effects have been removed by this geo-regression procedure. Rather 

                                                 
23 This approximation produces a maximum elevation of about 30 meters at the western edge of the 
Industrial Area, where the water table level is about 7 meters.    

Table 7.6. OLS Estimates Table 7.7. Geo Regression Estimates 

 
VAR     COEFF    T‐RATIO     PROB 

const  ‐1.13394  ‐3.17757  0.003045 

Elev  0.016364  6.673262  < 0.000001 

Indus  ‐6.54763  ‐8.47941  < 0.000001 

Venice  ‐1.79037  ‐2.3946  0.021968 

 
VAR    COEFF   T‐RATIO  PROB 

const  ‐1.11526  ‐2.41109  0.021134 

Elev  0.020487  6.014161  0.000001 

Indus  ‐7.34398  ‐6.00136  0.000001 

Venice  ‐2.34154  ‐3.13431  0.003419 
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than repeat the nearest-neighbor residual analysis done for the Cobalt case, it is of interest 
to consider a different approach here. In particular, one can compare the (spherical) 
covariogram for the original OLS residuals with that of the residuals from the final 
transformed model in expressions (7.3.31) and (7.3.32) above. If the procedure has been 
successful, then the final covariogram should be much closer to pure independence. But it 
is important to note here that since the transformed data is quite different from that of the 
original model, there is a problem in comparing these residual covariograms directly. In 
fact, this provides us with an important case where it is more appropriate to compare the 
correlograms derived from these covariograms, as defined in expression (3.3.13) above. 
These correlograms are free from any dimensional restrictions, and hence are directly 
comparable. In particular, since (0) 1   for all correlograms, their scales must be 
identical. This allows one to focus entirely on their relative shapes. In the present case, 
the original correlograms and final correlograms of the transformed data are shown in 
Figures 7.10 and 7.11, respectively. Notice first that in the original correlogram the 
relative nugget effect (defined in Section 4.5 above) is zero, indicating that this process 
exhibits no spatial independence whatsoever. In contrast, the relative nugget effect in the 
final correlogram is close to one, indicating that the process is now almost completely 
spatially independent. In other words, very little spatial correlation remains in this 
transformed data. Notice also that the fluctuation of nonzero correlation values is much 
smaller, indicating that spatial correlations are uniformly closer to zero at all scales.24 
These two observations provide convincing evidence that this geo-regression has indeed 
been successful in accounting for almost all spatial correlation in the original OLS model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Impact Analysis of Industrial Water Drawdown  
 
Given these preliminary findings, the main purpose of this model is to analyze the 
impacts of industrial water drawdown effects on the water table level in Venice. To 
estimate this impact, observe first from the geo-regression results above, that we can 

                                                 
24 This is due in part to the larger bin sizes used in this figure (50 rather than 30 points per bin). 

Figure 7.10. Original Correlogram 
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obtain a upper 95% confidence bound on the beta coefficient, I , for ID in model 

(7.3.38) as follows. First note that if the standard error of  I is denoted by Is , then for 

any level of significance,  , the 100(1 )%  upper confidence bound for I  can be 

obtained from the probability identity,  
 

(7.3.39) 
, ( 1)Pr( ) 1II n k It s         

 
where , ( 1)n kt    is the t-critical value at level   for degrees of freedom, ( 1)n k   [where 

n   sample size and k  number of explanatory variables]. To obtain the desired standard 

error, recall that by definition the t-ratio, It , for I  in Table 7.7 is given by  /II It s , 

so that by Table 7.7, 
 

(7.3.40)  / ( 7.34398) / ( 6.00136) 1.2237II Is t       

 
Hence noting that in our case, 40n   and 3k   [so that ( 1) 40 4 36n k     ], the 
desired upper 95%  confidence bound is given by 
 

(7.3.41) 
.05,36 7.34398 (1.6883)(1.2237) 5.278II It s          

 
Next observe that for the representative location, 1 2( , ) (555,390)s s s  , in the middle of 

Venice Island (shown by the red dot in Figure 7.9 above), the transformed coordinates in 
(7.3.34) are seen to be 1 2( , ) ( 1.572,0.075)c c  , so that the value of the Industrial 

drawdown in (7.3.35) is given by: 
 

(7.3.42)  2 2
1 2( ) exp [(1.5) ] 0.02442ID s c c     

 
Thus, for each additional meter of Industrial water drawdown, one can be 95% confident 
that the expected decrease,  , in the water table level at location s will be bounded 
below by 
 
(7.3.43) ( )| 5.278 | (0.02442)(5.278) 0.1289ID s     meters 

 
Thus, based on the above model, one can be 95% confident that the mean industrial 
drawdown effect on Venice Island is at least 12%. 
 
While this model is only a rough approximation to the analysis of Gambolati and Volpi 
(1979),25 it serves to illustrate how geo-regression can actually be used to address 
substantive spatial issues. According to these authors, water pumping in Puerto Marghera 

                                                 
25 Aside from their more elaborate drawdown functions, Gambolati and Volpi also used a universal kriging 
approach rather than our present application of geo-regression.  
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was in fact reduced by 60% after 1973, and their subsequent analysis of 1977 data 
showed that the “subsurface flow field had substantially recovered, and the land 
settlement had been arrested”. So their post-analysis confirmed that this industrial water 
drawdown was indeed a major contributing factor to the sinking of Venice. Of course, in 
more recent times, Venice has once again started to sink from more natural causes. But 
this is another story. 
 
An Application of Geo-Kriging 
 
Finally it is of interest to apply geo-kriging to the Venice data as an illustration of this 
technique. To do so, a grid was constructed using grid_form.m in MATLAB with 
specified values 
 
 1 [150 : 25: 900]s   

(7.3.44)  
 2 [200 : 25: 650]s    

 
(where the cell size, 25, is roughly a third of a mile in terms of Figure 7.5). This grid was 
then used as input to the program, geo_krige.m, with the command 
 
>>  OUT = geo_krige(y0,X0,L0,X1,L1,h); 
 
where (y0,X0,L0) is the same as for geo_regr above, and where (X1,L1) are the 
computed values of ( , , )I VD D Ev  and coordinate values at each of the 589 grid points 

from (7.3.44). Finally, the bandwidth used was h = 50 (around two thirds of a mile.)  
 
To visualize these results, it is convenient to compare the geo-kriging output values, 
ˆ( )Y s , with the geo-regression estimates, ˆ( )L s , of expected water table levels based on 

the results in Table 7.7, where by definition, 
 

(7.3.45) 0
ˆ ˆ ˆ ˆˆ( ) ( ) ( ) ( )I I V V EvL s D s D s Ev s        

 
for all locations, s. These results were constructed from the above output as follows: 
 
>> b = OUT{1}(:,1);            • Extract beta estimates from output 
 
>> X = [ones(589,1),X1];      • Construct regression matrix (with intercept) 
 
>> L_hat = X*b;                  • Compute estimates ( L̂ ) of expected L  values  
 
>> Y_hat = OUT{3};            • Extract kriged values from output 
 
>> StdErr = OUT{4};          • Extract standard error values from output 
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This data was then collected into a single data matrix: 
 
>> DAT = [L1, L_hat, Y_hat, StdErr]; 
 
and exported from MATLAB to ARCMAP. These values were then interpolated using 
the Spline option in ArcToolbox: 
 
Spatial Analyst Tools > Interpolation > Spline 
 
and finally converted to contour form by applying 
 
Spatial Analyst Tools >  Surface > Contour 
 

to the spline rasters. A comparison of the fitted value, L̂ , and kriging values, Ŷ , is shown 
in Figures 7.12 and 7.13 below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notice that the L̂  values are essentially a weighted combination of the drawdown effects, 

ID and VD , in Figures 7.8 and 7.9 respectively (as captured by their values at the 40 well-

site data points). The kriged values, Ŷ , also reflect these underlying drawdown effects, 
but to a lesser extent. By construction, these values also include stochastic interpolations 
of the regression residuals, and thus should reflect water table levels more accurately than 
the simpler regression predictions.  Note however that alternative models of drawdown 
functions and fitting procedures will of course produce somewhat different results, as can 
be seen by comparing Figure 7.13 with Figure 5.21(a) in [BG, p.199] and Figure 2(a) in 
Part 2 of Gambolati and Volpi (1979, p.292). 
 
Finally, the main advantage of this stochastic interpolation procedure is that it allows 
prediction intervals to be constructed for actual water table levels in terms of estimated 
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Figure 7.12. Geo-Regression L Values 
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Figure 7.13. Geo-Kriging Y  Values 
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standard errors of prediction. A plot of these standard errors around Venice Island is 
shown in Figure 7.14 below (with the 0.4 and 0.7 contours labeled to indicate 
representative values). Here a much finer grid of kriging locations was used here (with 
increments of about a tenth of a mile) in order to show the details of these standard error 
contours.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notice in particular that these standard errors fall to zero at each of the five data points 
(well sites) on Venice Island [in a manner similar to Figure 2(b) in Part 2 of Gambolati 
and Vopi (1979), though Venice Island itself is rather difficult to see in their figure]. This 
reflects the fact that geo-kriging (along with simple and ordinary kriging) is an exact 
interpolator that goes through every data point. This can be seen most easily from 
expression (7.2.17) above, together with the fact that if point 0s  is actually a data point, 

then it must always be a member if its own predition set, 0( )S s , and hence must 

correspond to one of the elements of the covariance matrix, 0V . But since 

0

1
0 0 0( : 1,.., )n iV V I e i n    , it follows that if 0c  is the thi  column of 0V , then 1

0 0 ic V e  , 

so that (7.2.17) becomes: 
 

(7.3.46) 
0 0

1
0 0 0 0 0

ˆ ˆˆ( ) ( )n nY s x c V Y X      

 

                             
0 00 0

ˆ ˆ( )n i nx e Y X      

 

          
0 00 0 0 0

ˆ ˆ[ ( ) ] ( )n nx Y s x Y s       

 
This same argument also shows that the kriging standard error in (7.2.22) is identically 
zero. 
 
Finally, it is of interest to consider the kriged values on Venice Island. Though the 
specific kriging contour values are not shown in Figure 7.13, these values yield water 

0.7 

0.4 

Figure 7.14. Kriging Standard Errors 
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table predictions of around 0
ˆ( ) 3.0Y s    for points, 0s , on Venice Island (i.e., about 3 

meters below sea level). Moreover, while not all standard error contours are shown in 
Figure 7.14, the 0.7 contour is roughly the average value, so that 0 0ˆ ˆ ( ) 0.7s   . Thus a 

typical prediction interval for points 0s  on Venice is about 

 

(7.3.47) 0 0
ˆ ˆ( ) (1.96) 3 1.4Y s meters      

 
While such intervals are not extremely sharp, one must take into account the fact that 
only 5 of the 40 data points are actually on Venice Island. So this is probably about the 
best that can be expected from such a small data set.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 


