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APPENDIX TO PART II 
 
This Appendix, designated as A2, contains additional analytical results for Part II of the 
NOTEBOOK, and follows the notational conventions in Appendix A1. 
 
A2.1.  Covariograms for Sums of Independent Spatial Processes 
 
First recall that the covariance of any random variables, 1Z  and 2Z , with respective 

means, 1  and 2 , is given by 

 
(A2.1.1) 1 2 1 1 2 2 1 2 1 2 1 2 1 2cov( , ) [( )( )] ( )Z Z E Z Z E Z Z Z Z             

 
                                           1 2 1 2 1 2 1 2( ) ( ) ( )E Z Z E Z E Z        

 
                     1 2 1 2 1 2 1 2( )E Z Z           

 
          1 2 1 2( )E Z Z     

 
so that if 1Z  and 2Z  are independent then  

 
(A2.1.2) 1 2 1 2 1 2 1 2( ) ( ) ( ) cov( , ) 0E Z Z E Z E Z Z Z      

 
Hence if a given covariance stationary stochastic process,{ ( ) : }Y s s R , with mean,  , is 
the sum of two independent covariance stationary components 
 
(A2.1.3) 1 2( ) ( ) ( ) ,Y s Y s Y s s R    , 

 
with respective means, 1  and 2 , then it follows by definition that 1 2    , and that 

1( )Y s  and 2( )Y v  are independent for all ,s v R . Hence for any 0h   and ,s v R  with 

s v h  , we see that the covariogram, C , of the Y -process must satisfy,  

 
(A2.1.1)   ( ) cov[ ( ), ( )]C h Y s Y v  
 
                        2[ ( ) ( ) ] [ ( )] [ ( )] [ ( ) ( ) ]E Y s Y v E Y s E Y v E Y s Y v         
 

                             2
1 2 1 2 1 2( ) ( ) ( ) ( ) ( )E Y s Y s Y v Y v          

 
                          1 1 1 2 2 1 2 2[ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )]E Y s Y v Y s Y v Y s Y v Y s Y v     

 
                                  2 2

1 1 2 2( 2 )       
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                      1 1 1 2 2 1 2 2[ ( ) ( )] [ ( )] [ ( )] [ ( )] [ ( )] [ ( ) ( )]E Y s Y v E Y s E Y v E Y s E Y v E Y s Y v     
 

     2 2
1 1 2 2 1 2( )          

 

                       1 1 1 2 2 1 2 2[ ( ) ( )] [ ( ) ( )]E Y s Y v E Y s Y v        2 2
1 1 2 2 1 2( )          

 

                          2 2
1 1 1 2 2 2[ ( ) ( )] [ ( ) ( )]E Y s Y v E Y s Y v      

 

                       1 1 2 2cov[ ( ), ( )] cov[ ( ), ( )]Y s Y v Y s Y v   
 

                       1 2( ) ( )C h C h   
 

where 1C  and 2C  are the respective covariograms for the 1Y  and 2Y  components of Y . 

 
A2.2.  Expectation of the Sample Covariance Estimator under Spatial Dependence 
 

Given any collection of 2n  jointly distributed random variables, { 1 2( , ) , 1,..,i iY Y i n } 

where the pairs 1 2( , )i iY Y  have common means 1 1 2 2( ) , ( )i iE Y E Y    and covariance 

1 2 12cov( , )i iY Y   for all 1,..,i n , consider the following estimator of 12 , 
 

(A2.2.1)  12 1 1 2 21
1

1ˆ ( )( )
n

i iin Y Y Y Y
     

 

where 
1

1 , 1,2
n

j jiinY Y j


  . Here 12̂  and 12  are taken to correspond to the estimator 

ˆ ( )C h  of the covariance ( )C h  in expressions (4.10.2) and (4.10.1), respectively. To 
analyze this estimator, it is convenient to begin with the rescaled version 
 

(A2.2.2)       12 12 1 1 2 21
1

1 ˆ ( )( )
n

i ii
n

nn Y Y Y Y 
     

 

and recall the following standard decomposition of sums of squares: 
 

(A2.2.3)      12 1 2 1 2 1 2 1 21
1 ( )

n

i i i iin Y Y Y Y YY YY


     
 

                               1 2 1 2 1 2 1 21 1 1
1 1 1 1n n n

i i i ii i in n n nY Y Y Y Y Y n YY
  

       

 

                          1 2 1 2 1 2 1 21
1 n

i iin Y Y YY YY YY


     

 

                          1 2 1 211
1 n

i iin Y Y YY


   

But since 
 

(A2.2.4)    1 2 1 21 1
1 1n n

i ii in nYY Y Y
 

   2 1 21 1
1 n n

i ji jn Y Y
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it follows from (A2.2.2) through (A2.2.4) that 
 

(A2.2.5) 12 12 1 2 1 21
1

1 1ˆ( ) ( ) ( ) ( )
n

i ii
n n

nn nE E E Y Y E YY 
 

      

 

                                    21 2 1 21 1 1
1 1

1 ( ) ( )
n n n

i i i ji i j
n

nn nE Y Y E Y Y
  

       

 

                                    2 21 2 1 2 1 21 1 1
1 1 1

1 ( ) ( ) ( )
n n n

i i i i i ji i i j i
n

nn n nE Y Y E Y Y E Y Y
   

         

 

                                    2 21 2 1 21 1
1 1

1 ( ) ( )
n n

i i i ji i j i
n n

n n nE Y Y E Y Y
  



       

 

                                    1 2 1 21 1
1 1

( 1)( ) ( )
n n

i i i ji i j in n nE Y Y E Y Y
       

 
Finally, if we let ( ), 1,2,j jiE Y j   then since by definition, 1 2 12 1 2( )i iE Y Y      and 

1 2 1 2 1 2( ) cov( , )i i i jE Y Y Y Y     for all 1,..,i n  and j i , it follows from (A2.2.5) that 
 

(A2.2.6)  12 12 1 2 1 2 1 21 1
1

( 1)ˆ( ) ( ) cov( , )
n n

i ji j
n
n n nE Y Y     

       
 

                                    12 1 2 1 2 1 21

( 1)1
( 1) ( 1)cov( , )

n

i ji j i

n n
n n n nY Y    

 


       

 

                                    12 1 21
1

( 1) cov( , )
n

i ji j in n Y Y
      

 

Finally we note that if 1 = 2, then 2
12   and 2

1 2   . So precisely the same 

argument shows that for the standard sample variance estimate,  2 21
11

ˆ ( )n
i in Y Y    , 

expression (A2.2.6) becomes: 
 

(A2.2.7) 2 2
1 21

1
( 1)ˆ( ) cov( , )

n

i ji j in nE Y Y 
       

 
 
A2.3. A Bound on the Binning Bias of Empirical Variogram Estimates 
 
Here it suffices to consider the variogram, ( )h , on the interval of distance values, 

1k kd h d   , for a typical bin k . Recall from (4.7.1) that for a given sample of values 

 ( ) : 1,..,iY s i n ,  if kN  denotes the set of distance pairs, ( , )i js s , in bin k , and if the 

distance between each such pair is denoted by ij i jh s s  , then the lag distance, kh , for 

bin k  is defined to be 
 

(A2.3.1)   
( , )

1
i j k

k ijs s N
k

h h
N 
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Recall also that if the k -linear approximation to ( )h  on this interval is denoted by 

 
(A2.3.2) ( )k k kl h a h b    

 
then by definition,  
 
(A2.3.3) 1[ , ) ( ) ( )k k k k kh d d h l h      

 
In this context we have the following bound on the bias of the empirical variogram 
estimates, 
 

(A2.3.4)  2

( , )

1
ˆ( ) ( ) ( )

2 i j k
k i js s N

k

h Y s Y s
N




   

 

at lag distance, kh : 

 
Proposition A2.1.  If for any bin, 1,..,k k , the true variogram, ( )h , has an k -linear 

approximation, then at lag distance, kh , it must be true that 

 
(A2.3.5) ˆ[ ( )] ( ) 2k k kE h h     

 
Proof:  If for each ( , )i j ks s N  we let 

 

(A2.3.6)  2
1
2( ) ( ) ( )ij ij i jh E Y s Y s       

  

 

with ij i jh s s  , then by (A2.3.4), 

 

(A2.3.7)  2

( , )

1
ˆ[ ( ) ] ( ) ( )

2 i j k
k i js s N

k

E h E Y s Y s
N




 
  

 
  

 

                                           2

( , )
1
2

1
( ) ( )

i j k
i js s N

k

E Y s Y s
N 

      

 

                                          
( , )

1
i j k

ijs s N
kN




   

 

But since 1[ , )ij k kh d d  for all ( , )i j ks s N , we see from (A2.3.2) that ( )ij k ij kl h   , 

and thus that 
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(A2.3.8) ( )k ij k ij kl h      for all ( , )i j ks s N  

 
Hence by summing this set of inequalities and taking averages [with the observation that 

( , )
| | | | | |(1/ ) ( / )

i j k
k k kk k ks s N

N N N  


  ], we have 

 
(A2.3.9) 

( , )
1

| | [ ( )]
i j k

k ij k ij ks s NkN l h  


     

 
Next. by using (A2.3.1), (A2.3.2) and (A2.3.7), the middle expression of (A2.3.9) can be 
rewritten as, 
 
(A2.3.10)        

( , ) ( , ) ( , )
1 1 1

| | | | | |[ ( )] ( )
i j k i j k i j k

ij k ij ij k ijs s N s s N s s Nk k kN N Nl h l h 
  

                                               

 
                                           

( , )
1

| |ˆ[ ( )] [ ]
i j k

k k ij ks s NkNE h a h b


    

 

                                            ( , )
1

| |ˆ[ ( )]
i j k

k k ij ks s NkNE h a h b


    

 
                                           ˆ[ ( )]k k k kE h a h b    

 
                                           ˆ[ ( )] ( )k k kE h l h   

   
so that (A2.3.9) is seen to imply that 
 
(A2.3.11) ˆ[ ( )] ( )k k k k kE h l h       

 
But since 1[ , )k k kh d d  it also follows from (A2.3.3) that ( ) ( )k k k kl h h   and 

hence that 
 
(A2.3.12) ( ) ( )k k k k kl h h       

  
Finally, by adding (A2.3.11) and (A2.3.12) we may conclude that  
 
(A2.3.13)    ˆ2 [ ( )] ( ) ( ) ( ) 2k k k k k k k kE h l h l h h          

 
                                   ˆ2 [ ( )] ( ) 2k k k kE h h         

 
                                   ˆ[ ( )] ( ) 2k k kE h h      

 
and thus that (A2.3.5) must hold. ■ 
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A2.4 Some Basic Vector Geometry 
 
In order to understand multidimensional analysis, one must begin with vector geometry. 
In particular, all matrix manipulations are interpretable geometrically. If for any vector, 

1( ,.., ) n
nx x x   we denote the (Euclidean) length of x  by  

 

(A2.4.1) 2

1
|| ||

n

ii
x x x x


    

 
then for any two vectors, 1 1( ,.., ), ( ,.., ) n

n nx x x y y y   , the distance between x  and 

y  is just the length of the vector 1 1( ,.., ) n
n nx y x y x y     , i.e., 

 

(A2.4.2) 2

1
|| || ( ) ( ) ( )

n

i ii
x y x y x y x y


       

 
This is illustrated for two dimensions ( 2 ) in Figures A2.1 and A2.2 below.  
 
 
 
 
 
 
 
 
 
 
 
 
These distances in turn define angles, that complete the geometry of Euclidean spaces, 

n . All that is really required here is the notion of orthogonal vectors which constitute 
the sides of a right triangle, as shown for 2 in Figure A2.2. Recall from the 
Pythagorean Theorem, that such triangles are characterized by the familiar identity that 
the square of the hypotenuse equals the sum of squares of the sides, i.e.,  
 
(A2.4.3) 2 2 2|| || || || || ||x y x y    
 
Hence if we now write this orthogonality relation as, x y , then terms of the notation 
above, this implies that 
 
(A2.4.4)  2 2 2|| || || || || ||x y x y x y      
 
                ( ) ( ) 2x x y y x y x y x x x y y y              
 
     0x y   

1 2( , )x x x  

1 2( , )y y y  
y x  

|| ||y  
y  

x

|| ||x  

|| ||y x  

Figure A2.1. Vectors Figure A2.2. Orthogonal Vectors 
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Hence we are led to the fundamental geometric relation that orthogonality between 
vectors is equivalent to zero inner products. This essentially defines vector geometry in 
Euclidean spaces. (An alternative view of this result is given in terms of angle cosines 
in Section 9.3.3 of the text, and also in Section A3.6 of the Appendix to Part III.) 
 
A2.5 Differentiation of Functions 
 
Our main objective here is to develop multidimensional optimization problems, both 
with and without constraints.  The key analytical tools are differential measurements of 
change in functional values. First recall that the derivative of a scalar (i.e., one-
dimensional) function ( )f x  at a point 0x  is just the slope of the function at 0x , as 

defined by the limiting slope of a series of triangles shown in Figure A2.3 below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In formal  terms, this is written as1 
 

(A2.5.1)        0 0
0 0

( ) ( )
( ) limd

dx
f x f x

f x 

  



 

 
The example in Figure A2.3 is a simple parabolic function, 2( )f x x , for which the 
derivative is given explicitly by 
 

(A2.5.2) 
2 2 2 2 2

0 0 0 0 0
0 0 0

( ) ( ) 2
( ) lim limd

dx
x x x x x

f x  

       
 

 
 

 
                                   0 0 0lim (2 ) 2x x     

    
Such limiting slopes values cannot usually be obtained so easily. But this case serves to 
illustrate the basic idea.  

                                                 
1 In Figure A2.3 we have implicitly assumed that increments are positive ( 0  ). But for smooth 
functions, the same limiting slope results for negative increments as well. 

 

 

 

0( )f x  

0( )f x


0x

Figure A2.3. Derivatives of Scalar Functions 
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From a geometric viewpoint, this limiting slope defines the unique tangent line to f at 

0x  (shown in red in Figure A2.3). More importantly, the linear function defined by this 

line yields the best linear approximation to function f in small intervals around 0x  

(since by construction it has the same value and slope as f at 0x ). 

 
For multidimensional functions, 1( ) ( ,.., )nf x f x x , there is no direct parallel to 

(A2.5.2), since small movements (increments) can occur in many different directions. 
However, the most fundamental directions are those defined by changes of individual 
variables holding all others fixed. More formally, the partial derivative of ( )f x  with 

respect to variable, ix , at a point 0 01 0 0( ,.., ,.., )i nx x x x , is just the slope of the function 

when moving in the ix  direction. This is shown for the 2n   case in Figure A2.4 

below, where the partial derivative of 1 2( ) ( , )f x f x x  with respect to 1x  at 

0 01 02( , )x x x  corresponds to the slope of the red line shown. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Again, this can be represented mathematically by the limit 
 

(A2.5.3) 01 0 0 0
0 0

( ,.., ,.., ) ( )
( ) lim

i

i i n

i i

f x x x f x
f x

x  

   


 
 

 
For example, if 2 2

1 2 1 2( , ) 2f x x x x  , then 

 

(A2.5.3) 
2 2 2 2

01 1 02 01 02
0 0

1 1

[2( ) ] [2 ]
( ) lim

i

x x x x
f x

x  

     


 
 

 





1 2( , )z f x x  

01x  

0 01 02( , )x x x  

z  

Figure A2.4 Partial Derivative 
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2 2 2 2 2
01 01 1 1 02 01 02

0
1

[2( 2 ) ] [2 ]
lim

i

x x x x x
 

      



  

 
                  0 01 1 01lim (4 2 ) 4

i
x x      

 
These partial derivatives can in turn be used to define differential changes in any 
direction. The key point to note is that for smooth functions, 1( ) ( ,.., )nf x f x x , in 

higher dimensions, the unique tangent line defining the scalar derivative in Figure A2.3 
is replaced by a unique tangent plane. This is again illustrated by the two-dimensional 
function,2 1 2( ) ( , )f x f x x , shown in Figure A2.5 below:  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As in the scalar case, the plane tangent to f  at a given point, 0 01 0( ,.., )nx x x , is 

essentially the “best linear approximation” to f  in small neighborhoods of 0x . In 

geometric terms, this tangent plane is more accurately described as the n-dimensional 
(hyper) plane tangent to the surface (or graph) of f  at the point 1

0 0[ , ( )] nx f x  , as 

illustrated by the 2-dimensional plane tangent to f  at 3
0 0 0[ , ( )]z x f x   in the figure 

(where the “red arrows” can be ignored for the moment). 

                                                 
2 The actual function plotted is the quadratic function, 2

1 2 1 2 21( ) ( , ) 10 [2 ]f x f x x y y y y      with 

10 , 1, 2
i i

y x i   . 

 

 

( )f x  

0z  
( )f x  

0x  

1x  
2x  

Figure A2.5. Tangent Planes 
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If we continue to focus on this two-dimensional case for the present, and consider any 
small change in 0x ,  say 0 0 01 1 02 2( , )x x x x        , then the corresponding 

change in f , denoted by 0( )f x , is well approximated by a corresponding movement 

on this tangent plane. As we have already seen, movement in the 1x  direction (with 

2 0  ) yields changes governed entirely by the partial derivative of f  with respect to 

1x  at 0x . This can now be depicted graphically as in Figure A2.6 below, where for 

notational simplicity we have represented  the partial derivative of f  with respect to ix  

at 0x  by 0( ) / , 1,2i ia f x x i    .  Here we have also shifted the origin up to the point, 

0 0 0[ , ( )]z x f x , so that local movements away from 0x  can be represented simply by 

pairs 1 2( , )  . [Note that the size of these shifts (relative to the “red arrow” from 

Figure A2.5) have been exaggerated for visual clarity.] 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this graphical depiction, a movement of 1( ,0)  yields an increase in 0( )f x  given 

approximately by, 1 1a  , as shown in the figure. Similarly, a movement of 2(0, )  

yields an approximate increase of 2 2a  . So by linearity, it follows that for the 

combined movement, 1 2( , )  , the total increment in 0( )f x  is approximated by,3 

 

(A2.5.4) 0 0
0 1 1 2 2 1 2

1 2

( ) ( )
( )

f x f x
f x a a

x x

    
               

 

 
Finally, if these  -shifts are allowed to become “arbitrarily small”, then we obtain the 
limiting differential relation  

                                                 
3 Here the symbol,   , can be loosely read as “is approximately equal to”. 





1





2  

2 2a   

1 1a   

1x  

2x  

0( ) 0f x   

0 1 1 2 2( )f x a a      

0z  

Figure A2.6. Local Linear Approximations 
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(A2.5.5) 0 0
0 1 2

1 2

( ) ( )
( )

f x f x
df x dx dx

x x

    
        

 

 
designated as the total derivative of f . Hence in higher dimensions, scalar derivatives 
in (A2.5.1) are replaced by the total derivatives in (A2.5.5). 
 
A2.6  Gradient Vectors 
 
But for our present purposes, the key property of total derivatives is what they imply 
about partial derivatives in particular. Here we use some vector geometry by first 
writing the vector of differential elements in (A2.5.5) as 1 2( , )dx dx dx  . In geometric 

terms, this can be viewed as a directional vector of small movements from any given 
point. Similarly, if we designate the vector of partial derivatives of f  at 1 2( , )x x x   as, 

 

(A2.6.1) 1

2

( )

( )
( )

f x

x
f x

f x

x

 
   
 
  

 

 
then (A2.5.5) can be rewritten in vector form as: 
 
(A2.6.2) 0 0( ) ( )df x f x dx   

 
To interpret this geometrically, observe that if we now consider the contour 
representation of f , shown as ellipses on the 1 2( , )x x -plane in Figure A2.5, then the 

curve passing through 0x  is by definition the contour with constant value, 0( )f x . 

Similarly, the line tangent to this contour is simply the “linear contour” of the 
corresponding tangent plane, shown by the horizontal (constant height) line passing 
through 0z . This tangent line thus defines the directions of movement from 0x  yielding 

no change in f . But by (A2.5.4) these directions, dx , are given precisely by the no 
change condition: 
 
(A2.6.3) 0 00 ( ) ( )df x f x dx    

 
Hence, by recalling (A2.4.4), we see that the key geometric consequence of this zero-
inner-product condition is that the vector of partial derivatives, 0( )f x , must 

necessarily be orthogonal to the directions of no change in f . In Figure A2.5, 0( )f x  

thus corresponds to the red arrow on the 1 2( , )x x -plane starting at 0x . Moreover, since 

its three-dimensional counterpart starting at 0z on the tangent plane (in both Figures 

A2.5 and A2.6) is necessarily the steepest direction of movement on this plane, it 



  NOTEBOOK FOR SPATIAL DATA ANALYSIS                          Part II. Continuous Spatial Data Analysis 
______________________________________________________________________________________ 
 

________________________________________________________________________ 
 ESE 502                                                     A2-12                                                 Tony E. Smith 

follows that 0( )f x  defines the direction of movement in the 1 2( , )x x -plane yielding a 

maximum increase in f  at 0x . For this reason, the vector of partial derivatives, 

0( )f x , is usually called the gradient vector of f  at 0x .  

 
Finally, while the 2n   case is extremely useful for gaining geometric intuition, it 
should be emphasized that all relationships above are immediately extendable to 
general functions, 1( ) ( ,.., )nf x f x x . In particular, if we let 1( ,.., )ndx dx dx   and 

define the general gradient vector at 1( ,.., ) n
nx x x  by 

 

(A2.6.4) 
11

( )

( )

( )

( ) ( )n

n

f x

xf x

f x

f x f x

x

 
                 
  

   

 
then (A2.6.2) and (A2.6.3) continue to hold in n . 
 
A2.7  Unconstrained Optimization of Smooth Functions 
 
Given these key geometric results, we can now consider optimization problems 
involving smooth multidimensional functions, 1( ) ( ,.., )nf x f x x . These amount to 

finding points, x , in some specified region, nR   , with either maximum or 
minimum values, ( )f x , in R , depending on the given problem.  Here it is important to 
emphasize that maximizing the function, ( )f x , over R is equivalent to minimizing the 
function, ( )f x , over R. For this reason, it suffices to consider only maximization 
problems (which are usually easier to depict graphically for the 2n   case).4  
 
In this context, an unconstrained maximization problem for our purposes is taken to be 
one in which the maximum of ( )f x  is known to be achieved at some interior point of 
R, and hence is a smooth maximum that can be characterized by the derivatives of f.  In 
the scalar case, this is the usual “zero-slope” condition that the derivative be zero at the 
maximum, as shown for the scalar function, ( )f x , in Figure A2.7 below. Here the 

maximum at 0x  is seen to be uniquely characterized by this zero-slope condition. But 

even with a unique maximum, this condition is by no means sufficient. Even when 
there are no other local maxima (or minima), it is still possible to have other singular 
points, i.e., with zero slope. Figure A2.8 illustrates a singular inflection5 point which is 
neither a local minimum or maximum. In the scalar case, such possibilities can be 

                                                 
4 Here it is also worth noting that optimization software (such the MATLAB optimization toolbox) is 
typically designed to do only minimization problems. So all maximization problems must be reformulated 
as minimization problems.  
5 An inflection point, x, for f is a point at which the second derivative of f changes sign. 
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eliminated by requiring that the second derivative be negative at all singular points, so 
that the unique maximum is always characterized by the zero-slope condition. This is 
precisely analogous to the one-dimensional kriging problem in Section 6.2.1 of the text. 
Here a global minimum was insured for the simple quadratic function in (6.2.19) with 
positive second derivative in (6.2.20). 
 
 
 
 
 
 
 
 
 
 
 
 
 
The situation is more complex for multidimensional functions. Here the first-order 
“zero-slope” condition, 0( ) 0d

dx f x  , is replaced by a more general “zero-gradient” 

condition, 0( ) 0f x  , which ensures that the total derivative in (A2.6.2) is zero in all 

directions, dx .6 Geometrically, this first-order condition requires that the tangent plane 
at 0x  be flat, as is illustrated in Figure A2.9 below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
6 Note that since 

0
( )f x  is an n-vector, the “0” here is also an n-vector, 0 (0,.., 0) . While we could 

write this as 0n , standard practice is to take the dimension of zero vectors as understood by context. 

 

 
0x

0f  

( )f x  

0( ) 0d
dx f x   

 

 

 

 

0x 1x  

( )f x  

Figure A2.7.  Scalar Maximum Figure A2.8.  Singular Inflection 





1x  

2x  
0x  

0f  

( )f x  

R

0( ) 0f x   

Figure A2.9. First Order Condition for a Maximum 
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The function, 1 2( ) ( , )f x f x x , actually shown Figure A2.9 is bivariate quadratic 

function, which takes the explicit form 
 
(A2.7.1) 2 2

1 2 1 2 1 1 2 2( , ) 928 26 20 3 4f x x x x x x x x       

 
So by taking the partial derivatives of this function and setting them equal to zero, we 
obtain the relations, 
 
(A2.7.2) 0 1 21

0 ( ) 26 6x f x x x
     

 
(A2.7.3) 0 1 22

0 ( ) 20 8x f x x x
     

 
These linear equations can easily be solved to yield the unique solution point, 

0 01 02( , ) (4,2)x x x    , shown in the figure. However when the dimension, n, is much 

larger than two, it is practically possible to write down the full expression for 

1( ) ( ,.., )nf x f x x , let alone the simultaneous equation system corresponding to the 

first-order condition. Here is where the power of matrix algebra takes full force. If we 
let 
 

(A2.7.4) 
3 2 26

, , 928
1 4 20

A b c
   

        
 

 
then it can easily be verify (by matrix multiplication) that the function in (A2.7.1) can 
be equivalently written in matrix form for all 1 2( , )x x x  as, 

 
(A2.7.5) ( )f x c b x x Ax     
 
Notice the similarity of this quadratic form to the general expression for mean squared 
error, 0( )MSE  , in expression (6.2.27), where x  now plays the role of the weight 

vector, 0 .7 The power of this notation is that the quadratic form in (A2.7.5) can be 

analyzed in the same way regardless of the dimension, n. All that is required here is 
that we formalize the vector version of the partial derivatives in (A2.7.2) and (A2.7.3). 
To do so, notice first that for any coefficient vector, 1 2( , )b b b , such as in (A2.7.4), if 

we now employ the gradient notation in (A2.6.4) then it follows that, 
 

(A2.7.6) 
1 1 2 21 1

2 21 1 2 2

1

2

( )( )
( )

( ) ( )

x

x

b x b xb x b
b x b

b x bb x b x







                   
 

 

                                                 
7 It is also worth noticing the difference in signs of the quadratic term, where MSE was to be minimized, 
and f is to be maximized. We shall return to this distinction below. 
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More generally, for any linear compound, 
1

n

i ii
b x b x


   , exactly the same argument 

shows that 
 
(A2.7.7) ( )b x b   
 
Turning next to the quadratic term in (A2.7.5) observe that for any 2 2  matrix, A , 
 

(A2.7.8) 11 12 1 11 1 12 2
1 2 1 2

21 22 2 21 1 22 2

( ) ( )
a a x a x a x

x Ax x x x x
a a x a x a x

              
 

 
          2 2

11 1 12 1 2 21 2 1 22 2a x a x x a x x a x     

 
so that the corresponding partial derivative expression can be written as 
 

(A2.7.9) 

2 2
11 1 12 1 2 21 2 1 22 2

2 2
11 1 12 1 2 21 2 1 22 2

1

2

( )
( )

( )

x

x

a x a x x a x x a x
x Ax

a x a x x a x x a x







   
  
    

 

 

  11 1 12 2 21 2 11 1 12 2 11 1 21 2

22 2 12 1 21 1 21 1 22 2 12 1 22 2

2

2

a x a x a x a x a x a x a x

a x a x a x a x a x a x a x

        
               

 

 

  11 12 1 11 21 1

21 22 2 12 22 2

a a x a a x
Ax A x

a a x a a x

              
     

 

 

More generally, for any quadratic expression, 
1 1

n n

ij i ji j
x Ax a x x

 
    , essentially the 

same argument shows that 
 

(A2.7.10) ( ) ( )x Ax A A x     
 
Here there is one important special case, namely when the matrix A is symmetric, i.e., 
when A A  . For this case it follows at once from (A2.7.10) that 
 
(A2.7.11) ( ) 2x Ax A x   
 
To see the special relevance of this case, notice that every square matrix, A , has an 
associated symmetrization,  
 
(A2.7.12) 1 1

2 2( ) ( )s s sA A A A A A A         

 
But since x y y x   for all vectors, it then follows that 
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(A2.7.13)    1 1
2 2( )sx A x x A A x x Ax x A x          

 
                                 1 1

2 2( ) ( ) ( ) ( )x Ax Ax x x Ax x Ax x Ax           

 
So in fact, every  quadratic expression, x Ax , can be represented by a symmetric matrix 
as sx A x . As one illustration, observe that the matrix A  in (A2.7.4) is not symmetric. 

So in this case, one could replace A  with the symmetric matrix, 
 

(A2.7.14)  1
2

3 2 3 1 3 1/ 2

1 4 2 4 1/ 2 4sA
       

              
 

 
 
A2.7.1 First-Order Conditions 
 
Using these identities, we can now establish first-order conditions for any quadratic 
maximization problem as follows. If ( )f x  is assumed to have the general quadratic 
form  
 
(A2.7.15) ( )f x c b x x Ax     
 
with A  symmetric, then by linearity of differentiation [i.e., ( )f g f g      ] we 
have: 
 
(A2.7.16) ( ) ( ) 0 ( ) ( ) 2f x c b x x Ax b x x Ax b Ax                
 
So the first-order condition for a maximum of ( )f x  can be solved as follows: 
 
(A2.7.17) 1

0 0 0 0
1
20 ( ) 2 2f x b Ax Ax b x A b           

 
In the present case, where (symmetric) A  is given by the negative of (A2.7.14) [to be 
consistent with (A2.7.15)] it follows that 
 

(A2.7.18) 
1

1 1
0

1 1 1
2 2 2

3 1/ 2 26 4
( )

1/ 2 4 20 2s sx A b A b


       
          

     
 

 
which is precisely the solution shown in Figure A2.9. 
 
If this same line of reasoning is applied to the mean-squared-error function  
 
(A2.7.19) 2

0 0 0 0 0 0( ) 2MSE c V         

 



  NOTEBOOK FOR SPATIAL DATA ANALYSIS                          Part II. Continuous Spatial Data Analysis 
______________________________________________________________________________________ 
 

________________________________________________________________________ 
 ESE 502                                                     A2-17                                                 Tony E. Smith 

in expression (6.2.25), we can now solve the corresponding first-order condition for the 

optimal weight vector, 0̂ , as follows 

 

(A2.7.20) 1
0 0 0 0 0 0 0 0 0 0

ˆ ˆ ˆ ˆ0 ( ) 2 2MSE c V V c V c              

 
which is seen to be precisely the simple kriging solution in expression (6.2.26).  
 
But while these first-order conditions are necessary for optimal solutions, they are not 
sufficient. In particular, (A2.7.18) is claimed to be the solution of a maximization 
problem, and (A2.7.20) is claimed to be the solution of a minimization problem.  Hence 
to check whether either of these are actually solutions of their respective problems, we 
must develop appropriated second-order conditions. 
 
A2.7.2  Second-Order Conditions 
 
Recall that in the scalar case, the second-order condition for a maximum (or minimum) 
of ( )f x  at 0x  is that the second derivative, 

2

2 0( )d
dx

f x , be negative (or positive), as seen 

for the case of a maximum in Figure A2.7 above. In the multidimensional case the 
conditions are similar in nature, but are necessarily somewhat more complex. The 
simplest way to motivate the basic idea here is to reduce the problem to “one 
dimension” in the following way. For a two dimensional function, 1 2( ) ( , )f x f x x , 

with a maximum at point, 0x , such as in Figure A2.9 above, consider a one-

dimensional “slice” through this function such as the one shown in Figure A2.10 below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Such a slice can be defined formally by choosing any fixed nonzero vector, x , and 
considering all linear combinations, 0x t x . As the scalar, t , increases from zero, one 

moves away from 0x  in “direction” x . Similarly, as t  decreases from zero, one moves 

 
0x

1x  

2x  

0x t x  
 

0( )f x  
0( )f x t x   

 

Figure A2.10  One-Dimensional Slices 

f  



  NOTEBOOK FOR SPATIAL DATA ANALYSIS                          Part II. Continuous Spatial Data Analysis 
______________________________________________________________________________________ 
 

________________________________________________________________________ 
 ESE 502                                                     A2-18                                                 Tony E. Smith 

in the opposite direction. The one-dimensional slice through f  shown in the figure 

thus corresponds precisely to the scalar function of t  defined by 0( ) ( )xg t f x t x  . 

So if f  achieves its maximum at 0x , then in particular, it must exhibit a maximum 

along this slice at 0t  . This of course implies that (0) 0d
xdt g  , and more importantly 

for our present purposes, that 
2

2 (0) 0d
xdt

g  . To analyze this latter condition more 

explicitly, we introduce the following simplifying notation. For any function, 

1( ) ( ,.., )nf x f x x  of n  arguments, let 

 
(A2.7.21) 1( ) ( ,.., ,.., )

ii i nxf x f x x x
   

 
denote the partial derivative of f  with respect to its i-th  argument, and for each 
, 1,..,i j n  let 

 
(A2.7.22) 

2

1 1( ) ( ,.., ,.., ) ( ,.., ,.., ,.., )
i i jij j i n i j nx x xf x f x x x f x x x x 

      

 
denote the cross partial derivative of f  with respect to its i-th and j-th arguments (so 

that in particular, ( )iif x  is the second partial derivative of f  with respect to  its i-th 

argument). In terms of this notation, if we consider a compound function, 

1 2( ) [ ( ), ( )]g t f h t h t , and recall from the chain rule for derivatives that 

 
(A2.7.23) 1 1 2 1 2 1 2 2( ) [ ( ), ( )] ( ) [ ( ), ( )] ( )d d d

dt dt dtg t f h t h t h t f h t h t h t   

 
then by applying this rule to the function ( )xg t  above, we see that 

 
(A2.7.24)     0 01 1 02 2( ) ( ) ( , )d d d

xdt dt dtg t f x t x f x t x x t x      

 
     1 0 01 1 2 0 02 2( ) ( ) ( ) ( )d d

dt dtf x t x x t x f x t x x t x         

 
     1 0 1 2 0 2( ) ( )f x t x x f x t x x       

 
Differentiating once again we have 
 
(A2.7.25) 

2

2 1 0 1 2 0 2( ) [ ( )] [ ( )] [ ( )]d d d d d
x xdt dt dt dtdt

g t g t f x t x x f x t x x        

 
So by applying the chain rule to the first term on the right, we obtain 
 
(A2.7.26) 1 0 1 1 01 1 02 2 1[ ( )] [ ( , )]d d

dt dtf x t x x f x t x x t x x       

 
                                                        11 0 1 12 0 2 1( ) ( )f x t x x f x t x x x       
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                                                       2
11 0 1 12 0 1 2( ) ( )f x t x x f x t x x x       

 
Similarly, the second term in (A2.7.25) can be written out as 
 
(A2.7.27) 2

2 0 2 21 0 2 1 22 0 2[ ( )] ( ) ( )d
dt f x t x x f x t x x x f x t x x          

 
By combining these, we can now write the second derivative in (A2.7.25) more 
explicitly as 
 
(A2.7.28) 

2

2

2
11 0 1 12 0 1 2( ) ( ) ( )d

xdt
g t f x t x x f x t x x x       

 
                                        2

21 0 2 1 22 0 2( ) ( )f x t x x x f x t x x       

 
Finally, by evaluating this at 0t  , we obtain the explicit second-order condition 
 
(A2.7.29) 

2

2

2 2
11 0 1 12 0 1 2 21 0 2 1 22 0 2(0) ( ) ( ) ( ) ( ) 0d

xdt
g f x x f x x x f x x x f x x           

                                         
 
The Hessian Matrix  
 
This second-order condition can be written more compactly in matrix form as follows. 
If we now designate the matrix of cross partial derivatives of f  at point 0x  as the 

Hessian matrix, 
 

(A2.7.30)   11 0 21 0
0

12 0 22 0

( ) ( )
( )

( ) ( )f

f x f x
H x

f x f x

 
  
 

 

 
then the right hand side of (A2.7.29) can be written in matrix terms as  
 

(A2.7.31)    2

2

11 0 21 0 1
1 2 0

12 0 22 0 2

( ) ( )
(0) , ( )

( ) ( )
d

x fdt

f x f x x
g x x x H x x

f x f x x

       
  

    

 
Hence the desired second order condition for a maximum of f  at 0x  with respect to 

direction x takes the simple form: 
 
(A2.7.32)   0( ) 0fx H x x   

 
Before proceeding, it is appropriate to extend condition (A2.7.32) to the general case of 
n dimensions. Here it is enough to observe that while the 2n   case permits one-
dimensional slices in each direction to be seen graphically (as in Figure A2.10 above), 
none of the analysis is in any way restricted to this case. Hence, if for any smooth 
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function, 1( ) ( ,.., )nf x f x x , and point 0
nx   in the domain of f  we now define the 

associated Hessian matrix at 0x  by 

 

(A2.7.33)   
11 0 1 0

0

1 0 0

( ) ( )

( )

( ) ( )

n

f

n nn

f x f x

H x

f x f x

 
   
 
 


  


 

 
then the argument leading to (A2.7.32) continues to hold for any direction vector, 

nx  and Hessian matrix given by (A2.7.33).  
 
Given this “one dimensional” condition, it remains only to observe that for a true 
maximum at 0x , this same condition must hold in all directions with respect to 0x . So  

if we now designate an n-square matrix, A , to be negative definite if and only if  
 
(A2.7.34)   0x A x     for all  0x   
 
then it follows at once from (A2.7.32)  and (A2.7.34)  that the desired full-dimensional 
condition for a maximum of f at 0x  is precisely that the Hessian matrix, 0( )fH x , be 

negative definite.   
 
This condition for a maximum also yields a corresponding condition for a minimum of 
f at 0x . For the 2n   case, simply observe that if the “mountain” shape of ( )f x  in 

Figure A2.9 is inverted to “bowl” shape, then it is clear that the function, 

0( ) ( )xg t f x t x  , corresponding to each slice in Figure A2.10 must now have a 

positive second derivative at 0t  , i.e., 
2

2 (0) 0d
xdt

g  . Hence same the argument leading 

to (A2.7.32)  now shows that  
 
(A2.7.35)   0( ) 0fx H x x   

 
must hold in each nonzero direction x . This argument is again directly extendable to n 
dimensions (but without pictures). So if we now designate an n-square matrix, A , as 
positive definite if and only if  
 
(A2.7.36)   0x A x     for all  0x   
 
then the parallel full-dimensional condition for a minimum of f at 0

nx   is simply 

that the Hessian matrix, 0( )fH x , be positive definite.   
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Conditions for Symmetric Positive Definiteness 
 
The task remaining is to establish readily testable conditions for determining when a 
matrix is positive or negative definite. Here we begin by observing from (A2.7.34)  and 
(A2.7.36)  that a matrix, A , is positive definite if and only if A  is negative definite. 
Hence, it suffices to consider only one of these two conditions. Follows standard 
practice, we here focus on positive definiteness. Next recall from the identity in 
(A2.7.13) that to establish positive definiteness, we may assume that the matrix A  is 
symmetric (for if not then use its symmetrization, sA ). For Hessian matrices in 

particular, it turns out that such matrices are guaranteed to be symmetric, i.e., 
( ) ( )ij jif x f x , whenever these cross partial derivatives are continuous.8 So we shall 

focus on conditions for establishing that a symmetric matrix is positive definite.  
 
To motive the conditions characterizing symmetric positive definite (SPD) matrices, we 
begin with the following fundamental observation which forms the basis for essentially 
all characterizations of such matrices. An n-square matrix, A , is SPD if and only if it 
can be “decomposed” into a product of the form, 
 
(A2.7.37)  A BB   
 
for some nonsingular n-square matrix, B.  To see this, observe first that since 
 
(A2.7.38) ( ) ( )A BB B B BB A           
 
it follows that A  must be symmetric. More importantly, observe that since the inner 
product of a nonzero vector, x, with itself is always positive, i.e.,  
 

(A2.7.39)  2

1
0 0

n

ii
x x x x


     

 
and since the nonsingularity of B insures that 0Bx   whenever 0x  , it then follows 
from (A2.7.39) that for all 0x  , 
 
(A2.7.40) ( ) ( ) ( ) 0x Ax x BB x B x B x         
 
and hence that A  is SPD. This characterization helps to clarify the real meaning of 
positive definiteness. In particular, if we consider the simplest case, 1n  , and let a  
denote the scalar matrix, A , then the positive definiteness condition simply says that for 
all nonzero scalars, x ,  we must have 2( ) 0x a x a x  , which of course simply 
characterizes positivity of the scalar, a . So again letting b  denote the scalar matrix, B , 
condition (A2.7.39) simply says that a  is positive if and only if it can be written as 

                                                 
8 This result is usually known as Young’s Theorem, and can be found in most calculus textbooks. 
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2a b  for some scalar b , i.e., if and only if it has a real square root, b.9 So in this 
sense, positive definite matrices are the natural generalization of positive numbers. But 
while this decomposition characterizations is very informative, it is no more “testable” 
than positive definiteness itself. However, there do exist testable conditions for 
ensuring the existence of such decompositions as we now show.  
 
The simplest and most commonly used test for positive definiteness is based on the 
properties of certain determinants. If the determinant of a n-square matrix, A , is 
denoted by det( )A , then this condition involves positivity of the determinants of certain 
sub-matrices of A. In particular, for each 1,..,k n  we now designate the k -square 

matrix,  ( : , 1,.., )k ijA a i j k  , in the “upper left-hand corner” of ( : , 1,.., )ijA a i j n  , 

i.e., 
 

(A2.7.41)   

11 1 1

1

1

k n

k kk

n nn

a a a

A a a

a a

 
 
 
 
 
 
 
 

 
   

 
  

  

 

 
as the kth leading principle sub-matrix of A, and designate its determinant, det( )kA , as 

the kth leading principle minor of A, then the following condition, known as Sylvester’s 
Condition is  both necessary and sufficient for positive definiteness: 
 
 Sylvester’s Condition.  A symmetric matrix, A, is positive definite if and only if  

all principle minors of A are positive.  
 
This result will be shown later to a simple consequence of the Spectral Decomposition 
Theorem for symmetric matrices. To illustrate its application, consider the symmetrized 
matrix in (A2.7.14) above, i.e., 
 

(A2.7.42)   11 12

21 22

3 1/ 2

1/ 2 4

a a
A

a a

   
    

  
 

 
Observe that since the principle minors are 11 11det( ) 3 0a a    and 

 
(A2.7.43)  2

11 22 21 12det( ) (3)(4) (1/ 2) 0A a a a a      

 
it follows at once from Sylvester’s Condition that A is positive definite. 

                                                 
9 Later we shall see that SPD matrices, A, actually have square roots as well, i.e., can be written as 2A B  

for a nonsingular symmetric matrix, B. But this requires the Spectral Decomposition Theorem for 
symmetric matrices. 
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But our main interest in Sylvester’s condition is that it provides the basis for establish a 
more useful testable condition that has many applications of its own. In particular, it 
yields a simple decomposition of SPD matrices known as the Cholesky decomposition. 
In particular, if a matrix, T, with zeros everywhere above the diagonal, i.e., of the form 
 

(A2.7.44) 

11

21 22

1 2

0 0

0

n n nn

t

t t
T

t t t

 
 
 
 
 
 


 

  


 

 
is designated as a lower triangular matrix, then matrix A  is said to have a Cholesky 
decomposition if and only if there is a nonsingular lower triangular matrix, T , such that 
 
(A2.7.45) A T T   
 
By the argument above, every matrix of this form is SPD. Moreover, this again turns 
out to completely characterize SPD matrices as we now show: 10 
 

Cholesky Theorem. A symmetric matrix A is positive definite if and only 
if there exists a Cholesky decomposition for A. 
 

         Proof: If A has a Cholesky decomposition then the argument in (A2.7.40) shows 
that A is positive definite. Conversely, if A is positive definite, then by Sylvester’s 
condition, all leading principle minors of A are positive. Using this property, we can 
now construct a Cholesky decomposition by induction on the dimension of the n -
square matrix, A . For 1n  , A  is by hypothesis a positive scalar, so that we may set 

T T A  . Now suppose that it is true for 1 0n    and consider a symmetric n-
square matrix, A , with all positive principle minors. We may write A  in partitioned 
form as 
 

(A2.7.46)   1 1

1

n n

n nn

A a
A

a a
 



 
   

 

 

where 1nA   is the ( 1)stn  leading principle sub-matrix of A  By construction, 1nA   has 

all positive leading principle minors (namely the first 1n   leading principle minors of 
A ). Thus by hypothesis, 1nA   must have a Cholesky decomposition, say  

 

(A2.7.47)   1 1 1n n nA T T    
 

Our objective is to extend 1nT   to a Cholesky decomposition, A T T  , for A  as 

follows. By lower triangularity, T  must have the form 
 

                                                 
10 The following proof is based on an argument given by Prof. David Hill that is available online at: 
http://astro.temple.edu/~dhill001/course/math254/CHOLESKYDECOMPOSITION_stu.pdf 
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(A2.7.48)  1 0nT
T

h c
 

   
 

 

for some unknown ( 1)n  -vector, h , and scalar, c . Hence by (A2.7.46) and (A2.7.48) 
we seek values for h and a such that, 
 

(A2.7.49)   1 1 1 1 11 1
2

1 1

0

0
n n n n nn n

n nn n

A a T T T hT T h

a a h T h h ch c c
     

 

     
                

 

 
In particular, this implies both that  
 
(A2.7.50)   1 1n na T h    ,   and 

 
(A2.7.51)   2

nna h h c   

 
But by the nonsingularity of 1nT  , we can solve for h  in (A2.7.50) as 

 
(A2.7.52)   1

1 1n nh T a
   

 
Similarly by (A2.7.51), the value of c  must be given by 
 

(A2.7.53)   nnc a h h   

 
Hence to complete this construction, it remains only to show that the last operation is 
legitimate, i.e., that  
 
(A2.7.54)   0nna h h   

 
But by the determinant rule for partitioned matrices, it follows from (A2.7.46) that 
 

(A2.7.55)   1 1
1 1 1 1det( ) det det( ) ( )n n

n nn n n n
n nn

A a
A A a a A a

a a
 

   

 
    

 

 
(since 1

1 1 1nn n n na a A a
    is a scalar).11 Moreover, since the hypothesis of positive leading 

principle minors for A  implies in particular that det( ) 0A   and 1det( ) 0nA   ,  we see 

from (A2.7.55) that 
 

                                                 
11 To gain some intuition for this determinant rule, observe simply that for the case of 2n  , we must have   

11 12

21 22

det
a a

a a


 
 
 

 1

11 22 12 21 11 22 12 11 21
( )( )a a a a a a a a a   . 
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(A2.7.56)   1
1 1 1 0nn n n na a A a
     

 
Finally by substituting (A2.7.50) into (A2.7.56), we may conclude that 
 
(A2.7.57)   1

1 1 1 10 ( ) ( ) ( )nn n n n na T h T T T h
             

                    
1 1

1 1 1 1[( ) ]nn n n n na h T T T T h 
        

 
1 1

1 1 1 1[ ( ) ][ ]nn n n n na h T T T T h 
        

 

nna h h   

 
Thus (A2.7.54) must hold, and the result is established.   
 
Remark: It should also be noted that this proof yields a recursive construction for T , 

and in particular shows that it is unique. This is obvious for 1n  , where T A is the 
only possible choice. Moreover, by recursive use of the constructions in (A2.7.53) and 
(A2.7.54), one must obtain a unique extension T  for each 1n  .   
 
As noted above, the most attractive feature of Cholesky decompositions is there ease of 
calculation. As mentioned in the text, this is easily accomplished with the command,  
 
>> T = chol(A); 
 
If this algorithm fails then one obtains the error message “Matrix must be positive 
definite”. So by the Cholesky Theorem above, this procedure yields a practical test of 
positive definiteness, which can be designated as the Cholesky Test. In summary, while 
Sylvester’s Condition provides a useful test for relatively small matrices, such as 
(A2.7.42), the calculation of principle minors is very time consuming for larger 
matrices. Here the Cholesky Test is much faster and more practical.12 If the algorithm 
succeeds, then the matrix is SPD, and otherwise, it is not.13 
 
Calculation of Hessians 
 
To see how these conditions can be applied in practice, it is instructive to analyze the 
maximization example in (A2.7.4) and (A2.7.5). While in this simple case, the desired 
Hessian can of course be calculated term by term (i.e., each cross partial derivative), for 
larger problem it is much more efficient to do the calculations in matrix terms. So it is 
appropriate to see how this can be accomplished. To do so, we begin by rewriting the 
gradient vector of first partial derivatives in expression (A2.6.4) in terms of our present  
notation as follows 

                                                 
12 Even for n-square SPD matrices, A, as large as 1000n  , the MATLAB command, chol(A), produces 
the unique Cholesky decomposition in about 0.03 seconds.  
13 Care must be taken for “almost singular” SPD matrices, where rounding errors can sometimes lead to 
failure. Methods of numerical analysis must then be used to check whether this is the case. 
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(A2.7.58)  
1 1

( )

( )

( )

( ) ( )n

n

f x

x f x

f x

f x f x

x

 
                 
  

   

 
This can be viewed as a vector of functions, ( ), 1,..,if x i n . Notice that in the Hessian 

of (A2.7.33) the i-th column is just the gradient of the i-th function, ( )if x , in (A2.7.58). 

So if we now define the gradient of a vector of smooth functions, [ ( ),..., ( )]g x h x with 

commons arguments, 1( ,.., )nx x x , by 

 

(A2.7.59) 
1 1( ) ( ) ( )

[ ( ),..., ( )]

( ) ( ) ( )n n

g x g x h x

g x h x

h x g x h x

   
          
   
   


   


 

 
then the Hessian in (A2.7.33) is seen to be of the form, 
 

(A2.7.60) 
1 0

2
0 0 0

0

( )

( ) [ ( )] ( )

( )
f

n

f x

H x f x f x

f x

 
        
 
 

  

 
As a second application of (A2.7.59), note that if the i-th row of a matrix, A , is denoted 
by ia , then the linear expression, Ax , can be written as a vector of linear functions as 

follows, 
 

(A2.7.61) 
1 1

n n

a a x

Ax x

a a x

    
       
       

   

 
so that by (A2.7.59) and (A2.7.7), 
 

(A2.7.62) 
1

1 1( ) [ ( ),..., ( )] ( ,..., )n n

n

a x

Ax a x a x a a A

a x

 
            
  

  

 
With these preliminaries, we can now reconsider the maximization of the general 
quadratic expression in (A2.7.5),  
 
(A2.7.63)  ( )f x c b x x Ax     
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with A  assumed to be symmetric. Using (A2.7.58) through (A2.7.62), the Hessian 
matrix for this problem is now given by 
 
(A2.7.64) 2( ) ( ) [ ( )]fH x f x c b x x Ax         

 
                                ( 2 ) 0 2 ( )b Ax Ax       
 
                        2A   
 
Hence any point, 0x , satisfying the first-order condition for ( )f x  will be a maximum if 

and only if the matrix A  is positive definite (so that the associated matrix, 2A , is 
negative definite). But for the specific maximum problem with parameters in  (A2.7.4), 
we have already seen that the symmetrized matrix, A, in (A2.7.56) above is positive 
definite. Thus the unique point, 0 (4,2)x  , satisfying the first-order conditions is 

indeed a maximum (which was already evident in Figure A2.9). 
 
Finally, it is important to reconsider the mean squared error function in (A2.7.19) 
above, where it was shown in (A2.7.20) that the unique weight vector satisfying the 
first-order conditions for minimization of  
 
(A2.7.65) 2

0 0 0 0 0 0( ) 2MSE c V         

 

was given by 1
0 0 0

ˆ V c  . We are now in a position to complete that analysis. If the 

Hessian for this function is denoted by MSEH , then by recalling that every covariance 

matrix is symmetric, it follows the same analysis in (A2.7.64) now yields 
 
(A2.7.66) 2 2

0 0 0 0 0 0 0( ) ( ) [ ( 2 )]MSEH MSE c V              
 

                                     0 0 0 0 0 0( 2 2 ) 0 2 ( ) 2c V V V          
 

Thus to ensure that 1
0 0 0

ˆ V c   is the unique minimum of (A2.6.65), it remains only to 

show that 0V  is positive definite.  In fact, it turns out that: 

 
Positive Definiteness Property. Every (nonsingular) covariance matrix is 
positive definite.  
 

While we don’t yet have all the tools to show this fully, we can establish the most 
essential part of this condition as follows. Recall from the covariance result in (3.2.21) 
that for any random vector, X , with covariance matrix, cov( )X  , the variance of 
each linear compound, a X is given by var( )a X a a   . So it must certainly be true 
that 
  
(A2.7.67) 0a a  for all  0a   
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This condition is called positive semidefiniteness, and must be exhibited by every 
covariance matrix. What remains to be shown is that for nonsingular covariance 
matrices the inequality in (A2.6.67) is strict. Since this is a simple consequence of the 
Spectral Decomposition Theorem (to be developed later), we postpone it for now.14  
 
Non-Definite Hessians 
 
Before proceeding to the case of constrained optimization, it is of interest to ask 
whether one can have stationary points that are neither maxima or minima. An example 
for scalar functions was shown in Figure A2.8 above. But unlike this highly special 
case in one dimension, it turns out that such examples are quite common in higher 
dimensions. This is illustrated by the ( 2)n  example in Figure A2.10 below, where 
there exist two local maxima (the one on the right being the global maximum).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
However, there is seen to be a third point (shown in red) between these two local 
maxima which also satisfies the first-order condition that the gradient be zero. Notice 
also that movement from this point toward either maximum point must go “uphill”, so 
that second derivative is positive in these directions. But movement orthogonal to these 
directions leads “downhill” and hence yields negative second derivatives. At such 
saddle point locations, the Hessian is neither positive nor negative definite. Note finally 

                                                 
14 This can actually be shown without the Spectral Decomposition Theorem. For a simple proof that 
positive semidefiniteness plus nonsingularity implies positive definiteness, see Horn and Johnson (1985, 
p.400) 
 





1x  2x  

Figure A2.11. Saddle Point Example 
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that such saddle points are not rare. Indeed, whenever there are multiple maxima one 
can expect to find intermediate saddle points. 
 
A2.7.3  Application to Ordinary Least Squares Estimation 
 
Before considering constrained optimization problems, we consider one final 
application of the above concepts, namely to the least squares estimation of 

0 1( , ,.., )k      in the classical linear regression model. Recall from (7.16) that the 

objective function is given by 
 
(A2.7.68) ( ) 2SSD y y y X X X           
 
and hence is seen to be a quadratic form very similar in nature to the mean squared 
error function, 0( )MSE   in (A2.7.19) above. Thus, as in (A2.7.2), we see from the 

symmetry of the matrix X X that the first-order condition for this minimization problem 
takes the form: 
 

(A2.7.69) 0 ( ) 2 2SSD X y X X X X X y             
 

But if is assumed that there are no collinearities between the columns of X (so that 
X is of full column rank) then the ( 1)k  -square matrix, X X , is nonsingular. Hence 
the unique solution to (7.17), designated as the ordinary least squares (OLS) estimator 
of   is given by 
 

(A2.7.70) 1ˆ ( )X X X y    
 

The only question remaining is whether this yields a proper minimum. Here we can 
answer this question definitively. In particular, recall first from (A2.7.64) that in this 
case,  
 

(A2.7.71) ( ) ( 2 2 ) 2SSDH X y X X X X         
 

so that it remains only to show that X X is positive definite. But in the argument of 
(A2.7.37) through (A2.7.40) above it was shown that for any nonsingular matrix, B , 
the matrix B B is necessarily positive definite. Hence it is enough to observe that this 
continues to hold as long as B  is of full column rank. For if it were true that 
0 ( ) ( )x B B x Bx Bx     for some 0x  , then the same argument shows that  

(A2.7.72) 
1

1 1
0 ( ,.., )

m

m j jj

m

x

Bx b b x b

x


 
    
 
 

  

 

which together with 0x   implies the existence of a linear dependency (collinearity) 
among the columns 1( ,.., )mb b  of B. Hence for any matrix of full column rank, such as 

X , it follows that X X  must be positive definite.    
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A2.8 Constrained Optimization of Smooth Functions 
 
As with the development of unconstrained optimization above, we shall be concerned 
here with those cases of constrained optimization that are relevant for the applications 
in the text. Hence we consider only linear equality constraints, where the optimum will 
again be seen to be characterized by appropriate “tangency” conditions.  
 
To motivate the main ideas, we again begin with a two-dimensional example in which 
the relevant tangency conditions can be depicted graphically. For ease of visualization, 
it is convenient to switch to a minimization problem. So consider minimizing the 
quadratic objective function defined for each 1 2( , )x x x  by, 

 
(A2.8.1) ( )    f x c b x x Ax  
 
with 20c , (1,2) b  and 
 

(A2.8.2) 
25 1

1 15

 
  
 

A  

 
As in (A2.7.18), this function has a unique stationary point, 
 
(A2.8.3)  11

2* ( 0.017, 0.066)    x A b ,  

 
in the negative quadrant. Moreover, since A  is seen by inspection to be symmetric 
positive definite [with its two leading principle minors, det(25) 25  and 

det( ) 25 15 1  A , both positive], it follows as in (A2.7.64) that ( *) 2fH x A  is 

positive definite, an hence that *x  is a global minimum.  This function is depicted in 
Figure A2.12 below [where again for visual convenience the origin (0,0) has been 
placed at the back corner of the figure]. The global minimum point, *x , is out of view, 
since it is not the relevant minimum for our present purposes. 
 
 
A2.8.1  Minimization with a Single Constraint 
 
In particular, we now suppose that feasible values of x  for this minimization problem 
are also required to satisfy a linear constraint of the following form,  
 
(A2.8.4)  d x  
  
with (5,4) d  and 13  . In other words, the only relevant values of x  for this 
problem are those lying on the blue line shown in Figure A2.12. 
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To put this problem in more standard form, let the function ( )g x  be defined by 
 
(A2.8.5) ( ) g x d x  
 
so that (A2.8.4) is equivalent to the condition that ( ) g x . In these terms, the present 
problem is formally a constrained minimization problem of form, 
 
 
(A2.8.6) ( ) ( ) minimize: f x subject to: g x  
 
 
To solve this problem, observe next that [in a manner similar to Figure A2.5 (and 
Figure A2.11) above] the contours of the function ( )f x  are shown on the 1 2( , )x x  plane 

in Figure A2.12. Moreover, we know from (A2.8.3) above that this function decreases 
toward its global minimum, *x , in the negative quadrant. So the lowest contour 
touching the blue line in Figure A2.12 clearly defines the desired constrained minimum 
point, 0x , solving problem (A2.8.6).  

 

1x  

 

 

2x

0x

( )f x  

d x

Figure A2.12. Constrained Minimization Example 
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With these observations, the key question it how to identify this point analytically. Here 
it is convenient to give a planar representation of these contours as in Figure A2.13 
below [where the 1 2( , )x x  plane has now been rotated to place the origin in its more 

natural position at the lower left corner of the figure].15  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here the solution point, 0x , is again identified by a tangency between the linear 

constraint, ( ) g x  (blue line), and the lowest contour of ( )f x . But recall from 

(A2.6.3) that the gradient, 0( )f x , of f  at 0x  must be orthogonal to this tangent line, 

which by definition defines the directions of “no change” in f  at 0x . Recall also that 

gradients point in the direction of maximum increase in f . But since we are here 
interested in minimizing f  it is more appropriate to consider the (opposite) direction of 

maximum decrease in f  at 0x , as given by the negative gradient, 0( )f x . This is 

negative gradient is shown by the red arrow in Figure A2.13.  
 
Similarly, since the blue tangent line is also a constant-value contour for the constraint 
function, g  [i.e., the set of x  values where ( ) g x ], it then follows that the gradient, 

0( )g x , of g  at 0x  must be orthogonal to this same tangent line, as shown by the blue 

arrow in Figure A2.13. [Since the positivity of the coefficient vector, d , in this case 

                                                 
15 Note also that for compatibility with Figure A2.12, the horizontal axis is 

2
x rather than 

1
x . 

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2



 

 

2x  

1x  

0x  

0( )f x  

0( )g x  

Figure A2.13  Tangency Condition for Constrained Minimum 
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implies that the function, ( ) g x d x , is increasing in x , this gradient points toward 
higher values x ].  
 
Finally, since there is only a single line in the plane that is orthogonal to this blue line, 
it follows that the two gradients 0( )f x  and 0( )g x  must both lie on this same line, 

i.e., must be collinear. Since this implies that 0( )f x  and 0( )g x  must be scalar 

multiples of one another, the fundamental tangency condition in Figure A2.13 implies 
that for some scalar, 0 , it must be true that 0 0 0( ) ( )  f x g x , or equivalently that 

 
(A2.8.7) 0 0 0( ) ( ) 0   f x g x  

 
Algebraically, this two-dimensional tangency condition yields two equations in three 
unknown, namely 0 01 02( , )x x x  together with 0 . However, since 0x  must lie on the 

blue line, it is also required that 
 
(A2.8.8) 0( ) g x  

 
These equation system allows all unknowns to be solved for. But before doing so, it is 
important to note that while the above derivation is geometrical in nature, and hence 
can be illustrated graphically, there is a mathematically more powerful way of deriving 
the same conditions. In particular, if we now combine the functions, f  and g , into a 
single function of the form 
 
(A2.8.9) ( , ) ( ) [ ( ) ]L x f x g x      
 
then this augmented function, called the Lagrangian function, actually yields conditions 
(A2.8.8) and (A2.8.9) as first-order conditions. In particular, if for any function, ( , )h y z  

of vectors, 1( ,.., ) ky y y  and 1( ,.., ) mz z z , we write the gradients of h with respect to 

y  and z  as, 
 

 (A2.8.10)  
1

( , )

( , )

( , )







 
 

   
 
 



k

y

y

y

h y z

h y z

h y z

   and     
1

( , )

( , )

( , )







 
 

   
 
 



m

z

z

z

h y z

h y z

h y z

 

 
respectively, then it follows from (A2.8.9) that 
 
(A2.8.11) ( , ) ( ) ( )     xL x f x g x  

 
(A2.8.12) ( , ) ( )L x g x      
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So (A2.8.7) and (A2.8.8) are seen to be precisely the first order conditions of L  with 
respect to ( , )x  evaluated at 0 0( , )x , i.e., 

 
(A2.8.13) 0 0 0 0 00 ( , ) ( ) ( )      xL x f x g x  

 
(A2.8.14) 0 0 00 ( , ) ( )L x g x       

 
This is no coincidence, and in fact provides a general way of “converting” constrained 
optimization problems into larger-dimensional unconstrained problems. Here the 
original arguments, x , are augmented to ( , )x , where the dimension of 1( ,.., )   k  

corresponds precisely to the number of constraints imposed on the optimization 
problem. These unknown scalars, known as Lagrange multipliers, play the same 
geometric role as in our one-constraint example above.  
 
We shall consider a general Lagrangian problem of this type below. But for the present, 
it is instructive to complete the solution of our particular example. First, recall from 
expressions (A2.8.1) and (A2.8.5) that (A2.8.9) can be written more explicitly as 
follows: 
 
(A2.8.15) ( , ) ( ) ( )L x c b x x Ax d x          
 
Hence by employing the gradient identities in (A2.7.7) and (A2.7.11) together with 
(A2.8.11) and (A2.8.11), we see that (A2.8.13) and (A2.8.14) take the explicit form: 
 
(A2.8.16) 0 0 0 00 ( , ) 2xL x b Ax d       

 
(A2.8.17) 0 0 00 ( , )L x d x       

 
But by the nonsingularity of A we can solve (A2.8.16) for 0x  as follows: 

 
(A2.8.18) 11

0 0 0 022 ( ) ( )Ax d b x A d b         

 
Condition (A2.8.17) then yields the following explicit solution for 0 , 

 
(A2.8.19) 1 1 11

0 0 02 ( ) 2 ( )d x d A d b d A d d A b                 

 

                          
1

0 1

2 d A b

d A d






 
     

 

 
Finally, substitution of (A2.8.19) into (A2.8.18) yields the following explicit solution 
for 0x : 
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(A2.8.20) 
1

11
0 2 1

2 d A b
x A d b

d A d

 




  
     

 

 
Substitution of the values, 20, (1,2), 13, (5,4)c b d      together with A in 
(A2.8.2) yields the final solution 
 
(A2.8.21) 0 (1 .2721 , 1 .6599)x   

 
which is seen to correspond to the graphical solution shown in Figure A2.13. 
 
Solution for Ordinary Kriging  
 
Finally, we apply these results to the case of ordinary kriging. Here we proceed in two 
steps. First we derive a BLU estimator for the unknown mean parameter,  , and then 
use this to interpret the solution to the optimal weight vector problem. Turning first to 
the BLU estimator for  , recall from expression (6.3.7) of the text that the optimal 
coefficient vector, â , is given by the solution of the constrained minimization problem: 
 

   (A2.8.22) minimize:  a Va          subject to:   1 1na   

 
This is seen to be a special case of the constrained minimization problem in (A2.8.15) 
with ( 0, 0, , 1, 1 )nc b A V d     . Hence by setting 0 ˆx a  in (A2.8.20) and 

making these appropriate substitutions, it follows that the unique optimal coefficient 
vector is given by  
 

(A2.8.23) 1 11
2 1 1

2 (0) 1
ˆ 1 (0) 1

1 1 1 1n n
n n n n

a V V
V V

 
 

    
           

 

 
This in turn implies that the unique BLU estimator, ˆn , of   given sample vector Y  is 

given by 
 

(A2.8.24) 
1

1
1 1

1 1
ˆ ˆ 1

1 1 1 1
n

n n
n n n n

V Y
a Y V Y

V V





 

  
      

 

 
Turning next to the problem of determining a BLU predictor of 0 0( )Y Y s , recall from 

expression (6.3.18) in the text that the desired weight vector, 0̂ , solves the constrained 

minimization problem: 
 
(A2.8.25) minimize:  2

0 0 0 0 02c V           subject to:  01 1n    
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But this is again a special case of the constrained minimization problem in (A2.8.15) 

with 2
0 0( , 2 , , 1, 1 )nc b c A V d       . Hence by now setting 0 0̂x   in 

(A2.8.20), it follows that 
 

(A2.8.26) 0

0

0 0

1
0 011

0 0 02 1
0

2 2 1ˆ 1 2
1 1

n
n

n n

V c
V c

V







  
       

 

 

  0

0

0 0

1
0 0 1 1

0 0 01
0

1 1
1

1 1
n

n
n n

V c
V V c

V


 



 
    

 

 
 
Hence the desired BLU predictor of 0Y  is given by 

 

(A2.8.27) 0

0

0 0

1
0 0 1 1

0 0 0 0 01
0

1 1ˆˆ 1
1 1

n
n

n n

V c
Y Y V Y c V Y

V



 



 
       

 

 
For purposes of interpreting this expression, observe that since 

0 0

1 1
0 0 0 01 1n nV c c V   , we 

may rewrite (A2.8.27) as 
 

(A2.8.28) 0 0

0

0 0 0 0

1 1
0 01 1

0 0 0 0 01 1
0 0

1 1ˆ 1
1 1 1 1

n n
n

n n n n

V Y V Y
Y c V Y c V

V V

 
 

 

    
             

 

 
By using (A2.8.24), this expression may then be simplified, as is done in expression 
(6.3.21) of the text. 
 
 
A2.8.2  Minimization with Multiple Constraints 
 
Given the results above for a single constraint, we now proceed to the case of multiple 
constraints. For purposes of illustration we begin with the case of two (linear) 
constraints on functions of three variables, 1 2 3( ) ( , , )f x f x x x , where is still possible to 

obtain some geometric intuition. As an extension of (A2.8.6) we thus consider the 
following constrained minimization problem: 
 

(A2.8.29) minimize: ( )f x      subject to:  1 1

2 2

( )

( )

g x

g x




   
   

   
   

 
where 3

1 2 3( , , )x x x x  . Paralleling Figures A2.12 and A2.13 above, the solution 

conditions for this problem are shown schematically in Figures A2.14 and A2.15 below. 
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0( )f x f

1 1( )g x   

2 2( )g x 

0x

0( )f x

1x

2x

3x  

Figure A2.14.  Constrained Tangency Condition 

0( )f x

01 1 0( )g x 02 2 0( )g x 

1x

2x

3x  

Figure A2.15.  Constrained Gradient Condition 
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To compare these figures with the single constraint case above, we start by restricting 
attention to the x -space in Figure A2.12, i.e., the 1 2( , )x x -plane. Recall that the single 

linear constraint corresponds to the blue line in this plane, and the critical tangency 
condition for a minimum is shown in terms of the contour representation of ( )f x  on 
this plane. The situation in Figure A2.14 is conceptually the same, except that the x -
space is now three dimensional. Here the two linear constraints, 1 1( )g x   and 

2 2( )g x  , are shown, respectively, by the blue and black planes in this space. Note 

that these planes constitute constant-value contour surfaces for the functions 1g  and 

2g . Hence, like Figure A2.12, the constraint space defined by the intersection of these 

two planes is again one dimensional, as shown by the heavy blue line. With respect to 
the objective function, 1 2 3( ) ( , , )f x f x x x , constant-value contour surfaces in this 

space are curvilinear. Hence for visual clarity, only the single contour surface, 

0 0( ) ( )f x f x f  , tangent to the constraint space at point 0x  is shown. As in Figure 

A2.13, the negative gradient vector, 0( )f x , at 0x  must be orthogonal to the 

constraint space, as shown by the red arrows in both Figures A2.13 and A2.14. So the 
tangency conditions in these two cases are seen to be conceptually the same. 
 
Turning next to the relation between this gradient vector and those for the constraints 
recall that in Figure A2.13 the single gradient vector, 0( )g x , was also orthogonal to 

the constraint space as defined by a constant-value contour of g . Moreover, since all 

vectors orthogonal to this constraint line at 0x  must necessarily be collinear, this in turn 

implied that 0( )f x  must be a scalar multiple of 0( )g x . But in higher dimensions 

this is no longer true. In the present case, the set of vectors orthogonal to the blue line at 

0x  must define a plane (not shown) which is called the orthogonal complement of this 

line at 0x .  So all that can be said is that these three gradient vectors, 0( )f x , 

1 0( )g x  and 2 0( )g x , must all lie in this plane. But assuming that the two constraint 

planes [ 1 1( )g x   and 2 2( )g x  ] have a well-defined linear intersection (and hence 

are not parallel), it follows that 1 0( )g x  and 2 0( )g x  cannot themselves be collinear. 

Hence they must span this plane, which means that every vector in the plane can be 
written as a unique linear combination of 1 0( )g x  and 2 0( )g x . In particular this 

implies that for the negative gradient vector, 0( )f x , there must exist unique scalars, 

01  and 02 , such that 0 01 1 0 02 2 0( ) ( ) ( )f x g x g x      , or equivalently,  

 
(A2.8.30) 0 01 1 0 02 2 0( ) ( ) ( ) 0f x g x g x        

 
as shown in Figure A2.15. This is the fundamental constrained gradient condition that 
generalizes (A2.8.7) for the single-constraint case.  Hence, as an extension of  (A2.8.9), 
if we now consider the Lagrangian  function: 
 
(A2.8.31) 1 2 1 1 1 2 2 2( , , ) ( ) [ ( ) ] [ ( ) ]L x f x g x g x           
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with first-order conditions 
 
(A2.8.32) 0 01 02 0 01 1 0 02 2 00 ( , , ) ( ) ( ) ( )xL x f x g x g x            

 
(A2.8.33) 

1 0 01 02 1 0 10 ( , , ) ( )L x g x        

 
(A2.8.34) 

2 0 01 02 2 0 20 ( , , ) ( )L x g x        

 
then it is clear that the minimum for this function satisfies both the constrained gradient 
condition in  (A2.8.30) together with the two constraints in (A2.8.29). 
 
The extension of this programming problem to objective functions, 1( ) ( ,.., )nf x f x x , 

in n dimensions with k  equality constraints is a straightforward generalization of the 
geometric representations in Figures A2.14 and A2.15. In particular, if for any k-vector  
of constraint functions, 
 

(A2.8.35) 
1( )

( )

( )k

g x

G x

g x

 
   
  

     ,    1( ,.., ) n
nx x x    

 
(with k n ) and corresponding constants, 1( ,.., )k     we consider the constrained 

minimization problem: 
 
(A2.8.36) minimize: ( )f x      subject to:  ( )G x     
 
then letting 1( ,.., )k     denote a vector of Lagrange multipliers, we may again form 

the corresponding Lagrangian function, 
 

(A2.8.37)  
1

( , ) ( ) [ ( ) ]
k

j j jj
L x f x g x  


    

 
                                   ( ) [ ( ) ]f x G x     
 
Hence by employing (A2.7.58) ,(A2.7.59) and (A2.8.10), it follows that a minimizing 
pair, 0 0( , )x  , is now characterized by the first-order conditions: 

 

(A2.8.38) 0 0 0 0 01
0 ( , ) ( ) ( )

k

x j jj
L x f x g x 


       

                                                 
01

0 1 0 0

0

( ) [ ( ),.., ( )]k

k

f x g x g x





 
       
 
 

  

                                                 0 0 0( ) ( )f x G x     



  NOTEBOOK FOR SPATIAL DATA ANALYSIS                          Part II. Continuous Spatial Data Analysis 
______________________________________________________________________________________ 
 

________________________________________________________________________ 
 ESE 502                                                     A2-40                                                 Tony E. Smith 

and, 
 
(A2.8.39) 0 0 00 ( , ) ( )L x G x         

 
 In terms of Figures A2.14 and A2.15, condition (A2.8.38) again reflects the 
constrained gradient condition that the negative gradient, 0( )f x , be a linear 

combination of the constraint gradients. As a generalization of the constraint space in 
these figures (with dimension 3 2 1  ), it is implicitly assumed here that the relevant 
constraint set (i.e., the intersection of k constraint surfaces) is a well defined surface of 
dimension n k , so that the orthogonal complement to this surface at 0x  has dimension 

k . This is equivalent to assuming that the constraint gradients are linearly independent. 
If so, then they must span this complement, so that (A2.8.38) must hold for some 
unique vector of multipliers, 0 01 0( ,.., )k    . 

 
Our objective is to apply this general formulation to the case of quadratic objective 
functions  
 
(A2.8.40) ( )f x c b x x A x     
 
on n with linear constraints,  
 

(A2.8.41) 
1 1

k k

d x

Dx

d x






   
        
      

   

 
where the above constrained gradient condition is guaranteed to hold as long as these k  
constraints are linearly independent (i.e., D  is of full row rank, k ). Here the 
minimization problem in (A2.8.36) takes the form: 
 
(A2.8.42) minimize: c b x x Ax        subject to:  Dx     
 
with associated Lagrangian in (A2.8.37) of the form 
 
(A2.8.43) ( , ) [ ] ( )L x c b x x Ax Dx          
 
Assuming that A  is symmetric positive definite, this problem always has a unique 
solution, 0 0( , )x  , which is characterized by the first-order conditions,  

 
(A2.8.44) 0 0 0 00 ( , ) [ 2 ]x L x b Ax D       

 
(A2.8.45) 0 00 ( , )L x Dx       
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which are seen to reduce precisely to (A2.8.16) and (A2.8.17) for the case of a single 
constraint. Hence the solution is quite similar. Again we start by using the 
nonsingularity of A to solve for 0x  in (A2.8.44) as 

 
(A2.8.46) 11

0 0 0 022 ( ) ( )Ax D b x A D b           , 

 
and then use (A2.8.46) to solve for 0 : 

 
(A2.8.47) 1 1 11

0 0 02 ( ) 2 ( )Dx DA D b DA D DA b               

 
                              1 1 1

0 ( ) ( 2 )DA D DA b        

 
Substitution of (A2.8.47) into (A2.8.46) then yields the following solution for 0x : 

 

(A2.8.48) 1 1 1 11
0 2 ( ) ( 2 )x A D DA D DA b b          

 
A2.8.3 Solution for Universal Kriging 
 
We now apply these results to the case of Universal Kriging. As with Ordinary Kriging 
above, we proceed in two steps. Given the linear model 
 
(A2.8.49)      , ~ (0, )Y X N V     
 
we first determine the unique BLU estimator of  , and then use this to interpret the 
solution of the optimal weight vector problem. But in this case, the first step is a of 
major interest in itself, and in fact yields an important characterization of Generalized 
Least Squares estimation.  
 
Best Linear Unbiased Estimation of  
 
Here we proceed to show that the GLS estimator for   as developed in Section 7.1.2 of 
the text is a BLU estimator as defined there. Moreover, since this argument is required 
to hold for all possible linear compounds, 1ka  , it suffices to pick a representative 
compound, a , and consider the problem of finding that estimator of   in the set of 
linear unbiased estimators, 
 

(A2.8.50)  ( ) ( , , ) :[ ]&[ ( ) ]aLU X V Y a Y E a a                 

 
with smallest variance. The solution to this problem will show that this estimator is 
always given by the GLS estimator, 
 

(A2.8.51) 1 1 1ˆ ( )X V X X V Y      
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To do so we can construct the appropriate constrained minimization problem as 

follows.16 If we choose any estimator, ( )aLU  , then linearity require that for some 

weight vector,   [which may depend on ( , , )a X V ] we must have 
 

(A2.8.52) a Y     
 
Moreover, the unbiased condition requires that 
 

(A2.8.53)      ( ) ( ) ( )a E a E Y E Y X                 
 

But this can only hold for all possible values of   if a X   , or equivalently, 
 

(A2.8.54)  X a   
 

Moreover, since the variance of Y  is given by 
 

(A2.8.55)   var( ) cov( ) cov( )Y Y V                    
 

it follows that weight vector,  , of the desired BLU estimator must solve the 
constrained minimization problem: 
 

(A2.8.56)    minimize: V        subject to:  X a      
 
But since this is the special case of (A2.8.42) with ( 0, 0, , , )c b A V D X a     , it 

follows from (A2.8.48) that optimum values of   for compound a  is given by 
 

(A2.8.57) 1 1 11
2 ( ) (0 2 ) 0a V X X V X a       

   1 1 1( )V X X V X a    

 

and hence that the corresponding linear estimator in (A2.8.50), say a  satisfies 

 

(A2.8.58) 1 1 1 ˆ( )aa Y a X V X X V Y a              

 
Finally, since this holds identically for all linear compounds, a , we see that the unique 
estimator satisfying all these conditions is given precisely by the GLS estimator. To 
make this precise, observe that by setting a equal to the thi column, ie , of 1kI  for each 

1,.., 1i k   [as in (3,2,16) of the text], it must follow from (A2.8.58) that  
 

(A2.8.59)     ˆ ˆ , 1,.., 1
i ie i e i ii

e e i k           

                                                 
16 Our present approach is based on the development in Searle (1971, Section 3.3.d). 
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and hence that all components of ̂  are uniquely identified by these particular choices 
of a.   
 
Finally, it should be noted that this result is usually referred to as the Gauss-Markov 
Theorem in the literature.17 The above constrained minimization approach thus yields a 
constructive proof of this theorem. 
 
Best Linear Unbiased Prediction of Y(s0) 
 
Next we derive the solution of the constrained minimization problem for Universal 
Kriging in expression (7.2.12) of the text: 
 
(A2.8.60)    minimize:  2

0 0 0 0 02c V           subject to:  0 0 0X x   

 
Since this is now seen to be an instance of the general constrained minimization 
problem (A2.8.42) with ( 2

0 0 0 0, 2 , , , )c b c A V D X x       , it follows from 

(A2.8.48) that 
 

(A2.8.61)    1 1 1 11
0 0 0 0 0 0 0 0 0 0 02

ˆ ( ) ( 2 2 ) 2V X X V X X V c x c            

  
                         1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0( ) ( )V X X V X x X V c V c         

 
Hence the BLU predictor of 0Y  is given by 

 

(A2.8.62)    1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0

ˆˆ ( ) ( )Y Y x X V c X V X X V Y c V Y               

 
                                   1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0( ) ( )x X V c X V X X V Y c V Y            

 
                                   1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0( )( )x c V X X V X X V Y c V Y                                       

 
                                   1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0( ) [ ( ) ]x X V X X V Y c V Y X X V X X V Y               

 
 
Standard Error of Prediction 
 
Finally, to determine the prediction error variance for Universal Kriging, one must 

substitute 0̂  into the general expression for the prediction error variance [as given by 

the objective function in (8.2.60)], to obtain: 
 

                                                 
17 See for example Section 4.4 in Green (2003). 
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(A2.8.63)  2 2
0 0 0 0 0 0 0

ˆ ˆ ˆˆ var( ) 2e c V          

 

To evaluate 2
0̂ , it is convenient to simplify the expression for 0̂  in (A2.8.61) as 

follows. If we now let 
 
(A2.8.63) 1 1

0 0 0 0( )X V X     ,  and 

 
(A2.8.64) 1

0 0 0 0 0x X V c    , 

 

then 0̂  can be written as 

 

(A2.8.65) 1 1
0 0 0 0 0 0 0

ˆ V X V c      

 
Then second term in (A2.8.63) becomes 
 

(A2.8.66) 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ˆ2 2 2 2c c V X V c c V X c V c                 

 
and the third term becomes 
 

 (A2.8.67)    1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ˆ ˆ ( ) ( )V V X V c V V X V c             

 
                         1 1

0 0 0 0 0 0 0 0 0 0( ) ( )V X V c X c         

 
                                 1 1

0 0 0 0 0 0 0 0 0 0( )( )X V c V X c          

 
                                  1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0( )X V X X V c c V X c V c                    

 
But since the two center terms are the same, and since 

0

1
0 0 0 0( ) nX V X I   by (A2.8.63), 

we see that, 
 

(A2.8.68) 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0

ˆ ˆ 2V X V c c V c                

 
Finally, by substituting (A2.8.66) and (A2.8.67) into (A2.8.63) and cancelling terms, 
we obtain an explicit expression for prediction error variance: 
 
(A2.8.69) 2 2 1

0 0 0 0 0 0 0ˆ c V c         

 
                           2 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0( ) ( ) ( )c V c x X V c X V X x X V c               
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In addition, since it is clear from a comparison of (A2.8.25) and (A2.8.60) that  
Ordinary Kriging is simply the special case of Universal Kriging in which 0 1x   and 

00 1nX  , it follows (A2.8.68) that prediction error variance for Ordinary Kriging is 

given by  
 
(A2.8.70) 

0 0 0 0

2 2 1 1 1 1 1
0 0 0 0 0 0 0 0 0ˆ (1 1 ) (1 1 ) (1 1 )n n n nc V c V c V V c                

 

                          0

0 0

1 2
0 02 1

0 0 0 1
0

(1 1 )

1 1
n

n n

V c
c V c

V








  


 

 
 
 


