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10. Comparative Tests among Spatial Regression Models 
 
While the notion of relative likelihood values for different models is somewhat difficult 
to interpret directly (as mentioned above), such likelihood ratios can in many cases 
provide powerful test statistics for comparing models. In particular, when two models are 
“nested” in the sense of expression (9.4.1) above, it turns out that the asymptotic 
distribution of such ratios can be obtained under the (null) hypothesis that the simpler 
model is the true model. To develop such tests, we begin in Section 10.1 below with a 
simple one-parameter example where the general ideas to be developed can be given an 
exact form. 
 
10.1  A One-Parameter Example 
 
Here we revisit the example in Section 8.1 of estimating the mean of a normal random 
variable, 2( , )Y N   , with known variance, 2 , given a sample, 1( ,.., )ny y y , of size 
n. The relevant likelihood function is then given by expression (8.1.1) as 
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and the resulting maximum-likelihood estimate of  , is again seen from expression 

(8.1.2) to be precisely the sample mean, ˆn ny  . 
 

But rather than simply estimating  , suppose that we now want to test whether 0  , or 

more generally to test the null hypothesis, 0 0:H   , for some specified value, 0 . 

Then under 0H  the likelihood value in (10.1.1) becomes: 
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As shown in Figure 10.1 below, it seems reasonable to argue that the likelihood of 0  

relative to the maximum likelihood at ˆn  should provide some indication of the strength   
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of evidence in sample y  for (or against) hypothesis 0H . In terms of log likelihoods, such 

relations are expressed in terms of the difference between ˆ( )nL   and 0( )L  . But 
following standard conventions, we here refer to such log-differences as likelihood ratios.  
Moreover, since 0ˆ( ) ( )nL L   by definition, it is natural to focus on the nonnegative 

difference, 0ˆ( ) ( )nL L  . If the distribution of 0ˆ( ) ( )nL L   can be determined under 

0H , then this statistic can be used to test 0H . In particular, if 0ˆ( ) ( )nL L   is 

“sufficiently large”, then this should provide statistical grounds for rejecting 0H . With 
this in mind, observe that by canceling the common terms in the log likelihood 
expressions, and recalling that ˆn ny  , we see that this likelihood ratio can be written as 
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Thus it follows that 
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But under the null hypothesis, 0H , the standardized mean in brackets is standard normal: 
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So the right-hand side of (10.1.4) is distributed as the square of a standard normal variate, 
which is known to have a chi square distribution, 2

1 , with one degree of freedom, i.e., 
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where the density of 2

1  is plotted on the right. So we may conclude that this likelihood-

ratio statistic is chi-square distributed (up to a factor of 2) as: 
 
 
(10.1.7) 2
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[As mentioned in Section 9, this factor of 2 is closely related to the same factor appearing 
in the penalized likelihood functions developed there.]  
 

Note that we are implicitly comparing two models here, one with a single free parameter 
(  ) and the other a “nested” special case where   has been assigned a specific value, 

0  (typically, 0 0  ). But the same likelihood-ratio procedure can be used for much 
more general comparisons between a “full” model and some special case, denoted as the 
“restricted” model. Here we simply summarize the main result. Suppose that the full 
model is represented by a log likelihood function, ( | )L y , with parameter vector, 

1( ,.., )K   , and that the restricted model is defined by imposing a set of m K  

restrictions on these parameters that are representable by a vector, ( : 1,.., )jg g j m  , of 

(smooth) functions as relations of the form, 
 

(10.1.8) ( ) 0 , 1,..,jg j m    
 

In our simple example above, there is only one relation, namely, 1 0( ) 0g      . If 

the maximum-likelihood estimate for full model is denoted by ̂ , and if the maximum-

likelihood estimate, ĝ , for the restricted model is taken to be the (unique) solution of the 

constrained maximization problem, 
 

(10.1.9) { : ( ) 0}
ˆ( | ) max ( | )g gL y L y    

 

then it again follows that the relevant likelihood-ratio statistic, ˆ ˆ( | ) ( | )gL y L y  , is 

nonnegative. In this more general setting, if it is hypothesized that the restricted model is 
true (i.e., that the true value of   satisfies restrictions, g ), then under this null hypothesis 

it can be shown1 that ˆ ˆ( | ) ( | )gL y L y   is now asymptotically chi square distributed (up 

to a factor of 2) with degrees of freedom, m , equal to the number of restrictions defined 
by g : 

 

(10.1.9) 2ˆ ˆ2[ ( | ) ( | )] ~g mL y L y    

 

                                                 
1 This result, known as Wilk’s Theorem, is developed, for example, in Section 3.9 of the online Lecture 
Notes in Mathematical Statistics (2003) by R.S. Dudley at MIT (http://ocw.mit.edu/courses/mathematics/ 
18-466-mathematical-statistics-spring-2003/lecture-notes/). 
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This family of likelihood-ratio tests provides a general framework for comparing a wide 
variety of “nested” models. Moreover, as in the one-parameter case of (10.1.7) above, the 
basic intuition is essentially the same for all such tests. In particular, since the full 

maximum likelihood, ˆ( | )nL y , is almost surely larger than the restricted maximum 

likelihood, ˆ( | )gL y , the only question is whether it is “significantly larger”. If so, then it 

can be argued that the restricted model should be rejected on these grounds. If not, then 
this suggests that the full model adds little in the way of statistical substance, and thus (by 
Occam’s razor) that the simpler restricted model should be preferred. For example, in the 
OLS case above, the key question is whether a given parameter, such as 1 , is 
significantly different from zero (all else being equal). If so, then this indicates that the 
larger model including variable, 1x , yields a better predictor of y than the same model 

without 1x .2  In the following sections, we shall employ this strategy to compare the SE-
model and SL-model from a number of perspectives. 
 
10.2  Likelihood-Ratio Tests against OLS 
 
Here we begin by observing that since SEM and SLM are “non-nested” models in the 
sense that neither is a special case of the other, it is not possible to compare them directly 
in terms of likelihood-ratio tests. But since OLS is precisely the “ 0  ” case of each 
model, both SEM and SLM can be compared with OLS in terms of such tests. Thus, by 
using OLS as a “benchmark” model, we can construct an indirect comparison of SEM 
and SLM. For example, if the improvement in likelihood of SEM over OLS is much 
greater than that of SLM over OLS for a given data set, ( , )y X , then in this sense it can 
be argued that SEM provides a better model of ( , )y X  than does SLM.  
 
To operationalize such comparisons, we start with SEM and for a given data set, ( , )y X , 

let 2ˆ ˆˆ( , , )SEM SEM SEM    denote the maximum likelihood estimates obtained using the SEM 

likelihood function, 2( , , | , )L y X   , in (7.3.4) above [as in expressions (7.3.10) 
through (7.3.12)]. Then the corresponding SEM maximum-likelihood value can be 
denoted by:  
 

(10.2.1) 2ˆˆ ˆˆ( , , | , )SEM SEM SEM SEML L y X    
 

Similarly, if for OLS we let 2ˆ ˆ( , )OLS OLS   denote the maximum-likelihood estimates in 
(7.2.6) and (7.2.9) obtained for ( , )y X  by maximizing (7.2.4), then the corresponding 
OLS maximum-likelihood value can be denoted by 
 

(10.2.2)   2ˆˆ ˆ( , | , )OLS OLS OLSL L y X   

                                                 
2 One may ask how this likelihood-ratio test in the OLS case relates to the standard (Wald) tests of 
significance, such as in expression (8.4.12) above (with 0  ). Here it can be shown [as for example in 

Section 13.4 of Davidson and MacKinnon (1993)] that these tests are asymptotically equivalent. 
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Finally, since the likelihood function in (7.2.4) is clearly the special case of (7.3.4) with 
0   [or more precisely, with 2

1( , , )g      in (10.1.8) ], it follows from the general 
discussion above that under the null hypothesis, 0  , it must be true that the likelihood 

ratio, /
ˆ ˆ2[ ]SEM OLS SEM OLSLR L L  , is distributed as chi square with one degree of 

freedom, i.e., that 
 

(10.2.3) 2
/ 1

ˆ ˆ2[ ] ~SEM OLS SEM OLSLR L L    

 

Similarly, if 2ˆ ˆˆ( , , )SLM SLM SLM    denotes the maximum likelihood estimates obtained using 

the SLM likelihood function, 2( , , | , )L y X   , in (7.4.2) above [as in expressions 
(7.4.12) through (7.4.14) ], then we may denote the resulting SLM maximum-likelihood 
value by:  
 

(10.2.4) 2ˆˆ ˆˆ( , , | , )SLM SLM SLM SLML L y X    
 
Then in the same manner as (10.2.3), it follows that under the null hypothesis that 0   
for SLM, we also have 
 

 

(10.2.5) 2
/ 1

ˆ ˆ2[ ] ~SLM OLS SLM OLSLR L L    

 
 

For the Eire case, these two likelihood ratios and associated p-values are reported in 
Figure 7.7 as 
 

 
(10.2.6) / 7.375 ( .0066)SEM OLSLR LR Pval     
 
and 
  
(10.2.7) / 15.803 ( .00007)SLM OLSLR LR Pval     
 
 

So for example, if OLS were the correct model, then the chance of obtaining a likelihood 
ratio, /SLM OLSLR , as large as 15.803 would be less than 7 in 100,000. Moreover, while the 

p-value for /SEM OLSLR  is also quite small, it is relatively less significant than for SLM. 
Thus a comparison of these p-values provides at least indirect evidence that SLM is more 
appropriate than SEM for this Eire data. 
 

But given the indirect nature of this comparison, it is natural to ask whether there are any 
more direct comparisons. One possibility is developed below, which will be seen to be 
especially appropriate for the case of row normalized spatial weights matrices. 
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10.3 The Common-Factor Hypothesis 
 
Here we start by recalling from Section 6.3.2 that if X  and   are partitioned as 

[1 , ]n vX X  and 0( , )v    , respectively, then an alternative modeling form is 
provided by the Spatial Durbin model (SDM), 
 
(10.3.1) 2

01 , ~ (0, )n v v v nY WY X WX N I            

 
But this model can be viewed as a special case of the SLM model in the following way. If 
we group terms in (10.3.1) by letting [1 , , ]SDM n v vX X WX and (1 , , )SDM n v       so that 
 

(10.3.2) 
0

0[1 ] 1SDM SDM n v v v n v v vX X WX X WX


    

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

 

 , 

 

then (10.3.1) can be rewritten as, 
 

 
(10.3.3) 2, ~ (0, )SDM SDM nY WY X N I        

 
 

which is seen to be an instance of SLM in expression (6.2.2).  
 
Moreover, if W is row normalized, then SEM can in turn be viewed as a special case of 
SDM. To see this, observe first that the reduced form of SEM in expression (6.1.9) can be 
expanded and rewritten as follows: 
 
(10.3.4) 1( )nY X I W      
 
                        ( ) ( )n nI W Y I W X         
 
                        ( )Y WY X WX         
 
                        Y WY X WX          
 
So by employing the notation in (10.3.1), we see that 
 
(10.3.5) 0 0[ 1 ] [ 1 ]n v v n v vY WY X W X             
 
                        0 01 [ 1 ]n v v n v vWY X W WX             
 
Finally, if W is row normalized, then by expression (3.3.30) it follows that 1 1n nW  . So 

by letting 0 0(1 )b    , and grouping the two unit vector terms, we see finally that the 
SEM model in (10.3.4) becomes 
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(10.3.6) 01 ( )n v v v vY WY b X WX         
 
which is precisely SDM in (10.3.1) under the condition that  
 
(10.3.7) v    
 
This condition is usually formulated as a null hypothesis, designated as the Common 
Factor Hypothesis, and written as  
 
 
(10.3.8) : 0CF vH     
 
 

Under this hypothesis, it follows that SEM is formally a restriction of SDM in the sense 
of expression (10.1.8), where the relevant vector, g, of restriction functions is now given 
by 2

0( , , , , )v vg         . The number of restrictions (i.e., dimension of g) is here 
simply the number of explanatory variables, k . Given this relationship, one can then 
employ likelihood-ratio methods to test the appropriateness of SDM versus SEM. To do 

so for any given any data set, ( , )y X , we now let 2ˆ ˆˆ( , , )SDM SDM SDM    denote the 
maximum likelihood estimates obtained by applying the SLM likelihood function, 

2( , , | , )SDML y X   , in (7.4.2) to the SLM form of SDM in (10.3.3) above. In these 
terms, the resulting SDM maximum-likelihood value is then given by:  
 

(10.3.9) 2ˆˆ ˆˆ( , , | , )SDM SDM SDM SDML L y X    
 

Finally, if we let 2ˆˆ ˆˆ( , , | , )SEM SEM SEM SEML L y X    denote the maximum-likelihood value 
of the SE-model in (10.3.6) [viewed as an SD-model restricted by (10.3.8)], then under 
the SEM null hypothesis, we now have 
 

(10.3.10) 2
/

ˆ ˆ2[ ] ~SDM SEM SDM SEM kLR L L    

 
where again, k, is the number of explanatory variables in SEM. The results of this 
comparative test are part of the SEM output, denoted by Com-LR. For the case of Eire, 
the result reported in Figure 7.7 is 
 
(10.3.11) 18.427035 ( 0.000018)Com-LR =   Pval =  
 
and shows that SDM fits this Blood Group data far better than SEM. This can largely be 
explained by noting from (10.3.2) and (10.3.3) that the reduced form of the SDM model 
is given by 
 
(10.3.12) 1 1

0( 1 )n v v vY B X WX B          
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and thus contains the  Rippled Pale term, 1 1

1( )v vB X B x    , which was shown to yield 

a striking fit to this data. So a strong result is not surprising in this case.  
 
Finally, it should be noted that while the above analysis has focused on row-normalized 
matrices in order to interpret the “SLM version” of SEM as a Spatial Durbin model, this 
restriction can in principle be relaxed. In particular, when 1 1n nW  , it is possible to treat 

the vector, 1nW , as representing the sample values of an additional “explanatory 
variable” and thus modify (10.3.2) to  
 

(10.3.13) 

0

0 0
0

[1 1 ] 1 1v
SDM SDM n v n v n v v n vX X W WX X W WX


    






    
 

 

 

 
With this addition, SEM can still be viewed formally as an instance of SLM. Moreover, if 
the additional restriction, 0 0 0   , is added to yield a set of 1k   restrictions, then 

this new likelihood ratio must now be distributed as 2
1k   under the null hypothesis of 

SEM. So while the problematic nature of this artificial “explanatory variable” 
complicates the interpretation of the resulting test, it can still be argued that the presence 
of the spatial lag term, WY , suggests that SLM may yield a better fit to the given data 
than SEM.  
 
10.4 The Combined-Model Approach 
 
A final method of comparing SEM and SLM is provided by the combined model (CM) 
developed in Section 6.3.1 above, which for any given spatial weights matrix, W, can be 
written as [see also expression (6.3.3) ]: 
 
(10.4.1) 2, , ~ (0, )nY WY X u u Wu N I           

 
Here is clear that SEM is the special case with 0  , and SLM is the special case with 

0  . So these two models are seen to lie “between” OLS and the Combined Model, as 
in Figure 10.2 below: 
 
 
 
 
 
 
 
 
 

Figure 10.2.  Model Relations 

Combined Model 

SEM SLM 

OLS 
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In the same way that OLS served as a “lower” benchmark for comparing SEM and SLM, 
the Combined Model can thus serve as an “upper” benchmark. Here the only issue is how 
to estimate this more complex model. To do so, we start by observing from (6.3.4) that 
the reduced form of this model can be written as: 
  
(10.4.2) 2, ~ (0, )Y X N V         

 
where 
 
(10.4.3)       1( )nX I W X     

 
(10.4.4) 1 1( ) ( )n nI W I W        

 
(10.4.5) 1 1 1 1( ) ( ) ( ) ( )n n n nV I W I W I W I W              

 
So it should be clear that this model is simply another instance of GLS, where in this case 
conditioning is on the pair of spatial dependence parameters,   and  .  So for the 

parameter vector, 2( , , , )     , the corresponding likelihood function takes the form: 
 
(10.4.6)     2 1

2
1 1

2 2 2 2
( | ) log(2 ) log( ) log | | ( ) ( )n nL y V y X V y X               

 
and the corresponding conditional maximum-likelihood estimates for   and 2  given 
  and   now take the respective forms: 
 

(10.4.7) 1 1 1ˆ ( )X V X X V y           

 

(10.4.8) 2 11 ˆ ˆˆ ( ) ( )n y X V y X           

 
By substituting (10.4.7) and (10.4.8) into (10.4.6), we may then obtain a concentrated 
likelihood function for   and  , denoted by: 
 

(10.4.9) 2ˆ ˆ( , | ) ( , , , | )cL y L y        

 
Finally, by maximizing this two-dimensional function to obtain maximum-likelihood 

estimates, ̂  and ̂ , we can substitute these into (10.4.7) and (10.4.8) to obtain the 

corresponding maximum-likelihood estimates, ˆˆ
ˆ


  and 2
ˆˆ

ˆ


 . This estimation procedure 

is programed in the MATLAB program, sac.m, (Spatial Autocorrelation Combined) 
written by James Lesage, and can be found in the class directory at: 
 
>>  sys502/Matlab/Lesage_7/spatial/sac_models 
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While the parameter estimates, ̂  and ̂ , obtained by this procedure often tend to be 
collinear (in view of their common role in modifying the same weight matrix, W), the 
corresponding maximum-likelihood value,   
 

(10.4.10) 2
ˆ ˆˆ ˆ

ˆ ˆˆ ˆˆ( , , , | )CML L y      

 
continues to be well defined and numerically stable. This value can thus be used to test 
the relative goodness of fit of the two restricted models, SEM and SLM. In particular, it 
follows by the same arguments as above that under the SEM null hypothesis ( 0  ) we 
have 
 

(10.4.11) 2
/ 1

ˆ ˆ ˆ2[ ] ~CM SEM CM SEML L L    

 
and similarly, that under the SLM null hypothesis ( 0  ) we have 
 

(10.4.11) 2
/ 1

ˆ ˆ ˆ2[ ] ~CM SLM CM SLML L L    

 
The results of these respective tests for the Eire case are as follows: 
 
(10.4.12) / 10.92 ( .0009)CM SEMLR Pval   
 
 
(10.4.13) / 2.49 ( .1145)CM SLMLR Pval   
 
 

Thus the Combined Model is seen to yield a significantly better fit than SEM, but not 
SLM. So relative to this CM benchmark, it can again be concluded that SLM yields a 
better fit to the Eire data than does SEM. 




