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2. Modeling the Spatial Structure of Areal Units 
 
Aside from data aggregations, the second major difference between continuous and areal 
data models concerns the representation of spatial structure itself. In particular, while 
“distance between points” for any given units of measure (straight-line distance, travel 
distance, travel time, etc.) is fairly unambiguous, the same is not true for “distance 
between areal units”. As mentioned above, the standard convention here is to identify 
representative points for areal units, the most typical being areal centroids (as defined 
formally below). In fact, these centroids serve as the default option in ARCMAP for 
constructing such representative points [refer to Section 1.2.9 in Part IV of this 
NOTEBOOK]. But in spite of the fact that these points constitute the so-called 
“geometric centers” of each areal unit, they can sometimes be quite misleading in terms 
of distance relations between areal units.  
 
An example is given in Figure 1.13 below, which involves three areal units, 1R , 2R , and 

3R . Here it might be argued that since units 2R  and 3R  are spatially separated, but are 

each adjacent to 1R , they are both “closer” to (or exhibit a “stronger tie” to) unit 1R  than 

to each other. However, the centroids of these three units, shown by the black dots in 
Figure 1.14, are equidistant from one another. Thus all of these spatial relations are lost 
when “closeness” is summarized by centroid distances. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In particular, this suggests that the shapes of areal units also contain important 
information about their relative proximities, even though they are much more difficult to 
quantify. We shall return to this question below. 
 
In addition to these geometric issues, there are other non-spatial properties of areal units 
that influence their “closeness” in terms of human interactions. For example, it is often 
observed that the opposite coasts in the US are relatively “close” to one another in terms 
of human interactions (such as phone calls or emails). More generally, there tends to be 
more interaction between states with large cities (such as those shown in Figure 1.15) 
than would be expected on the basis of their separation in geographical space. For 
example, such cities tend to contain relatively large professional populations conducting 
business between cities.  

Figure 1.13. Areal Units Figure 1.14. Centroid Distances 
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But while such socio-economic linkages between areal units may indeed be relevant for 
many applications, we shall restrict our present analysis to purely geometric notions of 
“closeness”. The main justification for this is that we are primarily interested in modeling 
unobserved residual effects in regression models involving areal units. So these measures 
of closeness are designed solely to capture possible spatial autocorrelation effects. 
Indeed, it can be argued that potentially relevant socio-economic interactions between 
units (such a communication and travel flows) should be part of the model, and not the 
residuals. 
 
2.1 Spatial Weights Matrices 
 
To model spatial relations between areal units, we now let n denote the number of units 
to be considered, so that the region of interest, say R   Continental US, is partitioned 
into areal units, { : 1,.., }iR R i n  , say the 48n   states in R  (as in Figure 1.15 above). 

Our basic hypothesis is that the relevant degree of “closeness” or “proximity” of each 
areal unit jR  to unit iR  (or alternatively, the “spatial influence” of jR  on iR ) can be 

represented by a numerical weight, 0ijw  . where higher values of ijw denote higher 

levels of proximity or spatial influence. Under this hypothesis, the full set of such spatial 
relations can be represented by a single nonnegative weight matrix: 
 

(2.1.1) 
11 1

1

n

n nn

w w

W

w w


 

 
 


  


 

 
Notice in particular that while the distance between a point and itself is naturally zero, 
this need not be true for areal units. For example, if ijw  were to represent the average 

distance between all cities in states i  and j (possibly weighted by population sizes) then 
since the average distance between cities within each state i  is certainly positive, one 

Figure 1.15. Cities above 500,000 
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must have 0iiw   for all 1,..,i n .. So in general, any nonnegative matrix can be a 

spatial weights matrix.  
 
However, certain special structural properties of such matrices are quite common. For 
example, if distance itself is measured symmetrically, i.e., if ( , ) ( , )d x y d y x  for all 
locations x and y (as with Euclidean distance), then weight measures such as the average 
distance between cities in states i  and j  will also be symmetric, i.e., ij jiw w . So, much 

like covariance matrices, many spatial weights matrices will be symmetric matrices. 
 
Moreover, while diagonal weights, iiw , can in principle be positive (as in the city 

example above), it will often be convenient for analysis to set 0iiw   for all 1,..,i n . In 

particular, when ijw  is taken to reflect some notion of the “spatial influence” of unit j on 

unit i , then we set 0iiw   in order to avoid “self-influence”. This will become clearer in 

the development of spatial autoregression models in Section 3 below. 
 
Many of the most common spatial weights are based on distances between point 
representations of areal units. So before developing these weight functions, it is 
convenient to begin with a more detailed consideration of point representations 
themselves. 
 
2.1.1 Point Representations of Areal Units 
 
If distances between areal units, , 1.,,iR i n , are to be summarized by distances between 

representative “central” points, i ic R , then it is natural to require that ic  be “close” to 

all other points in iR . This leads to certain well posed mathematical definitions of such 

representative points.1 Perhaps the simplest is the “spatial median” of an areal unit, R , 
which is which is defined to be the point, c, with minimum average distance to all points 
in R . If the area of  R   is denoted (as in Section 2.1 of Part I) by 
 

(2.1.2) ( )
R

a R dx    , 

 
then the spatial median, c , of R  (with respect to Euclidean distance) is given by the 
solution to 
 

(2.1.3) 1
( )min || ||c Ra R x c dx  

 
But while this point is well defined and is easily shown (from the convexity properties of 
this programming problem) to be unique, it is not identifiable in closed form. Even if R  
is approximated by a finite grid of points, the solution algorithms for determining spatial 

                                                 
1 Here we ignore other possible reference points (such as the capital cities of states or countries) that might 
be relevant in certain applications. 
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medians are computationally intensive. For this reason, we shall not use spatial medians 
for reference points. However, it is still of interest to note that if R  were approximated by 
some finite grid of points, { : 1,.., }n iR x i n  , (say the set of raster pixels inside an 

ARCMAP representation of R ), then the spatial median of this set, nR , can in fact be 

calculated in ARCMAP using the ArcToolbox command: Spatial Statistics Tools > 
Measuring Geographic Distributions > Median Center. 
 
Spatial Centroids 
 
But in view of these computational complexities, a far more popular choice is the spatial 
“centroid” of R , which minimizes the average squared distance to all points in R . More 
formally, the centroid, c, of R  is given by the solution to: 
 

(2.1.4)  21
( )min || ||c Ra R x c dx  

 
The advantage of using squared distances is that this minimization problem is actually 
solvable in closed form. In particular, by recalling that 2|| || 2x c x x x c c c      , and that 
the minimum of (2.1.4) is given by its first-order conditions [as for example in Section 
A2.7 of the Appendix to Part II], we see in particular that 
 

(2.1.5) 1
( )0 ( 2 )c Ra R x x x c c c dx         
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    1
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which is simply the average over all locations, x R . So the coordinate values of 

1 2( , )c c c  are precisely the average values of coordinates, 1 2( , )x x x ,  over R .  In more 

practical terms, if one were to approximate R  by a finite grid of points, 
{ : 1,.., }n iR x i n  , in R  as mentioned above for spatial medians, then the centroid 

coordinates, 1 2( , )c c c , are well approximated by 

 
(2.1.6) 1 , 1,2

n
i ix Rnc x i


     
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For this reason, the centroid of R  is also called the spatial mean of R . Such spatial means 
can be calculated (for finite sets of points) in ARCMAP using the ArcToolbox 
command: Spatial Statistics Tools > Measuring Geographic Distributions > Mean 
Center. 
 
Computation of Centroids 
 
But while this view of centroids is conceptually very simple and intuitive, there is in fact 
a much more efficient and exact way to calculate centroids in ARCMAP. In particular, 
since areal units R  are defined as polygon features with finite sets of vertices (in a 
manner paralleling the matrix representations of polygon boundaries in MATLAB 
discussed in Section 3.5 of Part I), one can actually calculate the exact centroids of these 
polygons with rather simple geometric formulas. Since the derivation of these formulas is 
well beyond the scope of these notes, we simply record them for completeness.2 If we 
proceed in a clockwise direction around a given polygon, R , and denote its vertex points 
by 1 2( , ) , 1,..,i ix x i n  [where by definition, 1 1( , ) ( , )n nx y x y ], then the area of R  is 

given by 
 

(2.1.7) 
1

1, 1 2 1 2, 11
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2( ) ( )

n

i i i ii
a R x x x x


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and the centroid coordinates, 1 2( , )c c c , are given by 

 

(2.1.8) 
1

1 2 1, 1 2 1, 2, 11
1

6 ( ) ( )( ) , 1,2
n

j i i i i i iia Rc x x x x x x j


 
     

 
These formulas are implemented in the MATLAB program, centroids_areas.m. If the 
boundary file (in MATLAB format) for a given system of areal units, { : 1,.., }iR R i n  , 

is denoted by bnd_R, then the 2n  matrix, C, of centroid coordinates and the n -vector, 
A, of corresponding areas can be obtained with the command,3  
 
>> [C,A] = centroids_areas(bnd_R); 
 
These are precisely the same formulas used for calculating areas and centroids in the 
“Calculate Geometry” option in ARCMAP, using the procedures outlined in Sections 
1.2.8 and 1.2.9 of Part IV of this NOTEBOOK. 
 
Displaying Centroids 
 
One can display these centroids in ARCMAP by opening the Attribute Table containing 
the centroids calculated above and using Table Options > Export… to save this table as 

                                                 
2 Full derivations of (2.7) and (2.8) require an application of Green’s Theorem, and are given in expressions 
(31),(33) and (34) of Steger (1996). Here it should be noted that the signs in Steger are reversed, since it is 
there assumed that vertices proceed in a counterclockwise direction. 
3 A more general MATLAB program of this type can be downloaded at the web site:  
http://www.mathworks.com/matlabcentral/fileexchange/319-polygeom-m. 
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say centroids.dbf. When prompted to add this data to the existing map, click OK. If you 
right click on this new entry in the Table of Contents and select Display XY Data, then 
the centroids will now appear on the map. If you wish to save these centroids, right click 
on the new “centroid events” entry in the Table of Contents and use Data > Export 
Data. Finally, if you save to the map as centroids.shp, then you can edit this copy as a 
permanent file. This procedure was carried out for the Eire map in Figure 1.7 above, and 
is shown in Figure 1.16 below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Before proceeding to spatial weights based on centroid distances, it is important to stress 
some of the limitations of this centroid-distance characterization of closeness between 
areal units. As was illustrated in Figures 1.13 and 1.14 above, such point representations 
can often ignore important shape relations between areal units. As seen in the Eire case, 
for example, the actual boundary relations among these counties are quite complex. In 
addition, while we usually refer to the centroid of a given areal unit by writing, i ic R , it 

not necessarily true that point, ic , is actually an element of iR . This is obvious for cases 

like the state of Hawaii, where the relevant areal unit is itself a string of disconnected 
islands. But in fact such problems may exist even for spatially connected areal units, such 
as the example of a “river shore” area, R , shown (in yellow) in Figure 1.17 below. Here 
the centroid of this area (shown in red) is not only outside of R, but is actually on the 
other side of the river. So it is important to remember that while such locations are indeed 
closest (in squared distance) to all points of R, the shape of R itself may dictate that such 
locations lie outside of R. However, it must also be stressed that these are very 
exceptional cases. Indeed, while the county boundaries in Eire are very complex, each 
centroid in Figure 1.16 is seen to be contained in its respective county. 
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Figure 1.16. Eire Centroids 
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2.1.2  Spatial Weights based on Centroid Distances 
 
While we shall implicitly assume that point representations, ic , of areal units, iR , are 

based on centroids, the following definitions hold intact for any relevant sets of points 
(such as state capitals or county seats).  Moreover, while centroid distances, 

( , )ij i jd d c c , are implicitly assumed to be Euclidean distances, || ||i jc c , the present 

definitions of spatial weights are readily extendable to other relevant notions of distance 
(such as travel distance or travel time). But it should also be stressed that our present 
conventions are in fact used in most areal data analyses. The following examples of 
spatial weights based on centroid distances extend the list given in [BG. p.261]. 
 
 k-Nearest-Neighbor Weights  
 
Recall from Section 3.2 in Part I that the nearest-neighbor distances defined within and 
between point patterns are readily extendable to centroid distances. However, such 
distance relations can be very restrictive for modeling spatial relations between areal 
units. This is again well illustrated by the Eire example above, where the neighbors of 
Laoghis county are shown in Figure 1.18 below.  
 
 
 
 
 
 
 
 
 
 
 
 

R 

Figure 1.17. Exterior Centroid Example 

!

!

!

!

!

!

Figure 1.18. Nearest Neighbors Example 
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Here it turns out that the nearest neighbor to Laoghis county in centroid distance is Offaly 
county to the north (shown by the red arrow). But it is clear that the neighbors adjacent to 
Laoghis county in all other directions may be of equal importance it terms of spatial 
relations. We shall be more explicit about such adjacency relations below. But in the 
present case, it is clear that we can achieve the same effect by considering the five nearest 
neighbors to this county. (See Section 7.5.1 below for further discussion of this example.)  
 
So to formalize such multiple-neighbor relations, let the centroid distances from each 
areal unit i  to all other units j i  be ranked as follows: 1 2( ) ( ) ( 1)ij ij ij nd d d    . Then 

for each 1,.., 1k n  , the set ( ) { (1), (2),.., ( )}kN i j j j k contains the k  areal units closest 

to i  (where for simplicity we ignore ties). For each given value of k , the k-nearest 
neighbor weight matrix, W , is then defined to have spatial weights of the form:  
 
 

(2.1.9) 
1 , ( )

0 ,
k

ij

j N i
w

otherwise


 


                               

 

 
Note in particular that the values of ijw  for the k-nearest neighbors of i  are higher than 

for other areal units, signifying that these neighbors are deemed to have greater proximity 
to i  (or greater spatial influence on i ) than other spatial units. Similar conventions will 
be used for all weights discussed below. Note also that the common value of these 
weights implicitly assumes that levels of proximity or influence are the same for all k-
nearest neighbors. This constancy assumption will be relaxed for other types of spatial 
weights. 
 
Before proceeding to other weighting schemes, it is also important to note that such 
nearest-neighbor relations are generally asymmetric in nature. For if j  is a k-nearest 
neighbor of i , then it need not be true that i  is a k-nearest neighbor of j , i.e., one may 

have ij jiw w . As seen in Figure 1.19 below, this is true even for 1k  , where 2R  is the 

nearest neighbor of 1R , but 3R  is the nearest neighbor of 2R : 

 
 
 
 
 
 
 
 
 
But in some applications it might be argued that as long as either i  or j  is an “influential 
neighbor” of the other, then i  and j  are “spatially related” in this sense. This symmetric 
k-nearest neighbor relation can be formalized as follows: 
 

1R  2R  3R  

1c  2c  3c  • • • 

Figure 1.19. Asymmetric Nearest Neighbors 
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(2.1.10) 
1 , ( ) ( )

0 ,
k k

ij

j N i or i N j
w

otherwise

 
 


            

 

 
 
Radial Distance Weights  
 
In some cases, distance itself is an important criterion of spatial influence. For example, 
locations “within walking distance” or “within one-hour driving distance” may be 
relevant. Such proximity criteria are usually more relevant for comparing actual point 
locations (such as distances to shopping opportunities or medical services), but are 
sometimes also used for areal data. If d  denotes some threshold distance (or bandwidth) 
beyond which there is no “direct spatial influence” between spatial units, then the 
corresponding radial distance weight matrix, W , has spatial weights of the form:  
 
 

(2.1.11) 
1 , 0

0 ,
ij

ij
ij

d d
w

d d

 
  

          

 

 
 
Power-Distance Weights 
 
In the radial distance weights above there is no diminishing effect of distance up to 
threshold d.  However, if there are believed to be diminishing effects, one common 
approach is to assume that weights are a negative power function of distance of the form 
 
 
 
 

(2.1.12) ij ijw d   
 
 

 
 
where   is some positive exponent, typically 1   (as in the graph)  or 2  . Note that 
expression (2.1.12) is precisely the same as expression (5.2.4) in the interpolation 
discussion of Section 5.2 in Part II. Thus all of the discussion in that section is relevant 
here as well. 
 
 
Exponential-Distance Weights   
 
As in expression (5.2.5) of Part II, the negative exponential alternative to negative power 
functions is also relevant here, and is again defined by:  
 
  

1


d ijd

ijd
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(2.1.13) exp( )ij ijw d   

 
 
 
for some positive exponent,   (such as 1   in the graph). As discussed in that section, 
the negative exponential version is better behaved for short distances, but converges 
rapidly to zero for larger distances.  
 
 
Double-Power-Distance Weights  
 
A somewhat more flexible family incorporates finite bandwidths with “bell shaped” taper 
functions.   If d  again denotes the maximum radius of influence (bandwidth) then the 
class of double-power distance weights is defined for each positive integer k by 
 
 

(2.1.14) 
 1 , 0

0 ,

kk

ij ij
ij

ij

d d d d
w

d d

      
 

  

 
 
where typical values of k  are 2, 3 and 4.  Note that ijw  falls continuously to zero as ijd  

approaches d , and is defined to be zero beyond d . The graph shows the case of a 
quadratic distance function with 2k   (see also [BG, p.85]). 
 
 
2.1.3 Spatial Weights Based on Boundaries 
 
The advantage of the distance weights above is that such distances are easily computed. 
But in many cases the boundaries shared between spatial units can play in important role 
in determining degree of “spatial influence”. The case of Eire in Figures 1.16 is a good 
example. In particular, recall that k-nearest-neighbor weights were in fact motivated by 
an effort to capture the counties surrounding Laoghis county in Figure 1.18. But such 
neighbor distances can at best only approximate spatial contiguity relations (especially 
since areal units can each have different numbers of contiguous neighbors). A better 
approach is of course to identify such contiguities directly. The main difficulty here is 
that the identification of contiguities requires the manipulation of boundary files, which 
are considerably more complex than simple point coordinates. We shall return to this 
issue in Section 2.2.2 below. But for the moment, we focus on the formal task of defining 
contiguity relations. 
 
 
 

1

d

1

ijd


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Spatial Contiguity Weights  
 
The simplest contiguity weights indicate only whether pairs of areal units share a 
boundary or not. If the set of boundary points of unit iR  is denoted by ( )bnd i  then the so-

called queen contiguity weights are defined by 
 
 

(2.1.15) 
1 , ( ) ( )

0 , ( ) ( )ij

bnd i bnd j
w

bnd i bnd j

 
   

 

 
 
However, this allows the possibility that spatial units share only a single boundary point 
(such as a corner point shared by diagonally adjacent cells on a chess board).4 Hence a 
stronger condition is to require that some positive portion of their boundary be shared. If 

ijl  denotes the length of shared boundary, ( ) ( )bnd i bnd j , between i  and j , then these 

so-called rook contiguity weights are defined by 
 
 

(2.1.16) 
1 , 0

0 , 0
ij

ij
ij

l
w

l


  

 

 
 

A simple example of a contiguity weight matrix, W, is given in expression (2.1.22) 
below. 
 
 

Shared-Boundary Weights  
 
As a sharper form of comparison, note that if il defines the total boundary length of 

( )bnd i  that is shared with other spatial units, i.e., j i ijl , then fraction of this length 

shared with any particular unit j  is given by /ij il l . These fractions themselves yield a 

potentially relevant set of shared boundary weights, defined by  
 
 

(2.1.17) ij ij
ij

i ikk i

l l
w

l l


 


 

 
 
 
 

                                                 
4 In fact, the present use of the terms “queen” and “rook” in expressions (2.1.15) and (2.1.16) refer 
precisely to the possible moves of queen and rook pieces on a chess board, where rooks can only move 
through faces between adjacent squares, but the queen can also move diagonally through corners. 
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2.1.4  Combined Distance-Boundary Weights 
 
Finally, it should be evident that in many situations spatial closeness or influence may 
exhibit aspects of both distance and boundary relations. One classical example of this is 
given in the original study of spatial autocorrelation by Cliff and Ord (1969). In 
analyzing the Eire blood-group data, they found that the best weighting scheme for 
capturing spatial autocorrelation effects was given by the following combination of 
power-distance and boundary-shares,  
 

 

(2.1.18) ij ij
ij

ik ikk i

l d
w

l d













 

 
 

with simple inverse-distance, 1  . We shall return to this example in Section 7.5 
below. 
 
 
2.1.5 Normalizations of Spatial Weights 
 
Having defined a variety of spatial weights, we next observe that for modeling purposes 
it is generally convenient to normalize these weights in order to remove dependence on 
extraneous scale factors (such as the particular units of distance employed in exponential 
and power weights). Here there are two standard approaches: 
 
Row-Normalized Weights  
 
Recall that the thi row of W contains all spatial weights influencing areal unit, i , namely 
( : 1,.., )ijw j n  [possibly with 0iiw  ].  So if the positive weights in each row are 

normalized to have unit sum, i.e., if 
 
 

(2.1.19) 
1

1 , 1,..,
n

ijj
w i n


   

 
 
then this produces what called the row normalization of W.5 Note that each row-
normalized weight, ijw , can then be interpreted as the fraction of all spatial influence on 

unit i  attributable to unit j . The appeal of this interpretation has led to the current wide-
spread use of row-normalized weight matrices. In fact, many of the spatial weight 
definitions above are often implicitly defined to be row normalized. The most obvious 
example is that of shared boundary weights in (2.1.17), which by definition are seen to be 
                                                 
5 In cases where 0

ii
w   by definition, it is possible that isolated units, i , may have all-zero rows in W. So 

condition (2.1.19) is only required to hold for those rows, i ,  with 0
j ij
w  . 



  NOTEBOOK FOR SPATIAL DATA ANALYSIS                                      Part III. Areal Data Analysis 
______________________________________________________________________________________ 
 

________________________________________________________________________ 
 ESE 502                                                     III.2-13                                               Tony E. Smith 

row normalized. [Also the combined example in (2.1.18) was defined by Cliff and Ord 
(1969) to be in row-normalized form.] Another simple example is provided by the k-
nearest neighbor weights in (2.1.9) above, which are often defined using weights 1/ k  
rather than 1 to ensure row normalization. A more interesting example is provided by the 
power distance weights in (2.1.12) which have the row-normalized form, 
 
 

(2.1.20) ij
ij

ikk j

d
w

d













  

 
 
These normalized weights are seen to be precisely the Inverse Distance Weighting (IDW) 
scheme employed in Spatial Analyst for spatial interpolation (as mentioned in Section 5.2 
of Part II).  A similar example is provided by exponential distance weights, with row-
normalized form, 
 
 

(2.1.21) 
exp( )

exp( )
ij

ij
ikk j

d
w

d










  

 
 
These weights are also used for spatial interpolation. In addition, it should be noted that 
such normalized weights are commonly used in spatial interaction modeling, where 
(2.1.20) and (2.1.21) are often designated, respectively, as Newtonian and exponential 
models of spatial interaction intensities or probabilities.   
 
 
Scalar Normalized Weights   
 
In spite of its popularity, row-normalized weighting has its drawbacks. In particular, row 
normalization alters the internal weighting structure of W so that comparisons between 
rows become somewhat problematic. For example, consider spatial contiguity weighting 
with respect to the simple three-unit example shown below: 
 
 
 
(2.1.22) 
 
 
 
As represented in the contiguity weight matrix, W , on the right, unit 2 is influenced by 
both 1 and 3, while units 1 and 3 are each influenced only by the single unit 2. Hence it 
might be argued that 2 is subject to more spatial influence than either 1 or 3. But row 
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normalization of W changes this relation, as seen by its row-normalized form, rnW , 

below: 
 
 
 
 
(2.1.23)  
   
 
 
Here the “total” influence on each unit is by definition the same, so that unit 1 now 
influences 2 only “half as much” as 2 influences 1.  While the exact meaning of 
“influence” is necessarily vague in most applications, this effect of row-normalization 
can hardly be considered as neutral.6  
 
In view of this limitation, it is natural to consider simple scalar normalizations, where 
W is multiplied by a single number, say W  , that removes any measure-unit effects but 
preserves relations between all rows of W. For example, if maxw denotes the largest 

element of matrix, W , then the choice,  
 
 

(2.1.24) 
max

1
0

w
    

 
 
provides one such normalization that has the advantage of ensuring that the resulting 
spatial weights, ijw , are all between 0 and 1, and thus can still be interpreted as relative 

influence intensities. 
 
However, for theoretical reasons, it is often more convenient to divide W by the 
maximum eigenvalue, W , of W  (to be discussed in Section 3.3.2 below) and hence to set  

 
 

(2.1.25) 
1

0
W




   

 
 
2.2  Construction of Spatial Weights Matrices 
 
Our primary interest here is to show how spatial weight matrices can be constructed for 
applications in MATLAB. We begin with those spatial weights based on centroid 

                                                 
6 A more detailed discussion of this problem can be found in Kelejian and Prucha (2010). 
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distances as in Section 2.1.2 above, and illustrate their construction in MATLAB. Next 
we consider certain of the spatial contiguity weights in Section 2.1.3, which require initial 
calculations to be made on shapefiles in ARCMAP. 
 
2.2.1 Construction of Spatial Weights based on Centroid Distances 
 
All spatial weights defined in Section 2.1.2 can be constructed in MATLAB using the 
program dist_wts.m. By opening this program, one can see that the inputs include a 
matrix, L, of centroid coordinates together with a MATLAB structure, info, containing 
information about the specific spatial weights desired. The use of this program can be 
illustrated by an application to the Eire centroid data in the workspace, eire.mat. 
Here L is a 26 2  matrix containing the centroid coordinates for the 26 counties in Eire.  
If one chooses to construct a weight matrix containing the five nearest neighbors for each 
county, say W_5nn, then by looking at the top of the program, one sees that k-nearest 
neighbors corresponds to the first of six types of spatial weights that can be created. In 
particular, by setting info.type = [1,5], one specifies a 5-nearest-neighbor matrix. Thus 
the appropriate commands for this case are given by: 
 
>> info.type = [1,5]; 
>> W_nn5 = dist_wts(L,info); 
 
To understand the matrix which is produced, we again consider the case of Laoghis 
county in Figure 1.18 above. By using the Identify tool in ARCMAP, one sees that the 
FID of Laoghis county is 10, so that its centroid coordinates correspond to row 11 in L 
(remember that FID numbers start at 0 rather than 1). Similarly, one can verify that the 
five surrounding counties (which are also its five nearest neighbors) have FID values 
(0,8,9,18,21). So their row numbers in L are given by (1,9,10,19,22). These numbers 
should thus correspond to the “1” values in row 11. This can be verified by displaying the 
positive column numbers of all positive elements in row number 11 of W_nn5 using the 
find command in MATLAB as follows: 
 
>> find(W_nn5(11,:) > 0) 
 
ans = 
 
     1     9    10    19    22 
 
It is also important to emphsize that this matrix is constructed to be in sparse form, which 
means that only nonzero values are recorded. This can be seen by attempting to display 
the first 5 rows and columns of W_nn5 as follows: 
 
>> W_nn5(1:5,1:5) 
 
ans = 
 
   (5,2)        1 
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The result displayed says that the only nonzero element here is in (row 5, column 2) and 
has value 1. This is a particularly powerful format in MATLAB since spatial weight 
matrices tend to have many zero values, and can thus be stored and manipulated very 
efficiently in sparse form. If one wants to obtain a full matrix version of W_nn5, say 
Wnn5, then use the command:   
 
>> Wnn5 = full(W_nn5); 
 
The above 5 5  display then yields: 
 
>> Wnn5(1:5,1:5) 
 
ans = 
 
     0     0     0     0     0 
     0     0     0     0     0 
     0     0     0     0     0 
     0     0     0     0     0 
     0     1     0     0     0 
 
and shows in particular that all elements other than (5,2) are indeed zero.  
 
2.2.2  Construction of Spatial Weights based on Boundaries 
 
As mentioned above, the construction of spatial weights based on boundaries is 
inherently more complex from a computational viewpoint. While there are a number of 
available procedures for doing so, we focus here on methods that can be done by 
combining ARCMAP and MATLAB procedures. In particular, spatial weights matrices 
based on both queen and rook contiguities [expressions (2.1.15) and (2.1.16), 
respectively] are directly available in ARCMAP. So our present focus is on how to obtain 
these results, and import them to MATLAB. Here it should be mentioned that boundary 
share weights [expression (2.1.17)] can also be constructed, but require more complex 
procedures (as developed in Sections 3.2.2 and 3.2.3 of Part IV).  
 
Here again we use the Eire data as an example, and assume that the shapefile, Eire.shp, 
is currently displayed in ARCMAP. The desired spatial weights can be obtained in 
ArcToolbox using the command sequence: 
 
Spatial Statistics Tools > Modeling Spatial Relationships  
                                        > Generate Spatial Weights Matrix 
 
(i)  In the window that opens, first set: 
 
Inputs Feature Class = “Eire.shp” 
 
by opening the browser on the right and selecting “Eire.shp” from the Home directory.  
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(ii) One then needs to have a unique identifier for each boundary polygon (county) in 
Eire. If none are present, then the simplest procedure is to construct a new field, ID, 
calculated as “[FID] + 1” and to set: 
 
Unique ID Field = “ID” 
 
(iii) Here we calculate queen contiguity weights. So to specify the Output Spatial 
Weights Matrix File, open the browser on the right and navigate to directory your own 
working directory. Set File Name = Queen_W, and click Save. The path to this file 
(Queen_W.swm) should now appear in the Output window. 
 
(iv) Queen contiguities are then specified by: 
  
Conceptualization of Spatial Relationships = “CONTIGUITY_EDGES_CORNERS” 
 
Note that a number of other spatial weight matrices can also be constructed: 
 
“CONTIGUITY_EDGES_ONLY” = rook weights (2.1.16) 
 
‘k_NEAREST_NEIGHBORS” = k-nearest neighbors (2.1.9) 
 
“FIXED_DISTANCE” = radial distance (2.1.11) 
 
“INVERSE_DISTANCE” = power distance (2.1.12) [with exponent options] 
 
► Before leaving this window be sure to remove the check on Row Standardization, 
unless you want row standardized values.  
 
(v) Now click OK and the file Queen_W.swm should appear in the directory specified. 
 
►Note this file is a binary file that is only useful inside ARCMAP. To use this data in  
MATLAB, it must be transformed into a suitable text file. To do so: 
 
(i)  Again in ArcToolbox, start with the command sequence: 
 
Spatial Statistics Tools > Utilities > Convert Spatial Weights Matrix to Table 
 
(ii) In the window that opens, set: 
 
Input Spatial Weights Matrix File = “Path/Queen_W.swm” 
 
The Output Table location will then be automatically specified, and you may ignore 
this. 
 
(iii) Click OK, and the file Queen_W_Table should appear in the ARCMAP Table of 
Contents. 
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(iv) To convert this to an EXCEL file, open 
 
ArcToolbox > Conversion Tools > Excel > Table to Excel 
 
In the Input Table, this file should now appear as one of the options. Click on it, and in 
the Output Excel File window, remove the default location and use the path to your own 
working directory and save as Queen_W.xls. 
 
(v) Open the file in EXCEL, and delete the first column (containing zeros), so that only 
three columns remain (“ID”  “NID”  “WEIGHT”). The save again. 
 
(vi) To import this file to MATLAB, use  
 
Home >  Import Data 
 
and open Queen_W_Table.xls.  
 
(vii) In the IMPORT Window, change the default “Column vector” setting in the 
IMPORTED DATA box to “Matrix”, and click  
 
Import Selection >  Import Data 
 
The file will now appear in the workspace as a 112x3 matrix, QueenW. You can rename 
this as W_queen by right clicking on the workspace entry. 
 
As a check to be sure this procedure was successful, one may compare W_queen with 
the ARCMAP representation. In particular, by repeating the procedure for W_nn5 above, 
we now see that: 
 
>> rows = find(W_queen(:,1)==11); W_queen(rows,2)' 
 
ans = 
 
     19     9     1    10    22 
 
so that, as seen in Figure 1.18 above, the five contiguous neighbors to Loaghis county are 
indeed its five nearest neighbors with respect to centroid distance. 


