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3. The Spatial Autoregressive Model 
 
Given the above formulation of spatial structure in terms of weights matrices, our 
objective in this section is to develop the basic model of areal-unit dependencies that will 
be used to capture possible spatial correlations between such units. Unless otherwise 
stated, we shall implicitly represent the relevant set of areal units, 1{ ,.., }nR R , by their 

indices, 1,..,i n . In particular, these areal units will almost always represent the sample 
units of interest. To put this spatial-dependency model in proper perspective, we begin 
with a typical linear model of the form 
 

(3.1) 0 1
, 1,..,

k

i j ij ij
Y x u i n 


     

 
where iY  is taken to represent some relevant attribute of each spatial unit, i , and where 

( : 1,.., )ijx j k  represents a set of “explanatory” attributes of i  that are postulated to 

influence iY . For example, if iY  is the Myocardial Infarction rate of each English Health 

District, 1,..,190i  , in Section 1.3 above, then 1ix  might correspond to the Jarman score 

for District i , together with other possible attributes of that district. This model exhibits 
an obvious similarity to expression (7.5) in Part II. The key difference is in terms of their 
respective spatial sample units, where the point locations ( s ) in expression (7.5) are here 
replaced by areal units ( )R  that partition this space. As mentioned in the introduction, 
this change in spatial sample units reflects the type of spatial data being analyzed. For 
example, while, say, temperature is meaningful each point in space, this is not true of 
Myocardial Infarction rates.1 But much more important for our present purposes is the 
way in which the unobserved errors (or residuals) are treated in each model. Notice in 
particular that we have switched notation in (3.1), and are now representing such 
residuals by iu  rather than i . The reason for this is that we shall proceed to develop an 

explicit linear model of these spatial residuals themselves. 
 
Before doing so, it is convenient to restate (3.1) in matrix terms as 
 
(3.2) Y X u   
 
where as usual, 1 1 0 1( ,.., ) , [1 , ,.., ], ( , ,.., )n n k kY Y Y X x x        and 1( ,.., )nu u u  . We 

again assume that the random vector, u , of residuals is multinormally distributed with 
mean, ( ) 0E u  , so that by construction, 
 
(3.3) ( )E Y X   
 

                                                 
1 Note however that in cases such as the California rainfall example, where cities were treated as points, the 
relevant data implicitly involves “local” spatial averages. So in this setting, for example, it would be 
perfectly meaningful to compare the Myocardial Infarction rates of San Francisco and Los Angeles. 
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In this setting, our primary objective is to model the covariance structure of u  in a 
manner that reflects possible spatial dependencies among areal units. 
 
But rather than postulate spatial stationarity properties of u  (as was done for spatially 
continuous data in Part II), we must now rely on discrete spatial structure as summarized 
by a given spatial weights matrix, ( : , 1,.., )ijW w i j n  . In terms of our Myocardial 

example above, ijw , may represent some measure of the spatial proximity of Health 

District j  to (or influence on) Health District i , where higher values of ijw  denote greater 

spatial proximity or influence.  In this setting, it seems reasonable to postulate that each 
unobserved residual, iu , in (3.1) is influenced by those residuals, ju , in neighboring areal 

units j , i.e., with positive spatial weights, ijw . As a parallel to (3.1), such influences 

might also be represented by linear “spatial error” model of the form:  
 
(3.4) ( )i ij j ij i

u w u 


   

 
where ( )ijw  is some appropriate “influence” function depending on ijw , and where i  

represents that part of residual iu  that is not influenced by other areal units. But as we 

have seen in Section 3.2, there is already great flexibility in the specification of spatial 
weights, ijw , and hence no need for further functional elaborations. Rather, the strategy 

here is to use the simplest possible specification in terms of a common scale factor,  ,  

so that ( )ijw  takes the form ijw , and (3.4) reduces to2  

 
(3.5) , 1,..,i ij j ij i

u w u i n 


    

 
To interpret (3.5), note first that (except for the absence of an intercept term) this relation 
is essentially a type of linear regression model in which each residual, iu , is regressed on 

its neighbors, ju  (with coefficients ijw ). Moreover, since this effectively implies that 

the full set of residuals is being regressed on itself, model (3.5) is designated as a spatial 
autoregressive model of residual dependencies. In this context, the summation over all 
j i  ensures that no individual residual is “regressed on itself”. But even with this 

restriction, it will be shown below that the estimation of such autoregressive models is far 
more subtle than that of standard regression models.  
 
For the present however, we focus only on the basic meaning of (3.5). First consider the 
parameter,  , which plays a very special role in this model. At one extreme, if 0   

then each residual, iu , reduces to its own intrinsic component, i , and all spatial 

dependencies vanish. More formally, if we now assume that these individual components 
are independently and identically normally distributed as, 

                                                 
2 Here the notation, j i , means summation over all units, j , other than unit i . 
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(3.6) 2~ (0, ) , 1,..,i N i n    

 
then model (3.1) is seen to reduce to a standard linear regression model when 0  . At 
the other extreme, when | |  becomes large, the strength of all spatial dependencies 
(positive or negative) must also become large. This suggests that   be designated as the 
spatial dependency parameter for the model.  
 
Note also, that for any pairs of areal units, ij  and kh , with positive spatial weights, 

, 0ij khw w  , and any nonzero level of spatial dependence, 0  , it must always be true 

that  
 

(3.7) ij ij

kh ik

w w

w w




   

 
Thus the relative strength of these spatial dependencies is determined entirely by their 
spatial weights.   In summary, this model provides a natural “division of responsibilities” 
in which   governs the overall strength of spatial dependencies, and in which the  
spatial weight structure governs their relative strength among individual areal-unit pairs.   
 
Finally, to write this model in more compact matrix form, it convenient to assume that 

0iiw   in the given spatial weights matrix, W , so that (3.5) can be rewritten in more 

standard terms as 
 

(3.8)  
1

, 1,..,
n

i ij j ij
u w u i n 


    

 
In this form, if we now let 1( ,.., )n     denote the random vector of intrinsic 

components, then expressions (3.8) and (3.6) together yield the follows Spatial 
Autoregressive Model of residual dependencies:3 
 
(3.9) u Wu      ,    2~ (0, )nN I   

 
where in addition it is assumed that the diagonal element of W are zero, written as 
 
(3.10) ( ) 0diag W  . 
 
3.1  Relation to Time Series Analysis 
 
Like most of the spatial dependency models considered in these notes, model (3.9) was 
originally inspired by a time series model [as in Whittle (1954)]. In the present case, this 
                                                 
3 This model was originally proposed by Whittle (1954). But the present matrix formulation was first given 
by Ord (1975), who designated (3.9) as a first-order spatial autoregressive process. 
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“parent” model can be formulated as follows. If we consider a finite sequence of random 
variables, ( : 1,.., )tu t T , over T time periods (say average Philadelphia temperature. tu , 

over T successive days), then the standard first-order autoregressive [AR(1)] model of 
this series takes the recursive form:  
 
(3.1.1) 1 , 2,..,t t tu u t T     

 
with “initial condition”,4 
 
(3.1.2) 1 1u   

 
where ( : 1,.., )t t T   is assumed to be a sequence of independent random “innovations” 

identically distributed as 2( , )N   . In the “temperature” example above, these 

innovations ( : 1,.., )t t T   can be viewed as random fluctuations about some constant 

mean daily temperature,  . The term “first-order” in this case refers to the fact that given 
the past history of daily temperatures in Philadelphia, model (3.1.1) assumes that today’s 
temperature, tu , depends only on yesterday’s temperature, 1tu   plus some current 

temperature innovation, t .  

 
Except for the nonzero value of  , this AR(1) model can be viewed formally as a special 
case of model (3.9). To see this, observe simply that if the T T weights matrix, 

( : , 1,.., )tsW w t s T  , is defined by 

 

(3.1.3) 
1 , 2,.., , 1

0 ,ts

t T s t
w

otherwise

  
 


 

 
then it follows at once from (3.1.1) and (3.1.2) that: 
 

(3.1.4) 

1 1 1

2 2 2

0 0 0

1 0 0

0 1 0T T T

u u

u u
u Wu

u u




  



     
     
         
     
     

     




     


  

 
But this particular instance of (3.9) has the important property that time dependencies 
flow in only one direction – namely from the past to the present. Formally, this is 
reflected by the so-called “lower triangular” structure of W in (3.1.4).  
 

                                                 
4 While (3.1.2) can be replaced by more standard “steady state’ initial conditions, the present simpler form 
is most appropriate for our purposes. 
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To appreciate the significance of this unidirectional flow, it is instructive to ask how one 
might simulate this model. Here the answer is almost self-evident from (3.1.1) and 
(3.1.2): 
 
 Step 1:  Sample a value of 1  from 2( , )N    and set 1 1u  . 

 
 Step 2:  Sample a value of 2  from 2( , )N    and set 2 1 2u u   . 

 
 Step 3:  Sample a value of 3  from 2( , )N    and set 3 2 3u u   . 

 
 
  
 Step T:  Sample a value of T  from 2( , )N    and set 1T T Tu u   . 

 
However, for more general examples of model (3.9), this simple process of simulation is 
not possible. 
 
3.2  The Simultaneity Property of Spatial Dependencies 
 
This problem is mostly easily illustrated by the following one-dimensional example. 
Suppose we consider “over the fence” communications between residential neighbors on 
a given street, as depicted in Figure 3.1 below.  
 
 
 
 
 
 
 
 
 
In particular, suppose that household i ’s opinion, iu , on how much each house should 

contribute to their annual street party is influenced both by i ’s initial opinion, i , and by 

the opinions of i ’s  immediate neighbors, including 1iu   and/or 1iu  . Then a natural 

spatial model of opinion formation by these residents might well take the form: 
 

(3.2.1) 
1

1 1

1

, 1

( ) , 2 1

,

i i

i i i i

i i

u i

u u u i n

u i n

 
 
 



 



 
     
  

 

 
where   now reflects how influential the opinions of these neighbors are. Note in 
particular that the “edge” residents 1  and n  have only one neighbor, while all other 
residents have two neighbors.  

• 
• 
• 

• • • 1 2 3 n-1 n 

• • • 

Figure 3.1.  Bilateral Dependency Example 
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Given this spatial model of opinion formation,5 one may again ask: how might we 
simulate this model? Here the key question is where to start the simulation. For if we 
start with edge resident 1, then it clear from the first line of (3.2.1) that we must know the 
opinion, 2u , of 1’s neighbor in order to simulate 1u . Similarly, if we start with edge 

resident n  then the last line of (3.2.2) shows that the opinion, 1nu  , of n ’s neighbor is 

required to simulate nu . Moreover, the situation is even worse for intermediate residents, 

i , where both neighboring opinions, 1iu   and 1iu  , are required in order to simulate iu . So 

it would appear that there is no way to simulate this process at all. But to be more precise, 
this argument shows that there is no possible sequential simulation procedure for 
realizing samples of (3.2.1). Rather, the full set of opinions, 1 2( , ,.., )nu u u , must be 

somehow be simulated simultaneously.  
 
Here it turns out that there is a remarkably simple procedure for doing so. In particular, 
let us again formulate (3.2.1) as an instance of (3.9) where W  now takes the form: 
 

(3.2.2) 
1 , 2,.., 1, { 1, 1}

0 ,ts

t n s t t
w

otherwise

    
 


 

 
then it follows at once from (3.1.1) and (3.1.2) that: 
 

(3.2.3) 

1 1 1

2 2 2

1 1 1

0 1 0 0

1 0 1

0 1 0

1

0 0 1 0
n n n

n n n

u u

u u

u Wu

u u

u u




  



  

     
     
     
         
     
     

           




   
  


  

 
But given this matrix formulation, observe that we may solve for u  in terms of   as 
follows: 
 

(3.2.4) u Wu u Wu         
 

                                           ( )nI W u     

 
So assuming for the moment that the inverse matrix, 1( )nI W  , exists, we can multiply 

both sides of (3.2.4) by 1( )nI W  to obtain the following reduced form solution for u in 

terms of  , 
 
(3.2.5)     1( )nu I W    

                                                 
5 Formally, expression (3.2.1) is an instance of the bilateral autoregressive process proposed by Whittle 
(1954). Indeed, this is precisely the one-dimensional example that motivated his original analysis of spatial 
autoregressive processes. 
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Given this existence assumption, observe that if “intrinsic opinions” are again assumed 
(for sake of illustration) to be independently and identically normally distributed about 
some average opinion level,  , as  2~ ( , ) , 1,..,i N i n    , then we can now simulate 

(3.1.5) in essentially only two steps: 
 
 Step 1:  Sample each i  from 2( , )N    , 1,..,i n , and set 1( ,.., )n    . 

 
 Step 2:  Solve for 1( ,.., )nu u u   as 1( )nu I W   . 

 
So by simple matrix manipulations, this simultaneity problem appears to have been 
solved. But there remains the question of how this “magic” was possible, and what it 
actually means in more intuitive terms.  
 
 
3.3 A Spatial Interpretation of Autoregressive Residuals 
 
Our objective in this section is to obtain conditions for the existence of 1( )nI W   and 

to give an intuitive spatial interpretation to this inverse matrix. To do so, we start by 
recalling that for any number, a, the basic geometric series: 
 

(3.3.1) 2 3

0
1 k

k
S a a a a




        

 
represents the simplest example of an infinite summation that can be given a closed form 
solution in an elementary way. For if one considers the partial sum, 
 
(3.3.2) 2 31 k

kS a a a a       

 
and multiplies this by a,  
 
(3.3.3) 2 3 1k k

ka S a a a a a        

 
then by subtracting (3.3.3) from (3.3.2),  
 
(3.3.4) 2 3 2 3 1 1(1 ) ( ) 1k k k k

k kS a S a a a a a a a a a a                  

 
we obtain the simple identity 
 

(3.3.4) 
11

1

k

k

a
S

a





 

 
But since by definition, limk kS S , it follows at once from (3.3.4) that this limiting 

sum exists if and only if lim 0k
k a  , and must have the closed-form solution: 
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(3.3.5) 11
lim (1 )

1k kS S a
a


   


 

 
Finally, by combining (3.3.1) and (3.3.5) we see that 
 

(3.3.6) 1 2 3

0
(1 ) 1 k

k
a a a a a




         

 
if and only if lim 0k

k a  .  

 
The point of this exercise for our purposes is that exactly the same argument can be 
applied to matrices, by simply substituting the scalar, a, with an n-square matrix A. In 
particular, if nO  denotes the n-square zero matrix, then it is shown in Section A3.5.2 of 

the Appendix that 
 

(3.3.7) 1 2 3

0
( ) k

n k
I A I A A A A




         

 
if and only lim k

k nA O  .  So in our case, by setting A W , it follows that that the 

inverse 1( )nI W   will exist and have the limiting form 

 

(3.3.8) 1 2 2 3 3

0
( ) k k

n n k
I W I W W W W    


          

 
if and only if 
 
(3.3.9) lim k k

k nW O   

 
Our main objective is to employ this representation to give a meaningful interpretation to 
the “steady states” of spatial autoregressive processes as in expression (3.2.5). But before 
doing so, it is important to establish conditions on the spatial dependency parameter 
which will ensure that (3.3.9) holds. Since this condition must surely hold when 0  , it 
is not surprising that the desired condition will amount to placing a bound on the 
maximum size of | | .  But this bound will of course depend on the structure of the 
spatial weights matrix, W, as we now show. 
 
3.3.1 Eigenvalues and Eigenvectors of Spatial Weights Matrices 
 
In Section A3.1 of the Appendix we develop a number of important properties of n-
square matrices, A, as representations of n-dimensional linear transformations on n . 
Our focus is on the geometric interpretations of these properties, which can often be 
represented graphically in 2 dimensions. Without going into great detail here, it is enough 
to say that every 2-square matrix, 
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(3.3.10) 11 12
1 2

21 22

( , )
a a

A a a
a a

 
   

 
 

 

represents a 2-dimensional linear transformation that transforms each vector, 
2

1 2( , )x x x  , into to a new vector, 2Ax , called the image of x under A. Each 

transformation, A, is entirely representable by the images of the identity basis vectors, 
2

1 2,e e  [recall expression (3.2.16) if Part II], as shown in Figure 3.2. In particular, 

since by definition each 1 2( , )x x x  is representable as the weighted sum, 1 1 2 2x x e x e  , 

it follows from linearity that Ax  is representable by the corresponding weighted sum of 
the images, 1 2( , )Ae Ae , as shown in Figures 3.3 below (see also Figures A3.3 and A3.4 in 

the Appendix). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From a geometrical viewpoint, it is of interest to ask whether there exist any vectors, 

nx , that are simply “stretched” by A into (possibly negative) multiples of themselves, 
i.e., whether 
 
(3.3.11) Ax x  
 
for some scalar,  . If so, then   is called an eigenvalue of A with associated 
eigenvector, x . [Note that (3.3.11) continues to hold for any scalar multiple of x, so that 
eigenvectors are only unique up to scalar multiples.] For convenience we refer to 
eigenvalues together with their eigenvectors as the eigenstructure of A, and in particular,  
denote the set of distinct eigenvalues for A by ( )Eig A . To illustrate these ideas for 
spatial weights matrices in 2 dimensions, we are of course restricted to the simplest 
possible case of only two areal units, as shown in Figure 3.4 below.  
 
 

(3.3.12)                                                 12

21

0

0

w
W

w


 
 

 
1R  2R  

Figure 3.2. Basis Image Vectors Figure 3.3. General Image Vectors 

1e  

2e  

2Ae  

1Ae  

2 2x Ae  

1 1x Ae  

Ax  

2 2x e  

2 2x e  

• x  
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If W represents a simple contiguity relation with 12 211w w   [as in the 3-unit example of 

expression (2.1.22) above], and if we let 1 (1, 1)x   and 2 ( 1, 1)x   , then simple matrix 

multiplication shows that 1 1W x x  and 2 2W x x  , so that these are both eigenvectors 

of W with corresponding eigenvalues, 1 2( ) { , } {1, 1}Eig W     . This is shown 

graphically in Figure 3.4 below (where 1x  and 1Wx  are slightly offset so that both can be 

seen): 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
More generally (as shown in Section A3.3 of the Appendix), each n-square matrix, A, 
possesses at most n distinct eigenvalues. To see that there may be fewer than n, consider 
the identity matrix, nI , which has only one distinct eigenvalue ( 1)   since by 

definition, nI x x  for all nx . This example also shows that eigenvectors in such 

cases can be chosen in many ways.  There also exist matrices with no (real) eigenvalues, 
as illustrated by the matrix 
 

(3.3.13) 
0 1

1 0
A

 
 
 

     

 

As seen in Figure 3.5 below, this matrix rotates the plane by 90 , so that no vector can be 
sent into a scalar multiple of itself. 
 
 
 
 
 
 
 
 
 
 

2Ae  

1Ae  

1e  

2e  

Figure 3.5. Rotation Transformation 

1x  2x  

1Wx  

2Wx  

Figure 3.4. Eigenstructure of W 

2Wx  

x
• 
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But for sake of simply, we focus here n-square matrices, A, with a full set of eigenvalues, 

1( ) { ,.., }nEig A   , and associated eigenvectors, 1,.., nx x , that are linearly independent.6 

In geometric terms, this means that every point, nx , can be written as a linear 
combination of these eigenvectors, as illustrated by the point, x, in Figure 3.4. In 
algebraic terms, it means that the n-square matrix, 1[ ,.., ]nX x x , defined by these 

eigenvectors is nonsingular, so that the inverse matrix, 1X  , exists. We may thus write 
out the relations among these eigenvalues and eigenvectors as follows, 
 
(3.3.14) , 1,..,i i iA x x i n   

                            
1

1 1 1 1[ ,.., ] [ ,.., ] [ ,.., ]n n n n

n

A X Ax Ax x x x x


 




    

 
 

  

                            A X X    
 
where 1( ,.., )ndiag    is the diagonal matrix of eigenvalues. So (post) multiplying 

both sides of (3.3.14) by 1X  , we obtain the following “spectral” representation of A,  
 
(3.3.15) 1 1 1A X X X X A X X       
 
To see the power of this representation, observe that if we multiply A by itself, then: 
 
(3.3.16) 2 1 1 1 1 2 1( )( ) ( )A X X X X X X X X X X            
 

By comparing this with (3.3.15), it follows at once that that the eigenvalues of 2A  are 
precisely the squares of the eigenvalues of A, and moreover that the associated 
eigenvectors remain the same. By simply repeating this argument k  times, it follows 
more generally that 
 

(3.3.17) 
1

1 1 , 1,2,...

k

k k

k
n

A X X X X k






 


  

 
 

  

 

So the eigenstructure of A  tells us a great deal about how the associated powers, kA , of 
A must behave. In particular, the limiting behavior of these powers as k   for any 
matrix, A, is governed entirely by the maximum size of its eigenvalues, which we denote 
by,7  
 

(3.3.18) ( )| | max | |A Eig A  ,  

                                                 
6 In fact the eigenvectors for distinct eigenvalues are always linearly independent, as illustrated in Figure 
A3.27 of the Appendix. 
7 As discussed in Section A3.5 of the Appendix, this maximum absolute value is usually referred to as the 
spectral radius of the matrix, A. 



  NOTEBOOK FOR SPATIAL DATA ANALYSIS                                      Part III. Areal Data Analysis 
______________________________________________________________________________________ 
 

________________________________________________________________________ 
 ESE 502                                                     III.3-12                                               Tony E. Smith 

To see this, note simply from (3.3.17) that these powers will converge to the zero matrix 
if and only if 0k   for all ( )Eig A . Because this is equivalent to the single 

condition, | | 1A  , it then follows that 

 
(3.3.18) lim | | 1k

k n AA O      

 
For the important case of nonnegative matrices, it shown in Section A3.5.1 of the 
Appendix that this maximum always corresponds to the largest positive eigenvalue of A, 
denoted here by A , so that | |A A  . As an illustrative example, the eigenstructure of 

the nonnegative matrix,  
 

(3.3.19) 
2 / 3 1/ 3

1/ 6 1/ 2
A


 
 

 

 

is easily seen to be given by  
 

(3.3.20) 
5 / 6

1/ 3



 
 

   ,    1 2

2 1
[ , ] ,

1 1
X x x

   
     

   
 

 
(as can be checked by matrix multiplication). This eigenstructure is shown graphically in 
Figure 3.6 below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Since all points are linear combinations of the eigenvectors, 1x  and 2x , and since 

| | 5 / 6 1A A     implies that both these eigenvectors shrink toward zero, we see that 

Figure 3.6. “Shrinking” Eigenvalue Example 

1
Ax  

1
x  

2Ax  

2
x  



  NOTEBOOK FOR SPATIAL DATA ANALYSIS                                      Part III. Areal Data Analysis 
______________________________________________________________________________________ 
 

________________________________________________________________________ 
 ESE 502                                                     III.3-13                                               Tony E. Smith 

all points are shrunk towards zero (as illustrated by the parallelogram in the figure). In 
other words, by using the coordinate system created by these eigenvectors, we see that 
the shrinking behavior of these eigenvectors is inherited by all points with respect to this 
coordinate system. While not every case is so simply illustrated, Figure 3.6 helps to 
provide some geometric intuition for the general result in (3.3.18).8  
 
3.3.2  Convergence Conditions in Terms of ρ 
 
By combining (3.3.9) and (3.3.18), we see that a necessary and sufficient condition for 
the geometric-series representation in (3.3.8) to hold is that the maximum eigenvalue of 
the matrix ( )W , be less than one. But for each eigenvalue,  , of W , say with 
eigenvector, x , it follows at once from (3.3.11) that 
 
(3.3.21) ( ) ( )Wx x Wx x W x x                         
 
and thus that   is automatically an eigenvalue for ( )W , so that 
 
(3.3.22) ( ) ( )Eig W Eig W   
 
In particular, since this implies that 
 
(3.3.23) | | | || | | |W W W       
 

it follows that  
 

(3.3.24) 
1

| | 1 | | 1 | |W W
W

   


      

 

So for the present case of spatial weight matrices, W , the general convergence condition 
in (3.3.18) now takes the form 
 
(3.3.25) lim | | 1/k k

k n WW O       

 
so that by (3.3.8) and (3.3.9), 
 

(3.3.26) 1

0
( ) | | 1 /k k

n Wk
I W W   


     

 
Note in particular that if the maximum eigenvalue of W  happens to be unity, i.e., 1w  , 

then (3.3.25) takes the simple and appealing form9 
 

                                                 
8 See Section A3.5.3 in the Appendix for a general development of this result. 
9 Here it must be stressed that in spite of the apparent similarity of the condition, | | 1  , to the properties 

of  correlation coefficients, this spatial dependency parameter,  , is not a correlation coefficient. 
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(3.3.27) 1

0
( ) | | 1k k

n k
I W W  


     

 
For this reason, it is often convenient to normalize W  to have a maximum eigenvalue of 
one. The simplest procedure for doing so is to divide W  by it maximum eigenvalue, W , 

say 1*
W

W W . For this normalized weights matrix, it then follows from the same 

argument in (3.3.21) through (3.3.23) that 
 

(3.3.28)     *
1 1 1( *) ( ) ( ) 1W WW W W

Eig W Eig W Eig W         

 
and thus that (3.3.27) always holds for *W W . In fact, this is the primary motivation 
for the normalizing convention in expression (2.1.25) of Section 2 above.  
 
Before proceeding, it is important to note that row normalized weight matrices, rnW , must 

also exhibit this same property. This can be seen in part by observing that the normalizing 
condition (2.1.19) for rnW  in Section 2 can be written as 
 

(3.3.29) 11

1

1 [ ,.., ] 1 , 1,..,

1

n

ij i in i nj
w w w w i n




    

 
 

   

 

where iw  is the thi row of rnW . This set of conditions can in turn be written in matrix 

form as 
 

(3.3.30) 
1 1

1 1 1 1

1
n n rn n n

n

w

W

w

   
       

     

   , 

 
which shows that 1n  must always be an eigenvector of rnW  with unit eigenvalue. Thus for 

the row normalization of any spatial weights matrix, W, we must have 1 ( )rnEig W . In 

addition, it is shown in Section A3.5.2 of the Appendix that this unit eigenvalue is 
necessarily the maximum eigenvalue of rnW , and thus that (3.3.27) must always hold for 

row normalized matrices.  
 
 
3.3.3  A Steady-State Interpretation of Spatial Autoregressive Residuals 
 
Assuming that W  satisfies (3.3.25), it remains to give a spatial interpretation of the 

expanded representation of 1( )nI W   in (3.3.8). To do so, it is useful to start by 

considering the direct influences among areal units as implied by a given spatial weights 
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matrix, W. This is well illustrated by the example in expression (2.1.22) of Section 2, 
which we reproduce here for convenience,  
 

 
 
(3.3.31) 
 
 

 
In this example, the only direct influences are between unit 2 and each of the other units, 
1 and 3. This can be represented by the following graph, with areal units as “nodes” and 
positive weights as directed “links” (in red): 
 

 
 
(3.3.32) 
 
 

So, for example, the top two arrows show that unit 2 directly influences both units 1 and 
3. Now consider the square of this weight matrix, 
 

(3.3.33) 2

0 1 0 0 1 0 1 0 1

1 0 1 1 0 1 0 2 0

0 1 0 0 1 0 1 0 1

W

    
         

    
    

 

 

If one thinks of direct links as influence paths of length 1, then the ij  elements of 
2 2( )ijW w  are precisely number of influence paths of length 2 from j  to i . In particular, 

each thm term of the ij -value, 2 3
1ij m im mjw w w  , of 2W   contributes a value of 1 to this 

sum if and only if both imw  and mjw  are 1, i.e., if and only if there is a path, j m i  , 

of length 2. For example, while unit 3 does not directly influence unit 1, there is an 
indirect influence on the path, 3 2 1  , seen in (3.3.32). This single influence path of 
length 2 corresponds to the 1 in the upper right hand corner of 2W . Notice also that while 
the diagonal elements of W are zero by construction, this is not true of 2W . For example 
there is now an influence path of length 2 from unit 1 to itself, namely the path 
1 2 1   in which 1’s influence on 2 is “echoed back” as a second order influence on 1.  
In a similar manner, the ij  elements of the thk power, ( )k k

ijW w , of W  indicate the 

number of length k paths from j  to i . But notice in the present example, that these 
relations depend explicitly on the fact that W  consists entirely of zeroes and ones. More 
generally, for any n-square weights matrix, W, the ij  elements of the thk power, 

( )k k
ijW w , of W take the form10 

 

(3.3.34) 
1 2 1 1 1 2 11 1 1[ [ [ ] ]]

k k

k n n n
ij m m m im m m m jw w w w

           

                                                 
10 For a deeper discussion of such influence paths see Martellosio (2012). 

12 13

21 23

31 32

0 0 1 0

0 1 0 1

0 0 1 0

w w

W w w

w w

  
     

   
  

 
1R  2R  3R  

1 2 3 
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where each positive product, 
1 1 2 1kim m m m jw w w


 , in k

ijw  still corresponds to a unique path, 

1 1kj m m i    , of positive influences – but where this product need not be 

unity. Moreover, if we now introduce the spatial dependency parameter,  , and consider 

the thk  power, k kW , then  (3.3.34) becomes 
 
(3.3.35) 

1 2 1 1 1 2 11 1 1[ [ [ ( )( ) ( )] ]]
k k

k k n n n
ij m m m im m m m jw w w w   

           

 
In this form, it is clear that the w -values along each path reflect only the relative 
influences of each link, where typically such influences will be smaller on links between 
more widely separated units. The full influences of these links are then determined by  . 
 
With these preliminary observations, it should now be clear that the geometric sum in 
(3.3.8) represents the cumulative effect of all these direct and indirect spatial influences 
among units. The can be seen more explicitly by using (3.3.8) to expand (3.2.5) as 
follows: 
 
(3.3.36) 1 2 2( ) ( )n nu I W I W W           

 
                        2 2W W         
 
So for any given vector of intrinsic effects, 1( ,.., )n    , expression (3.3.36) displays 

the accumulation of all direct and indirect effects of   that define the vector, 

1( ,.., )nu u u  , of autoregressive residuals. This is illustrated graphically in Figure 3.7 

below for the “over the fence” communications example in Figure 3.1 (for the case of 
7n  neighbors): 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• 

ε1 

1 
• • • • • • 
2 3 4 5 6 7 

ε2 ε3 ε4 ε5 ε6 ε7 

• • • • • • • 

ε 

ρWε 

ρ2W 2ε • • • • • • • 

+ 

+ 

Figure 3.7. Spatial Ripple Effect 
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Here we only show the first three terms of (3.3.35), where the first term reflects the initial 
(intrinsic) opinions of each neighbor, and where subsequent terms represent the 
cumulative indirect influences on these opinions resulting from over-the-fence 
communications. Alternatively, if one were to imagine each initial opinion as a pebble 
falling into water, then the influences of these opinions spread out like “ripples” in all 
directions. (An empirical example of such a ripple effect is given in Figure 7.8 below.) 
  
More generally this example suggests that spatial autoregressive residuals, u , can be 
viewed as the steady state of an implicit spatial diffusion process generated by a random 
vector of intrinsic effects,  . Of course, the spatial autoregressive model in (3.9) is static 
in nature, and involves no explicit notion of time. But such cumulative effects can 
nonetheless be usefully represented as a steady state over virtual time periods as shown in 
Figure 3.8 below.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here for example, W  , in the “current” state, 0t , is interpreted as the direct effect of   

in the “previous” state, 1t , and similarly, 2 2W  , in 0t  is the indirect effect of   in 2t . 

The main feature of this representation is that the total effect in each state resulting from 
all previous states remains the same, thus yielding a “steady state” independent of time.  
 
But regardless of whether or not this steady state interpretation is used, the essential 
result here is that the reduced-form representation of spatial autoregressive residuals, u, in 
(3.3.35) does indeed incorporate all direct and indirect effects generated by   in the 
presence of spatial structure, W .  
 
One final point needs to be made about this reduced-form representation. It is often 
observed that this representation is not essential for the existence of the inverse 

1( )nI W  . For example, if W  is given by (3.3.30), and say, 2  , then it may be 

Figure 3.8.  Steady State Interpretation 
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verified (by direct matrix multiplication) that  the inverse of this matrix exists, and is 
given (approximately) by 
 

(3.3.37) 1
3

0.4286    0.2857    0.5714

( ) 0.2857 0.1429    0.2857

0.5714 0.2857  0.4286

I W 

  
     
   

 

 
But while this inverse exists, it is far more difficult to interpret in a meaningful way. In 
particular, the negative elements in this matrix are rather questionable. Note in particular 
from the positivity of   that W must be a nonnegative matrix. So it seems clear from 
the basic autoregressive relation, u Wu   , that a positive increase in the components 
of   in the should certainly not decrease any component of u . However, (3.3.37) and 
(3.3.36) together imply for example that the second component, 2u , is related linearly to 

1 2 3( , , )      by 

 
(3.3.38) 2 1 2 3(0.2857) (0.1429) (0.2857)u        

 
Thus an increase in either 1  or 3  will decrease 2u .   

 
But such problems do not arise when this inverse is representable as in (3.3.36). In the 

present case, observe that since 2 1.414W    for this W matrix, it follows that if 

| | 1 / 0.707W   , then (3.3.36) must hold. But in case, the nonnegativity of   

ensures that every term of the expansion,  0
k k

k W
 , must be nonnegative, so that 

1( )nI W   is always nonnegative. For example, if .5   then it can again be verified 

that 
 

(3.3.39) 1
3

1.5 1 .5

( ) 1 2 1

.5 1 1.5

I W 

 
    
 
 

 

 
So positive spatial dependencies here imply that spatial autoregressive residuals, u , are 
always monotone nondecreasing in the components of  .  
 
Finally, it should be emphasized that the negative signs in (3.3.37) are no accident. In fact 
it is shown in Section A3.5.3 of the Appendix that all elements of 1( )nI W   are 

nonnegative if and only if | | 1 / W  . So while the steady-state representation in 

(3.3.36) is not strictly necessary for the existence of a reduced form solution for u, it 
characterizes those cases where a meaningful spatial interpretation of these residuals can 
be given. 
 


