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4. Testing for Spatial Autocorrelation 
 
To apply the spatial autoregressive model above, we start by restating the linear model 
(for n areal units) in expression (3.2) above, where the residuals, u, are now specified 
more explicitly as: 
 
(4.1) , ~ (0, )Y X u u N V   
 
with both the parameter vector,  ,  and covariance matrix, V ,  unknown. The simplest 
procedure for specifying the residual covariance is to start by assuming that  
 
(4.2) 2

nV I   , 

 
so that   can be estimated by OLS.  Given this estimate, one can then test to see whether 
there is sufficient spatial autocorrelation in the residuals to warrant more elaborate 
specifications of V . If for a given sample, y  (i.e., observed realization of Y ) we denote 
the OLS estimate of   by 
 

(4.3) 1ˆ ( )X X X y    
 
and corresponding OLS residuals by 
 

(4.4) ˆû y X   
 
then our objective is to develop statistical tests for the presence of spatial autocorrelation 
using these residuals. To do so, we assume that the underlying spatial structure of these n 
areal units is representable by a given spatial weights matrix, ( : , 1,.., )ijW w i j n  . In 

terms of W, it is then hypothesized that all relevant spatial autocorrelation among the 
residuals, u , in (4.1) can be captured by the spatial autoregressive model, 
 
(4.5) 2, ~ (0, )nu Wu N I      

 
The key feature of this hypothesis is that testing for spatial autocorrelation then reduces 
to testing the null hypothesis: 
 
(4.6) 0 : 0H    

 
For if 0H  cannot be rejected, then (4.5) reduces to  

 
(4.7) 2~ (0, )nu N I  ,  

 
so that the OLS specification of  V in (4.4) above is appropriate. If not, then some more 
elaborate specification of V needs to be considered.  
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4.1. Three Test Statistics 
 
In this context, our main objective is to construct appropriate test statistics based on û  
and W for testing 0H . In the following subsections, we shall consider three alternative 

test statistics that are in common use.  
 
4.1.1 Rho Statistic 
 
Given model (4.5), one natural approach is simply to treat the OLS residuals, û , as a 
sample of u , and use model (4.5) to obtain a corresponding OLS estimate of  . To do 
so, recall the “one variable regression” illustration given in class, where we started with a 
linear model:  
 

(4.1.1)   , 1,..,i i iY x b i n    
 

In vector form, this is seen to yield the special case of (4.4.1) where X x  and b   is 
a scalar, i.e., 
 

(4.1.2)  Y xb    
 

Hence, as a special case of (4.3), the OLS estimate of the scalar, b , in (4.1.2) is given by 
 

(4.1.3)  1
2

ˆ ( )
|| ||

x y x y
b x x x y

x x x
  

   


   

 
But (4.5) can be viewed as a model of the form (4.1.2), where b  , Y u  and x Wu . 
Hence, for our present “data”, ˆy u , the corresponding OLS estimate of   is given by 
 

(4.1.4)  
2

ˆ ˆ ˆ ˆ ˆ ˆ( )
ˆ

ˆ ˆ ˆ ˆ ˆ( ) ( ) || ||W

Wu u u Wu u Wu

Wu Wu u W Wu Wu


  
  

  
 

 
This yields our first test statistic for 0H , which we designate as the rho statistic. Note 

also that we use the subscript “ W ” to emphasize that this statistic (and those below) 
depends explicitly on the choice of W .  
 

Having constructed this statistic, it is of interest to observe that the basic spatial 
autocorrelation test we have been using so far, namely regressing residuals on nearest-
neighbor residuals, is essentially a special case of this rho statistic. To see this, observe 
that the ith row of (4.5) is of the form: 
 

(4.1.5)  
1

( )
n

i i i ij j ij
u Wu w u   


     

 

But if W is chosen to be the first nearest-neighbor matrix (i.e., 1ijw   if j is the nearest  

neighbor of i  and 0ijw   otherwise) and if we let ( )nn i  denote the first nearest-neighbor 

of each point i  then by construction, 
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(4.1.6)  ( )1

n

ij j nn ij
w u u


  

 

So for this case, (4.1.5) is of the form 
 
(4.1.7)  ( )i nn i iu u    

 
But this is almost exactly the regression we have been using, where the important slope 
coefficient is now precisely  . So the test for significance of this slope is based on the 

estimator, ˆW . Notice however that unlike our regression, there is no intercept in (4.1.7). 

This makes sense theoretically since1 
 

(4.1.8)  ( )( ) ( ) ( ) 0i nn i iE u E u E      , 
 

which in turn implies that the intercept term must also be zero in this model. So in fact, 
(4.1.7) is the model we should have been using. But since regression residuals must sum 
to zero by the construction of OLS,2 the intercept is usually not statistically significant. 
This is well illustrated by the regression of Myocardial Infarctions on the Jarman Index in 
Section 1.3 above. Residual regression with and without the intercept are compared in 
Figures 4.1 and 4.2 below. Notice in Figure 4.1 that the intercept is close to zero and 
completely insignificant. More importantly, notice that the t-values for the slope 
intercepts in both figures are virtually identical. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
1 Recall from the reduced form of  (4.5) that 1( )

n
u I W    so that 1( ) ( ) ( ) 0

n
E u I W E    . 

2 This is established in expression (4.2.9) below. 
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However, it is also important to notice that from a regression viewpoint, models like 
(4.1.7) are seriously flawed. In particular, since the same random vector, u , appears both 
on the left and right hand sides, this regression suffers from what is called an 
“endogeneity problem”. Here it can be shown that while ˆW  is still a consistent estimator 

of  , it is highly inefficient (i.e., tends to have a large variance). Nevertheless, we have 
already seen that the p-values derived from this regression are generally quite reasonable. 
So even though we will develop a more satisfactory Monte Carlo approach using this ˆW  

statistic, the regression approach in (4.1.7) is generally quite robust and easy to perform. 
 
4.1.2 Correlation Statistic 
 
But given the inefficiency of ˆW  as an estimator of  , it is appropriate to seek 

alternative approaches to identifying  . One simple observation is to note in (4.1.5) that 

if 0   then for each 1,..,i n , the ith row, ( )iWu , of Wu  contributes positively to the ith 

component, iu , of u . So in this case, the random variables, iu  and ( )iWu , should exhibit 

some degree of positive correlation for each 1,..,i n .  Similarly, iu  and ( )iWu  should 

be negatively correlated  for all i  when 0  .  Hence it stands to reason that  iu  and 

( )iWu  should also be uncorrelated for all i  when 0  . The argument here is slightly 

less obvious, but can be seen as follows. Since 0   implies that u  ,  we must also 

have Wu W . But since the components of   are all independent, and since 0iiw   

implies that ( )i ij jj i
W w 


 does not involve i , it then follows that i  and ( )iW  

must be independent for all i , and hence uncorrelated. In short, all pairs of random 
variables [ , ( ) ]i iu Wu  are correlated with the same sign (positive, negative, or zero). 

 
Hence if the OLS regression residuals, û , are taken to be a sample of u  (so that ˆWu  is a 
sample of Wu ) then all sample pairs ˆ ˆ[ , ( ) ]i iu Wu  must be correlated with the same sign. 

This suggests that, as a summary measure, the sample correlation between vectors, û  
and ˆWu , should reflect this common sign. Since all these random variables have zero 
means by construction,3 we start by observing that the correlation between any zero-mean 
random variables, X  and Y , is given by4 
 

(4.1.9)   
2 2

cov( , ) ( )
( , )

( ) ( ) ( ) ( )

X Y E XY
X Y

X Y E X E Y


 
   

 
Hence the appropriate sample estimator of ( , )X Y  is constructed as follows. If for any 

random samples, ( , ) , 1,..,i ix y i n  of ( , )X Y  we employ the natural sample estimators, 

                                                 
3  Again, ( )

i ij jj
Wu w u  implies from (4.1.8) that [( ) ] ( ) 0

i ij jj
E Wu w E u  . 

4 Recall that cov( , ) ( ) ( ) ( ) ( )X Y E XY E X E Y E XY   , so that 2var( ) cov( , ) ( )X X X E X  . 
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(4.1.10) 
1

1ˆ ( )
n

i iinE XY x y


  ,   2 2

1
1ˆ ( )

n

iinE X x


    ,   2 2

1
1ˆ ( )

n

iinE Y y


   

 
then the corresponding “plug in” estimator for ( , )X Y  is given by 
 

(4.1.11) 1

2 2 2 2

1 1

1

1 1

ˆ ( )
ˆ ( , )

ˆ ˆ( ) ( )

n

i ii

n n

i ii i

n

n n

x yE XY
X Y

E X E X x y
 

 

  
 

  

 

                                                           1

2 2

1 1

n

i ii

n n

i ii i

x y

x y



 

 
 

 

 
If we let 1( ,.., )nx x x   and 1( ,.., )ny y y  , then in more common terminology, this 

estimator is designated simply as the sample correlation, ( , )r x y , between x  and y , i.e., 
 

 (4.1.12) 1

2 2

1 1

( , )
|| || || ||

n

i ii

n n

i ii i

x y x y x y
r x y

x yx x y yx y



 

 
  

 


 
  

 
In these terms, our second test statistic is given by the sample correlation between û  and 

ˆWu , i.e., 
 

(4.1.13) 
ˆ ˆ

ˆ ˆ( , )
ˆ ˆ|| || || ||W

u Wu
r r u Wu

u Wu


   

 
 

We designate this as the correlation statistic, or more simply as corr.  
 
 
4.1.3 Moran Statistic 
 
Up to this point we have focused mainly on constructing statistics for estimating the 
value (or at least the sign) of   in model (4.5).  But we have given little attention to how 

these statistics behave under the null hypothesis, 0H , in (4.6). One might suspect from 

the inefficiency of ˆW  that this statistic exhibits little in the way of “optimal” behavior 

under 0H . The sample correlation, Wr , does somewhat better in this respect. But from a 

statistical viewpoint, it suffers from a form of “incompatibility”. For while the classical 
sample correlation statistic assumes that ( , ) , 1,..,i ix y i n  are independent random 

samples from the same statistical population ( , )X Y , this is not true of the samples 
ˆ ˆ[ , ( ) ] , 1,..,i iu Wu i n . Even under the null hypothesis, where (4.7) implies that 

ˆˆ( : 1,.., )i iu i n   , are independently and identically distributed, this is not true of  the 

samples, ˆ( ) , 1,..,iW i n  , which are neither independent nor identically distributed. So 
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there remains a question as to how well either of these statistics behaves with respect to 
testing 0H . In this context, we now introduce our final test statistic,   
 

 

(4.1.14) 
2

ˆ ˆ ˆ ˆ
ˆ ˆ( , )

ˆ ˆ ˆ|| ||W

u Wu u Wu
I I u Wu

u u u

 
  


 

 
 

designated as the Moran statistic, or more simply as Moran’s I.5 Here it is important to 
emphasize that expression (4.1.14) is different from the version of Moran’s I in [BG, 
p.270] (also used in ARCMAP), which is designed for detecting autocorrelation in Y  
itself. This can in fact be viewed as the special case of (4.1) in which there only an 
“intercept” term with coefficient,  , representing the common mean of the Y 
components, i.e.,  
 

(4.1.15) 1nY u   

 
If u  is again assumed to satisfy (4.5), then under the null hypothesis, 0  , the “OLS” 
estimate in (4.3) reduces to the sample mean of y, i.e., 
 

(4.1.16) 1 1

1
ˆ (1 1 ) 1 ( )

n

n n n ii
y n y y  


     

 
Thus the “residuals” in (4.4) are here seen to be simply the deviations of the y  
components about this sample mean, i.e., 
 
(4.1.17) ˆ 1nu y y   

 
So the appropriate version of Moran’s I in this special case is seen to have the form, 
 

(4.1.18) 1 1

2

1

( )( )( 1 ) ( 1 )

( 1 ) ( 1 ) ( )

n n

ij i ji jn n
W n

n n ii

w y y y yy y W y y
I

y y y y y y

 



  
 

  

 


    

 
which is essentially the version used in [BG, p.270], except for the normalizing constant 
 

(4.1.19) W
iji j

n

w







 

 

For simplicity we have simply dropped this constant [as for example in Tiefelsdorf 
(2000,p.48)].6 

                                                 
5 Be careful not to confuse this use of “ I ” with the n-square identity matrix, 

n
I .   

6 Notice that for the common case of row normalized W (with zero diagonal) it must be true that 

1 1(1)( )n n
i j ij i j i ij iw w n         , so this constant is unity. 
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While this statistic is more difficult to motivate by simple arguments,7 it turns out to 
exhibit better statistical behavior with respect to testing 0H  then either of the statistics 

above.  
 
4.1.4 Comparison of Statistics 
 
By writing these three statistics side by side as 
 

(4.1.20)  
2 2

ˆ ˆ ˆ ˆ ˆ ˆ
ˆ , ,

ˆ ˆ ˆ ˆ|| || || || || || || ||W W W

u Wu u Wu u Wu
r I

Wu u Wu u


  
    

 
we see that they exhibit striking similarities. Indeed, since the numerators are identical, 
and since all denominators are positive, it follows that these three statistics must always 
have the same sign. Hence the differences between them are not at all obvious.  
But for testing purposes, the key issue is their relative behavior under the null hypothesis, 

0H . To study this behavior, it is necessary to express û  more explicitly as a random 

vector. To do so, observe first from (4.3) and (4.4) that 
 

(4.1.21) 1 1ˆˆ ( ) [ ( ) ]nu Y X Y X X X X Y I X X X X Y            
 

                1[ ( ) ]( )nI X X X X X u     
 

                           1( ) [ ( ) ]nX X I X X X X u        
 

                           1[ ( ) ]nI X X X X u    
 

                           û Mu   
 
where the matrix,  
 

(4.1.22) 1( )nM I X X X X    
 

is seen to be symmetric, i.e., M M  . Notice also that 
 
(4.1.23) 1 1[ ( ) ][ ( ) ]n nMM I X X X X I X X X X        
 

                                1 1 1[ ( ) ] ( ) ( )nI X X X X X X X X X X X X            
 

          1( )nI X X X X      
 

                                MM M   

                                                 
7 However, a compelling motivation of this statistic can be given in terms of the “concentrated likelihood 
function” used in maximum likelihood estimation of  . We shall return to this question in Section (??) 

after maximum likelihood estimation has been introduced. 
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Finally, to study the relative behavior of these estimators under 0H ,  recall from (4.5) 

that 0   implies 2~ (0, )nu N I  , so that û  takes now takes the form  

 
(4.1.24) û M  
 
with M  given by (4.1.22), and satisfying M M MM   .8 The estimators in (4.1.20) 
can then be expressed explicitly in terms of 2~ (0, )nN I   as follows, 

 

(4.1.25)     
2 2

ˆ , ,
|| || || || || || || ||W W W

MWM MWM MWM
r I

WM M WM M

     
   

  
    

 
In terms of these specific representations under 0H  , the superiority of WI  relative to ˆW  

and Wr  can be illustrated in terms of the 190 Health Districts in the English Mortality 

example above. Here we choose W to be a row normalized weight matrix [expression 
(2.1.25) of Section 2 above] consisting of the five nearest neighbors of each district (with 
respect to centroid distance).9 While the exact distributions of these statistics are difficult 
to obtain,10 they can easily be approximated by simulating many random samples of  . 
In Figure 4.3 below, the approximate sampling distributions of these three statistics are 
plotted using 10,000 simulated samples of   with 2 1  .11   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note first that while all three distributions are roughly centered on the true value, 0  , 
there is actually some degree of bias in all three. The simulated means for these three 

                                                 
8 The conditions M M MM   together imply that M is an orthogonal projection matrix. 
9 Since the row sums are always 5, i.e., since 1 (5)1

n n
W  , it turns out that 5

W
   and thus that the max-

eigenvalue normalization  [(2.1.25) of Section 2 above] and row normalization for this particular W matrix 
are the same.  
10 Exact distribution results for Moran’s I have been obtained by Tiefelsdorf (2000, Chap.7). 
11 Density estimation was done using the kernel-smoothing procedure, ksdensity.m, in MATLAB. 
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Figure 4.3. Sampling Distributions 
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statistics are displayed in Table 4.1 below, and show that the mean of Moran’s I is in fact 
an order of magnitude closer to zero than the other two. Moreover, the exact theoretical 
mean for Moran in this case  [expression (4.1.29) below] can be calculated to be 

0.00655 , which shows that for a sample of size 10,000 these simulated values are quite 
accurate. 
 

 
 
 
 
 
 
 

But Figure 4.3 also suggests that relative bias among these three estimators is far less 
important that their relative variances. Indeed it is here that the real superiority of WI  is 

evident. While the variance of WI  under 0H  is known [see expression (4.1.31) below], its 

exact relation to the variances of Wr  and ˆW  under 0H  is difficult to obtain analytically. 

But simulations with many examples show that these English Mortality results are quite 
typical. In fact, even for individual realizations of   it is generally true that 
 
(4.1.26) ˆ| ( ) | | ( ) | | ( ) |W W WI r      

 
While counterexamples show that (4.1.26) need not hold in all cases, this ordering was 
exhibited by all 10,000 simulations in the English Mortality example.  
 

In summary, this example shows why Moran’s I is by far the most widely used statistic 
for testing spatial autocorrelation. Given its relative unbiasedness and efficiency (small 
variance) properties under 0H , Moran’s I tends to be the most reliable tool for detecting 

spatial autocorrelation.12  
 
4.2. Asymptotic Moran Tests of Spatial Autocorrelation 
 
Given the superiority of Moran’s I , the most common procedure for testing 0H  is to use 

the asymptotic normality of WI  under 0H , first established by Cliff and Ord (1973) [see 

also Cliff and Ord (1981, pp.47-51), [BG], p.281 and Cressie (1993), p.442]. Since an 
asymptotic testing procedure using Moran’s I is available in ARCMAP, it is of interest to 
develop this procedure here. But before doing so, it must be emphasized that the test used 
in ARCMAP is based on the version of Moran’s I in expressions (4.1.18) and (4.1.19) 
above, which we here denote by 
 

(4.2.1)  1 1

2

1

( )( )

( )

n n

ij i ji j
W n

ij ii j i

w y y y yn
I

w y y

 

 

  


   

 
 

     

                                                 
12 For a deeper discussion of its optimality properties, see Section 4.3.2 in Tiefelsdorf (2000). 

Moran -0.0067 
corr -0.0198 
rho  -0.0851 

Table 4.1. Mean Values 
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The mean and variance of this statistic under 0H  are given in [BG, p.281]. For our 

present purposes, it is enough to observe that the mean of WI  has a very simple form, 

 

(4.2.2)  
1

( )
1WE I

n
 


  

 
which is made possible precisely by introducing the normalizing factor, W , in (4.1.19). 

This yields an expression which is independent of W (and thus serves to motivate the use 
of W ). Note also that like the English Mortality example in Table 4.1 above, this result 

shows there is always a slight negative bias in WI  under 0H , which shrinks to zero as n 

becomes large.  
 
However, the simplicity of (4.1.2) disappears when analyzing WI  for regression 

residuals, û M , under 0H . Here even the mean of WI  has the more complex form:13  

 
(4.2.3)  1( ) ( )W n kE I tr M W  

 
where M  is given in terms of the n k  data matrix, X , by (4.1.22) , and where the 
trace, ( )tr A , of any n-square matrix, ( )ijA a , is defined to be the sum of its diagonal 

elements, i.e., 
 

(4.2.4)  
1

( )
n

iii
tr A a


   

 
So in the case of regression, ( )WE I , is seen to depend not only on W  but also on the 

particular data matrix, X . This is also true for the variance of WI , which has the more 

complex form: 
 

(4.2.5)  
2

2( ) ( ) [ ( )]
var ( ) [ ( )]

( )( 2)W W

tr M W M W tr M W M W tr M W
I E I

n k n k

  
 

  
 

 
So before considering the testing procedure in ARCMAP, it is appropriate to consider the 
more general asymptotic test for regression residuals. 
 
 
 
 
 

                                                 
13 The mean (4.2.3) and variance (4.2.5) of 

W
I  under 

0
H  are taken from Tiefelsdorf (2000, p.48). The 

original derivations of these moments (using the normalizing factor, 
W

 ) can be found in Cliff and Ord 

(1981, Sections 8.3.1 and 8.3.2). 
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4.2.1 Asymptotic Moran Test for Regression Residuals 
 

Given the above mentioned asymptotic normality property of WI  under 0H , it follows 

that if expressions (4.2.3) and (4.2.5) are now employed to standardize this statistic as,  
 

(4.2.6)  
( )

var( )
W W

W

W

I E I
Z

I


  

 

then under “appropriate conditions”, this standardized statistic, WZ , should be 

approximately standard normally distributed, i.e., 
 

(4.2.7)  (0,1)W dZ N  
  
where (as in Section  3.1.3 of Part II) the notation, d  means “is approximately 

distributed as”. A more detailed description of these “appropriate conditions” will be 
given at the end of Section 4.2.2 below. So for the present, we simply assume that the 
approximation in (4.2.7) is valid. 
 

Given this assumption, the appropriate testing procedure is operationalized in the 
MATLAB program, moran_test_asymp.m. To apply this program to the English 
Mortality example, let y = “lnMI” and x = “lnJarman” (as in Section 1.3 above) and 
denote the 5-nearest neighbor weight matrix by W. This test can then be run with the 
command: 
 

>> moran_test_asymp(y,x,W); 
  
Note that this program actually runs the OLS regression, calculates the residuals, û , and 
then calculates WZ  in (4.2.6). The test results are reported as screen outputs: 

 
Moran = 0.46405 
  
 Zval = 11.3044 
  
 Pval < 10^(-323) 
 
Here the calculated value, WZ , is denoted by Zval and is seen to be more than 11 

standard deviations above the mean. This suggests that there is simply no chance at all 
that these residual values (shown in Figure 4.4 below) could be spatially independent.14 
 
4.2.2  Asymptotic Moran Test in ARCMAP 
 

As mentioned above, the Moran test used in ARCMAP relies on WI in (4.2.1) rather than 

WI , and essentially tests whether a given set of spatial data, y, can be distinguished from 

independent normal samples.  This procedure can again be illustrated using the English 

                                                 
14 In fact, the p-value here is so small that it is reported as “0” in MATLAB. In such cases, the program 
simply reports “Pval < 10^(-323)”, which is roughly the smallest number treated as nonzero in MATLAB. 
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Mortality data. But in doing so, it must be born in mind that these regression residuals, û , 
are now treated as the basic data set “y” itself. This is always possible in the case of OLS 
residuals since by definition the “sample mean”, 1 ˆ1nn u , of such residuals is identically 

zero. This is a consequence of the following property of the projection matrix, M,  
 

(4.2.8)  1[ ( ) ]n nM X I X X X X X X X O       
 

which together with the definition, 1(1 , ,.., )n kX x x , implies in particular that 1 0nM  . 

But for any realized value, y , of Y it then follows from (4.1.21) that 
 

(4.2.9)  ˆ ˆ1 1 ( 1 ) 0n n nu My u My M y        
 

and thus that 1 ˆ1nn u  is always zero. This means that we can set û y  in (4.1.17) then 

0y   and obtain no immediate contradictions. However, it is important to emphasize 

that the mean and covariance of WI  are in principle very different from those of WI , 

depending on the explanatory data, X.  
 

Given this observation, we now proceed to test for spatial autocorrelation in û  by using 

WI  rather than WI . To do so, the OLS residuals of the regression of Myocardial 

Infarction rates on the Jarman Index must first be imported to ARCMAP and joined to 
the Eng_Mort.shp file as a new column, say resid, and saved as a new shapefile, say 
OLS_resids. These residuals are shown in Figure 4.4 below, with positive residuals in 
red, negative in blue, and with all values “close to zero” (i.e., within half a standard 
deviation) shown in white. Here it is clear that while the Jarman Index is certainly a 
significant predictor of Myocardial Infarction, these unexplained residuals are highly 
correlated in space. Recall from the simple nearest-neighbor test that this correlation was 
more significant than the Jarman Index itself. We now show that this degree of 
significance is in fact even greater than in that simple heuristic test. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 100 km

Figure 4.4.  OLS Residuals 
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For this illustration, we again use the above weight matrix, W, consisting of the first 5 
nearest neighbors of each district. To use this weight matrix in ARCMAP, it must first be 
converted to a text file using the MATLAB program, arcmap_wt_matrix.m, with the 
command: 
 
>> L = arcmap_wt_matrix(W); 
 
Here you must be sure that W is not in “sparse” form (which can be seen by displaying 
the first row of W).  If it is, then use the command, W = full(W), to convert it to a full 
matrix. The matrix output, L, should then have initial rows of the form: 
 
            1            2           0.2 
            1            3           0.2 
            1            8           0.2 
            1           15          0.2 
            1           16          0.2 
                                         
 
This shows in particular that the first 5 nearest neighbors of district 1 are districts 
(2,3,8,15,16). To import this matrix to ARCMAP, first open it in EXCEL and “clean” the 
numerical format to look like the above. ARCMAP also requires an ID for these values, 
which can be accomplished in three steps: 
 

(i) First add a new column to the attribute table (say next to resid) labeled ID and 
use the calculator (with “short integer”) to create values (1 2 3 …) by setting 
ID = [FID] + 1. 

 
(ii) Now add a new row at the top of the matrix, L, in EXCEL, and write the 

identifier name, ID, so that L is now of the form:  
 

                        ID 
          1            2           0.2 
             1            3           0.2 
             1            8           0.2 

                                         
 

(iii) Finally, save this as a text file, say Wnn_5.txt, (to indicate that it includes the 
first 5 nearest neighbors). This file will be used by ARCMAP below. 

 
To apply the Moran test to the OLS residuals, resid, in ARCMAP, follow the path: 
 
                           ArcToolbox  >  Spatial Statistics Tools   
                                                 >  Analyzing Patterns   
                                                 >  Spatial Autocorrelation (Morans I) 
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In the “Spatial Autocorrelation” window that opens, fill in the shapefile and field, and be 
sure to check the “Generate Report” box. You are now going to use the option, 
 

“GET_SPATIAL_WEIGHTS_FROM_FILE” 
 
in the “Conceptualization of Spatial Relationships” window. (It is this option which 
makes the ARCMAP test worthwhile!). Here, browse to the text file, Wnn_5.txt, 
constructed above. The relevant portion of the Spatial Autocorrelation window should 
now look as shown below (where the last file path will of course vary): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Click OK, and when the procedure terminates, you will get a report displayed. The most 
relevant portion of this report is shown in Figure 4.7 below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Before proceeding further, notice that while the value of  Moran’s I, (Index = 0.464048), 
is the same as in Section 4.2.1 above, the Z value (ZScore = 11.188206) is slightly 
different. This is because the mean and variance used to standard Moran’s I are different 

Figure 4.5. Spatial Autocorrelation Window 

Figure 4.7. Moran Test Report 
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in these two tests. Rather than using (4.2.3) and (4.2.5), the values used are those in [BG, 
p.281], including (4.2.2) for the mean. In the present case, spatial autocorrelation is so 
strong that there is little difference between these results. But this need not always be the 
case. 
 
It is also important to note that while this report contains all key test information, there is 
a much better graphical representation that can be obtained by clicking the “HTML 
Report File” that is shown here in blue. This graphic is shown in Figure 4.9 below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This graphic facilitates the interpretation of the results by making it abundantly clear (in 
the present case) that these test results show positive spatial correlation that is even more 
significant than that of the heuristic nearest-neighbor approach used previously. 
 
But it should be emphasized that while spatial correlation is visually evident in Figure 4.5 
above, this will not always be the case. Moreover, it should also be stressed that the 
Moran statistics, WI  and WI  (as well as ˆW  and Wr ) are defined only with respect to a 

given weight matrix, W . Hence it is advisable to use a number of alternative weight 
matrices when testing for spatial autocorrelation. For example, one might try alternative 
numbers of neighbors (say 4, 5, and 6), or more generally, weight matrices involving both 
distance-based and boundary-based notions of spatial proximity. A general rule-of-
thumb is to try three substantially difference matrices, 1 2 3( , , )W W W , that cover a range of 

potentially relevant types of proximity. If the results for all three matrices are comparable 
(as will surely be the case in the English Mortality example), then this will help to 
substantiate these results. On the other hand, if there are significant differences in these 

Gi th f 11 19 th i l th 1% lik lih d th t thi

Moran's Index: 0.464048

z-score: 11.188206

p-value: 0.000000

Figure 4.9. Moran Test Report 
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results, then an analysis of these differences may serve to yield further information about 
the underlying structure of the unobserved spatial dependencies. 
 
Finally it should be emphasized that, as with all asymptotic tests, these asymptotic Moran 
tests require that the number of samples (areal units) be “sufficiently large”. Moreover, it 
is also required that the W matrix be “sufficiently sparse” (i.e., consist mostly of zero-
valued cells) to ensure that the Central Limit Theorem is working properly. The present 
case with 190n   spatial units, and with each row of W containing only 5 nonzero 
entries, this should be a reasonable assumption. But as with the Clark-Evans tests for 
random point patterns, it is often difficult to know how well this normal approximation is 
working.15  
 
4.3. A Random Permutation Test of Spatial Autocorrelation 
 
With this in mind, we now develop an alternative testing procedure based on Monte 
Carlo methods that is more computationally intensive, but requires essentially no 
assumptions about the distribution of test statistics under 0H . The basic idea is very 

similar to the “random relabeling” test of independence for point patterns in Section 5.6 
of Part I. There we approximated the hypothesis of statistical independence by “spatial 
indistinguishability”. Here we adopt the same approach by postulating that if the 
particular spatial arrangement of sample points doesn’t matter, then neither should the 
labeling of these points. More specifically, in the vector of regression residuals, 

1ˆ ˆ ˆ( ,.., )nu u u  , it shouldn’t matter which residual is labeled as “ 1û ”, “ 2û ”, or “ ˆnu ”. If so, 

then regardless of what the joint distribution of these residuals 1ˆ ˆ( ,.., )nu u  actually is, each 

relabeling 
1

ˆ ˆ( ,.., )
n

u u   of these residuals should constitute an equally likely sample from 

this distribution. So under this spatial invariance hypothesis, SIH , we may generate the 

sampling distribution for any statistic, say 1ˆ ˆ( ,.., )nS u u , under SIH  by simply evaluating 

1
ˆ ˆ( ,.., )

n
S u u   for many random relabelings,  , of 1ˆ ˆ( ,.., )nu u . As we have seen for point-

pattern tests, this hypothesis can then be rejected if the observed value, 1ˆ ˆ( ,.., )nS u u , 

appears to be an unusually high or low value from this sampling distribution.  
 
Before operationalizing this procedure, it is important to stress that it is applicable to any 
statistic constructible from this residual data. Hence, in the same way that different 
weight matrices, W, can be used to reflect alternative notions of spatial proximity, it is 
advisable to use a range of alternative test statistics for SIH . Indeed, this is precisely why 

the rho statistic and correlation statistic were developed above. While Moran’s I appears 
to be the best choice when residuals are multi-normally distributed, this is less clear in the 
present nonparametric setting.  So it seems reasonable to check the results for WI with 

those of Wr  and ˆW . However, it should also be emphasized that a substantial body of 

simulation results in the literature suggest that Moran’s I tends to be robust with respect 

                                                 
15 For further discussion of these issues, see for example Tiefelsdorf (2000, Section 9.4.1), Anselin and Rey 
(1991) and Anselin and Florax (1995). 
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to violations of normality.16 So while we shall report results for all three statistics, 
Moran’s I tends to be the most reliable of these three. 
 
4.3.1 SAC-Perm Test 
 
With this overview, we now outline the steps of testing procedure for SIH , designated as 

the permutation test of spatial autocorrelation, or more simply the sac-perm test. For 
convenience we maintain the general notation, S , which can stand for either I, ̂ , or r .  
Since higher positive values of each of these three statistics correspond to higher levels of 
positive spatial autocorrelation, we assume that S exhibits this same ordering property.  In 
this setting, our test is designed as a one-tailed test of positive spatial autocorrelation 
(paralleling the one-tailed test of clustering for K-functions). In particular, significant 
positive (negative) spatial autocorrelation will again be reflected by low (high) p-values. 
As with the asymptotic Moran tests above, this sac-perm test is defined with respect to a 
given spatial weight matrix, W. Finally, it should be noted that while the notation, u , will 
be used to represent the given residual data in this procedure, virtually all applications 
will be in terms of OLS residuals, i.e., ˆu u . With these preliminary observations, the 
steps of this testing procedure are as follows: 
 
Step 1. Let 0

1( ,.., )nu u u  denote the vector of observed residuals, and construct the 

corresponding value, 0 0( )S S u , of statistic, S . 
 
Step 2. Simulate N random permutations, 1( ,.., )j j j

n   , of the integers (1,.., )n .17 

 
Step 3. For each permutation, j , construct the corresponding permuted data vector, 

1
( ) ( ,.., )j j

n

ju u u
 

  , and the resulting value of S , denoted by [ ( )] , 1,..,j jS S u j N  . 

 
Step 4. Rank the values 0 1( , ,.., )NS S S  from high to low, so that if jS is the thk  highest 

value then ( )jrank S k . 
 
Step 5. If 0( )rank S k  then define the p-value for this test to be 
 
(4.3.1)  / ( 1)k N    
 

(i) If  is low (say 0.05  ) then conclude that there is significantly positive 
spatial autocorrelation at the  -level of significance.  

 

                                                 
16 See for example the Monte Carlo results in Anselin and Rey (1991) and Anselin and Florax (1995). 
17 So if n = 3 then the first permutation of (1,2,3) might be 1 1 1 1

1 2 3
( , , ) (2,3,1)     . 
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(ii) Conversely, if   is high (say 0.95  ) then conclude that there is 
significantly negative spatial autocorrelation at the (1 ) -level of 
significance. 

(iii) If neither (i) or (ii) hold, then conclude that the spatial independence 
hypothesis, SIH , cannot be rejected. 

 
The “cutoff” levels for significantly positive or negative spatial autocorrelation are 
intentionally left rather vague. Indeed the entire nature of this sac-perm test is meant to be 
exploratory in nature. 
 
4.3.2 Application to the England Mortality Data 
 
Recall from the asymptotic Moran tests in Section 4.2 that there was extremely strong 
autocorrelation in the OLS residuals of the England Myocardial Infarction data when 
regressed on the Jarman Index. We now reproduce those results in MATLAB using 
sac_perm. Here the data can be found in the workspace, eng_mort.mat, where the OLS 
residuals are in the vector, Res. Finally, recall that desired weight matrix, Wnn_5, was  
already constructed for Eire in Section 2.2.1 above. So the only difference here is that L 
is now a 190x2 matrix of coordinates for English Health Districts. To construct a sac-
perm test of the residual data, Res, using this weight matrix, we can employ 9999 random 
permutations with the command: 
 
>>  sac_perm(Res, Wnn_5, 9999); 
 
The screen output of this program is shown below: 
 
 

RANGE OF RANDOM-PERMUTATION INDEX VALUES: 
  
INDEX      Moran       corr        rho  
MAX       0.1939     0.3325     0.6799  
MIN      -0.1444    -0.3797    -0.9987  
 
  
TABLE OF SIGNIFICANCE LEVELS: 
  
INDEX      VALUE     SIGNIF  
Moran     0.4640     0.0001  
corr      0.6324     0.0001  
rho       0.8618     0.0001 

 
 
Here the key outputs are the significance levels for the three test statistics (Moran, corr, 
rho). Notice that (as expected), these values are each maximally significant, i.e., they are 
higher than the values for all of the 9999 random permutations simulated. In fact, they 
are much higher, as can be seen by comparing them with the range of values displayed 
above. For example, the important Moran value, 0.4640, is seen to be well above the 
range of values, - 0.1444 to 0.1939, reported for all 9999 permutations. Note also that the 
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ranges of corr and rho are successively larger than this, in a manner consistent with 
expression (4.1.26) for the asymptotic Moran test. 
 
As expected, the Moran value, 0.4640 , is the same as that for the asymptotic tests above, 
confirming that the same weight matrix and calculation procedure are being used. 
Moreover, the extremely significant p-value reported for those tests is consistent with the 
present fact that this Moran value is way above the simulated range. This shows that if 
the number of permutations were increased well beyond, 9999, the same maximally-
significant results would almost surely persist.  
 
Finally, just to show that normality of WI  persists under random permutations for 

samples this large, we have plotted the histogram for the 9999 simulated values of WI  

(ranging from -0.1444 to 0.1939), together with the observed value, 0.4640, shown in red. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This plot also serves to further dramatize the significance of spatial autocorrelation for 
these particular regression residuals. 
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Figure 4.10. SAC-Perm Test for IW 


