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5. Tests of Spatial Concentration 
 
The above testing procedures are all motivated by the spatial autoregressive model of 
residual errors. So before moving on to spatial regression analyses of areal data, it is 
appropriate to consider certain alternative measures of spatial association that are also 
based on spatial weights matrices. By far the most important of these for our purposes are 
the so-called G-statistics, developed by Getis and Ord (1992,1995).1 These statistics 
focus on direct associations among (nonnegative) spatial attributes rather than spatial 
residuals from some underlying explanatory model.  For any given set of nonnegative 
data, 1( ,.., )nx x x  , associated with n areal units, together with an appropriate spatial 

weights matrix, ( : , 1,.., )ijW w i j n  , the *G statistic for x  is defined to be:2 
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As discussed further below, the diagonal elements of W are allowed to be nonzero (since 
no autoregressive-type relations are involved). However, if one is only interested in 
relations between distinct areal units, i j , so that the diagonal elements of W are treated 
as zeros, then the resulting statistic is called simply the G statistic, and is given by: 
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where 0 ( )W W diag W  . However, our focus will be almost entirely on *G statistics.3 
 
5.1 A Probabilistic Interpretation of G* 
 
While the definitions in (5.1) and (5.2) serve to clarify the formal similarities between 
these indices and those of the previous section, there is an alternative representation 
which suggests a more meaningful interpretation of these indices. Here we focus on *G . 
First observe that since 0ix  , if we let 
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1 The 1992 paper is Reference 7 in the class Reference Materials. 
2 While our present focus is on areal units, it should be noted that these G-statistics are equally applicable 
to sets of point locations, such as hospitals or supermarkets within a given urban area. 
3 It should be clear from these definitions that a better choice of notation would have been to use G with W 

and 0G  with 0W . But at this point, it is best to stay with the standard notation in the literature. 
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denote the proportion (or fraction) of x in unit i , and let 1( ,.., )np p p   denote the 

corresponding vector of proportions, then *G can be rewritten as 
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Next observe (from the title of their 1992 paper) that Getis and Ord are primarily 
interested in distance-based measures of proximity or accessibility. In particular, if we let 

ijd  denote some appropriate notion of distance between units i  and j , and let ( )a d  

denote an appropriate (nonincreasing) accessibility function of distance [such as 
( )a d d   or ( ) exp( )a d d  ], then we may now interpret each spatial weight as an 

accessibility measure 
 
(5.1.3) ( ) , , 1,..,ij ijw a d i j n   

 
and write 
 
(5.1.4) * ( ) ( )a i j ijij

G p p a d   

 
To give a concrete interpretation to *

aG , let us assume for the moment that ix  represents 

the population in areal unit i , so that ip  is the fraction of population in i , and 

1( ,.., )np p p   is the population distribution among areal units. In this context one may 

ask: What is the expected accessibility between two randomly sampled individuals from 
this distribution? To answer this question, observe that since ip  is by definition the 

probability that a randomly sampled individual is from unit i , it follows by independence 
that i jp p  must be the joint probability that these two random samples are from units i  

and j , respectively. So if accessibility is treated as a random variable with values, ( )ija d , 

for each pair of areal units, then it follows from (5.1.4) that *
aG  must be the expected 

value of this random variable, i.e., 
 
(5.1.5) * ( )aG E a  

 
Thus the value of *

aG  is precisely the answer to the question above, i.e., the expected 

accessibility between two randomly sampled individuals in this population.  
 
In terms of this particular example, there are several additional features that should be 
noted. First it should be clear that two individuals in the same areal unit are by definition 
maximally accessible to one another. So any measure of overall accessibility will surely 
be distorted if these relations are omitted – as in G statistics. It is for this reason that our 
focus is almost exclusively on *G statistics. Notice also from the definitions of a  and p 
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that *
aG  must achieve its maximum value when all population is concentrated in the 

smallest of these n areal units. This suggests that *
aG  is more accurately described as a 

measure of spatial concentration than association. 
 
More generally, these interpretations carry over to essentially any nonnegative data. For 
example, if ix  denotes income or crime levels, then *

aG  represents the spatial 

concentration of income or crime. But here one must be careful to distinguish between 
extensive and intensive quantities. For example, while proportion of total income (dollars) 
in areal unit i  is straightforward, the “proportion” of per capita income is less clear. 
Hence one must treat such intensive quantities in terms of density units that can be added. 
So for example, if per capita income is twice as high in i  as in j , this would here be 
taken to mean that the income density in i  is twice that in j . So a better interpretation of  

*
aG  in this case would be in terms of the spatial concentration of income density. In any 

case it is certainly meaningful to ask whether certain spatial patterns of per capita income 
are more concentrated than others 
 
Finally, we should add that even for spatial weights matrices, W, that are not distance 
based (such as spatial contiguity matrices), such weights can still be viewed as measures 
of “closeness” in an appropriate sense. So in the analyses to follow, we shall continue to 
interpret *

WG  in (5.1.2) as measuring the degree of spatial concentration of quantities, 

1( ,.., )nx x x  . 

 
5.2  Global Tests of Spatial Concentration 
 
To test whether population (income, crime, etc.) is “significantly concentrated” in space, 
it is natural to again consider permutation tests involving *

WG , where ijw is implicitly 

interpreted as a measure of accessibility, a, as in (5.1.3) above. The details of such a 
testing procedure are essentially identical to the sac_perm test above. The only difference 
is that the relevant test statistic, S, in Section 4.3.1 above is now *

WG  rather than say the 

Moran statistic, WI . This procedure in operationalized in the MATLAB program, 

g_perm.m. 
 
As one application of this testing procedure, we again consider the English Mortality data 
in Figure 1.9 above (p.III.1-5). For purposes of illustration, we here consider a new type 
of spatial weights matrices, namely exponential-distance weights [expression (2.1.13)] 
which is also constructed by using the MATLAB program, dist_wts.m. Starting with 
exponential-distance weights, say 
 
(5.2.1) ( ) exp( )ij ij ijw a d d    

 
we first note that since the negative exponential function approaches zero very rapidly, it 
is often advisable to normalize distance data to the unit interval to avoid vanishingly 
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small values.4 To do so we first identify the largest possible centroid distance, maxd , 

between all pairs of Health Districts, and then convert centroid distances, ijd , to the unit 

interval by setting 
 
(5.2.2) *

max/ , , 1,.., ( 199)ij ijd d d i j n     

 
so that *0 1ijd  . Using this normalization, we can then design exponential distance 

weights to yield some appropriate “effective band width” by simply plotting the function 
exp( ), 0 1d d    , for various choices of  . For our present purposes, the value 

10   yields the plot shown in Figure 5.1 below, 5 which  is seen to yield an effective 
bandwidth of about 1/ 2d   (shown by the red arrow). In terms of our normalization in 
(5.2.2) this yields the familiar value, max / 2d : 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Using the workspace, eng_mort.mat, the corresponding spatial weights matrix, W1, is 
constructed by using dist_wts.m with the commands: 
 
>> info.type = [4,10,1]; 
>> W1 = dist_wts(L,info); 
 
Here L is the 199x2 matrix of centroid coordinates,  ‘4’ indicates that exponential-
distance weights are option 4 in dist_wts.m, ‘10’ denotes the exponent value, and (most 
importantly) ‘1’ denotes the option to leave all diagonal elements as calculated [in this 
case, exp(0) 1 ]. Note also that since these weights are already guaranteed to lie in the 
unit interval (as in Figure 5.1), there is no need to consider any additional normalizations 
(as provided by the info.norm option). Finally, denoting the myocardial infarction rates 

                                                 
4 For example, if distance were in meters, then while a distance of 800 meters is not very large, you will 
discover that MATLAB yields the negative exponential value, exp(-800) = 0.  Moreover, this is not 
“rounded” to zero, but is actually so small a number that it is beyond the limits of double precision 
arithmetic to detect. 
5 This plot is obtained with the commands: x = [0:.01:1]; y = exp(-10*x); plot(x,y,'k','Linewidth',5); 

d  

exp( 10 )d  

Figure 5.1. Negative Exponential Function 
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by z = mort(:,3), the test of spatial concentration using g_perm.m is performed with the 
command: 
 
>> g_perm(z,W1,999); 
 
The results of this test (with 999 random permutations of Health Districts) is shown 
below: 
 
SPATIAL CONCENTRATION RESULTS 
  
INDEX      VALUE       PROB  
G                0.0055          0.0010  
G*              0.0054          0.0010 
 
Notice first that both G and *G values are reported, even though *G  is of primary interest 
for our purposes. Next observe that, not surprisingly, these myocardial infarction rates are 
maximally significant given 999 permutations, and that in this case there is very little 
disagreement between G and *G .  
 
For purposes of comparison, we also try the more local spatial weights matrix, Wnn_5, 
already employed in Section 4.3.2 above to test for spatial autocorrelation in the 
regression residuals for this same data. Here the results of using 
 
>> g_perm(z,Wnn_5,999); 
 
are seen to be practically the same: 
 
SPATIAL CONCENTRATION RESULTS 
  
INDEX      VALUE       PROB  
G                0.0057          0.0010  
G*              0.0056          0.0010 
 
As with spatial autocorrelation, it is always a good idea to use several spatial weight 
matrices to check the robustness of the results. Here it is clear from the very different 
(implicit) bandwidths used in these two examples that the significance of spatial 
concentration in this case is firmly established. 
 
Before moving on to the more interesting local tests of spatial concentration, it is of 
interest to note that such tests can also be done in ARCMAP. Here ARCMAP has for 
some reason chosen to use only G-statistics rather than *G -statistics.6 But in the more 
important case of local spatial concentration below, they do use *G -statistics. So we shall 
not spend much time on this particular application, other than to note that it can be 
accessed by 

                                                 
6 To see this, simply Google “How High/Low Clustering (Getis-Ord General G) works”. 
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Given the z-score of 9.05, there is a less than 1% likelihood that this
high-clustered pattern could be the result of random chance.

Observed General G: 0.005676

z-score: 9.053801

p-value: 0.000000

ArcToolbox > Spatial Statistics Tools  
                      > Analyzing Patterns  
                      > High/Low Clustering (Getis-Ord General G) 

 
For sake of comparison with the MATLAB results above, we have used exactly the same 
procedure developed in Section 4.2.2 above for testing spatial autocorrelation in terms of 
Wnn_5. Here the only difference is that General G is used rather than Moran’s I. The 
graphical output for this application is shown in Figure 5.2 below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notice from the value of G = 0.005676 that this is the same value (when rounded) as that 
obtained in MATLAB above. Notice also that the result here is in terms of the asymptotic 
normal approximation of this G statistic (obtained by Getis-Ord, 1992, under the same 
random permutation hypothesis as above), and is thus reported as a z-score (9.0538) with 
extremely small p-value. This again suggests that the MATLAB results would continue 
to obtain maximal significance for many more permutations than 999. 
 
5.3  Local Tests of Spatial Concentration 
 
Observe that both *

WG  and WG are decomposable into local measures of concentration 

about each location i  as follows. Let the local *
WG  value at i  be defined by 

 

Figure 5.2. Application of the G Statistic 
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and similarly, let the local WG value at i  be defined by 
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where, again, our interest focuses almost entirely on * ( )WG i . Note in particular from 

(5.1.2) that these local measures of concentration are related to *
WG  by the identity,7 
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Thus *

WG  can be viewed as a weighted average of these local concentration measures, 

where the weights, ip , are simply the proportions of x  in each areal unit i . In terms of 

the probability interpretation above, if we again consider accessibility weights of the 
form, ( )ij ijw a d , then *( )aG i  is precisely the expected accessibility from a randomly 

sampled unit of x in i  to any other randomly sampled unit, i.e., the conditional expected 
accessibility 
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In these terms, it follows from (5.1.5) together with (5.3.4) that the decomposition in 
(5.3.3) is simply an instance of the standard conditional-expectation identity: 
 
(5.3.5) ( ) ( | )ii

E a p E a i   

 
But the real interest in these local measures is that they provide information about where 
concentration is and is not occurring.8 In particular, by assigning p-values indicating the 
significance of local concentration at each areal unit, one can map the results and 
visualize the pattern of these significance levels. Those areas of high concentration are 
generally referred to as “hot spots” (in a manner completely analogous to strong clusters 
in point patterns). 
 
 

                                                 
7 It is of interest to note that this decomposition is an instance of what Anselin (1995) has called Local 
Indicators of Spatial Association (LISA). 
8 Indeed, the original paper by Getis and Ord (1992) starts with these local indices, and only groups them 
into a “General G” statistic a later section of the paper. 
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5.3.1 Random Permutation Test  
 
In this setting, one may test for the presence of such “hot spots” with respect to data set, 
( : 1,.., )ix i n  by employing essentially the same random permutation test as above. In 

particular, for any random permutation, 1( ,.., )n    , of the areal unit indices (1,.., )n , 

one may compute for each unit i the associated statistic, * ( )WG i , and compare this 

observed value with the distribution of values, * ( , )WG i k  for N  random permutations, 

1( ,.., ) , 1,..,k k k
n k N     . Here it is important to note that the index i  is itself included 

in this permutation. For if the value of ix  is relatively large, then to reflect the 

significance of this local concentration at i  it is important to allow smaller values to 
appear at i  in other random permutations.  
 
If the observed value of * ( )WG i  has rank ik   among all values * * *[ ( ), ( ,1),.., ( , )]W W WG i G i G i N  

(with rank 1 denoting the highest value), then the significance of concentration at i is 
again represented by the p-value, 
 

(5.3.6)  , 1,..,
1

i
i

k
P i n

N
 


.  

 
It is these values that are plotted to reveal visual patterns of concentration. 
 
 
5.3.2 English Mortality Example  
 
This testing procedure is implemented for local *G -statistics in the MATLAB program, 
g_perm_loc.m. Here it is assumed that tests for all areal units, 1,..,i n , are to be done. 

Hence the outputs contain the local *G -statistic and P-value for each areal unit.  To 
illustrate the use of this local-testing procedure, it is convenient to continue with the 
English Mortality example above. For the exponential-distance weights matrix, W1, 
constructed above, together with the myocardial infarction data, z, the command: 
 
>> GP1 = g_perm_loc(z,W1,999); 
 
yields a (190 x 2) output matrix GP1 *[( , ) : 1,..,190]i iG P i   containing the local *G -

statistic, * *
1[ ( )]i WG G i  and P-value, iP , for each of the 190 districts, based on 999 

random permutations. These values were imported to ARCMAP and displayed in the 
map document, Eng_mort.mxd, as shown in Figure 5.3 and 5.4 below. Figure 5.3 plots 
the actual values of *

iG in each areal unit, i , with darker green areas denoting higher 

values. The corresponding P-values are shown in Figure 5.4, where darker red shows the 
area of most significance (and where only the legend for P-values is shown). As 
expected, there is seen to be a rough correspondence between high local *G  values and 
more significant areas of concentration.  
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Notice in particular that the local *G -values reflect the general concentration of 
myocardial infarction rates in the north that is seen in the original data set [Figure 1.9 
(p.III.1-5)], but now are smoothed by the exponentially weighted averages in the local 

*G  statistics. However this “north-south” divide ([B-G], p.279) is seen to be much more 
dramatic in the associated P-values, where the darkest region, denoting P-values less than 
.01, now covers all of Northern England. 
 
Turning next to the nearest-neighbor weights matrix, Wnn_5, the test results are now 
obtained with the command, 
 
>> GP2 = g_perm_loc(z,Wnn_5,999); 
 
which again yields a (190 x 2) output matrix GP2 *[( , ) : 1,..,190]i iG P i   containing the 

local *G -statistics and P-value for this case.  By again importing these values to 
ARCMAP, we obtain the comparable displays shown in Figures 5.5 and 5.6 below. 
Notice that key difference between these two sets of results is the additional local 
variation in values created by the smaller numbers of neighbors used by Wnn_5. For 
example, while each areal unit has only 5 neighbors in Wnn_5, if we approximate the 
bandwidth in exponential matrix, W1, by counting only weights, .01ijw  , then some 

areal units i  still have more than 70 neighbors. So the degree of smoothing is much 
greater in the associated *

iG values. But still, the highest values of both *
iG  and iP  

continue to be in the north, and in fact are seen to agree more closely with those 
concentrations of myocardial infarction rates seen in the original data, such as the 
concentration seen around Lancashire county [compare Figure 1.6 (p.I.1-3) with Figure 
1.9 (p.III.1-5)]. So it would appear that 5 nearest neighbor yields a more appropriate scale 
for this analysis.  

Fig.5.4. Exponential P-values Fig.5.3.  Exponential G*-Values 
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5.3.3 Asymptotic G* Test in ARCMAP 
 
An alternative test using *G is available in ARCMAP. This procedure can be found at: 
 
ArcToolbox >  Spatial Statistics Tool 
                     >  Mapping Clusters 
                     >  Hot Spot Analysis (Getis-Ord G*)  

 
To employ this procedure, we will again use the English Mortality data with the nearest-
neighbor spatial weights matrix, Wnn_5, already constructed for ARCMAP in Section 
4.3.2. In the Hot Spot window that opens, type: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5.5. Nearest Neighbor G*-Values Fig.5.6. Nearest Neighbor P-Values 
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where the specific path names will of course vary. Click OK, and a shapefile will be 
constructed and added to the Table of Contents in your map document. The result 
displayed is shown in Figure 5.7 below (where the legend from the Table of Contents has 
been added). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As with the General G test in Figure 5.2 above, this test is based on the asymptotic 
normal approximation of the local *G -statistics under the same random permutation 
hypothesis as above. So the values shown in the legend above are actually in terms of the 
z-scores obtained for each test. For example, the familiar “1.96-2.58” valued in the 
second to last red entry indicates that myocardial infarction rates for districts with this 
color are significantly concentrated at between the .05 and .01 level. (The actual p-values 
are listed in the Attribute Table for this map). Here it is important to note that two-sided 
tests are being performed. So for a corresponding one-sided test (as done above), these 
values are actually twice as significant (i.e., with one-sided p-values between .025 and 
.005). So even though the red areas look slightly “smaller” than those in Figure 5.6, the 
results are actually more significant than those of MATLAB, in a manner consistent with 
all of the asymptotic tests we have seen so far. Notice also that because two-sided tests 
are being done, it is also appropriate show areas with significantly less concentration than 
would be expected under the null hypothesis. These districts are shown in blue.  
 
5.3.4. The Advantage of G* over G for Analyzing Spatial Concentration 
 
Before leaving this topic, it is instructive to consider an additional example that illustrates 
the advantage of local *G -statistics over G-statistics for the analysis of spatial 
concentration. Here we construct a fictitious population distribution for the case of Eire in 
which it is assumed that there is a single major concentration of population in one county 
(FID 18 = “Offaly” County), as shown in Figure 5.8 below.9  

                                                 
9 In particular, about 25% of the population has been placed in this county, and the rest has been distributed 
randomly (under the additional condition that no other county containing more than 5% of the population).   

< -2.58 Std. Dev.

-2.58 - -1.96 Std. Dev.

-1.96 - -1.65 Std. Dev.

-1.65 - 1.65 Std. Dev.

1.65 - 1.96 Std. Dev.

1.96 - 2.58 Std. Dev.

> 2.58 Std. Dev.

Figure 5.7. Asymptotic G* Test Output 
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Here an exponential-distance matrix has been constructed similar to W1 above (to ensure 
a smooth representation), and the local *G -statistics for this case are shown in Figure 5.9. 
Notice these these *G -values roughly approximate the concentration of the original data, 
but are somewhat smoother (as was also seen for the myocardial infarction data above 
using W1). The corresponding P-values (again for 999 simulations) are shown in Figure 
5.10 below.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
These results confirm that Offaly County is the overwhelmingly most significant 
concentration of population ( P-Value .02 ), with several of the surrounding counties 

Fig.5.10. P-Values for G* Fig.5.11. P-Values for G 

Fig.5.8. Fictitious Data Fig.5.9. Exponential G*-Values 
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gaining significance from their proximity to Offaly. However, if one carries out the same 
test procedure using local G -statistics, then a substantially different picture immerges. 
Here Offaly County is not in the least significant – but two of its immediate neighbors 
are. The reason of course is that by setting the matrix diagonal to zero, the population of 
Offaly itself is ignored in the local G -test for this county. Moreover, since its neighbors 
do not exhibit unusually high population concentrations, the local G -value for Offaly 
will not be unusually high compared to the corresponding values for random 
permutations of county populations. However, its neighbors are still likely to exhibit 
significantly high values, because their proximity to the population concentration in 
Offaly yields unusually high local G -values compared to those for random permutations. 
Hence the anticipated result here is something like a “donut hot spot”, with the “donut 
hole” corresponding to Offaly. This is basically what is seen in Figure 5.10, except that 
some neighbors are closer (in exponential proximities) to Offaly than others. This 
extreme example serves to underscore the difference between these two local statistics, 
and shows that local *G -statistics are far more appropriate for identifying significant 
local concentrations.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 




