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7. Spatial Regression Parameter Estimation 
 
Recall from the specification of both SEM in (6.1.3) and SLM in (6.2.2) above that the 
parameters, 2( , , )   , are essentially the same for both. As mentioned already, the key 
difference is how the spatial autoregressive hypothesis is applied (namely to the 
unobserved errors in SEM and to the observed dependent variable itself in SLM). So it is 
not surprising that the method of estimation is very similar for both of these models. But 
unlike the iterative estimation scheme employed for geo-kriging models in Section 7.3.1 
of Part II (based on iteratively reweighted least-squares), the present method involves the 
simultaneous estimation of all model parameters. So our first objective is to develop this 
general method of maximum-likelihood estimation, and then to apply this method to both 
SEM and SLM.  
 
7.1 The Method of Maximum-Likelihood Estimation 
 
While maximum-likelihood estimation can in principle be applied to estimate the 
parameters of any probability model, it should be clear that the models of primary interest 
for our purposes are all based on the multi-normal model. So the following development 
is restricted to such models. Here the basic idea can be motivated by the following 
(extremely simplified) estimation problem for normal distributions. Suppose that a single 
sample, Y , is drawn from one of two possible populations having normal densities, 1  

and 2 , [as in expression (3.1.10) of Part II] with common unit variance, but with 

different means, 1 0  , and 2 2  .  Here the problem is to estimate the true value of the 

mean based on the value, Y y , of this one observation, as shown in Figure 7.1 below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To do so, observe that while the density values, 1( )f y  and 2( )f y , are not themselves 

probabilities, their ratio is approximately the relative likelihood of observing values from 
these two populations in any sufficiently small neighborhood, [ , ]y y   , of y, as 

Figure 7.1. Simple Estimation Problem 
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shown in Figure 7.2 below. In particular, the area under each density, if , is seen to be 

well approximated by a rectangle with base length, 2 , and height, ( ) , 1,2if y i  . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This figure shows that for any sufficiently small positive increment,  , 
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So if 2 1( ) ( )f y f y , as in the present example, then it is reasonable to infer that y  is 

more likely to have come from population 2 than population 1. More formally, we now 
say the maximum-likelihood estimate, ̂ , of the unknown mean  , in this two-
population case is given by: 
 
(7.1.2) ˆ ( ) ( ) , , {1,2},i i jf y f y i j i j       

 
Next suppose that nothing is known about the mean of this population, so that   could in 
principle be any real value. In this case, there is a continuum of possible normal 
populations, { ( | ), }f    , to be considered. But it should still be clear that y  is most 
likely to have come from that population for which the probability density, ( | )f y  , is 
largest. Thus the maximum-likelihood estimate, ̂ , is now given by the condition that, 
 
(7.1.3) ˆ( | ) max ( | )f y f y    

 
More generally, suppose we consider a given sample, 0 01 0( ,.., )ny y y , of a random 

vector, 1( ,.., )nY Y Y , with multi-normal density, ( | )f y  , where 1( ,.., )k    denotes 

the vector of relevant parameters defining this density. Here,  , could in principle 
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Figure 7.2. Relation of Density to Local Occupancy Probabilities 
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contain all mean parameters, 1( ,.., )n   , together with all covariance parameters, 

( : , 1,.., )ij i j n    defining f  [as in expression (3.2.11) of Part II]. But more typically, 

 , will contain a much smaller set of parameters that are assumed to completely specify 
both   and   in any given model (as will be illustrated by the many examples to 
follow). Even in this general setting, the above notion of maximum-likelihood estimator 
continues to be perfectly meaningful. For example, suppose that 2n  , so that each 
candidate population is representable by a bivariate normal density similar to that Figure 
3.2 of Part II. Then as a two-dimensional analogue to Figure 7.2 above, one can imagine 
the portion of density above a small rectangular neighborhood of 0 01 02( , )y y y , as 

shown schematically on the left side of Figure 7.3 below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here again, it is clear that for sufficiently small positive increments,  , this density 
volume is well approximated by the box with base area, 2(2 ) , and height, 0( , )f y  , so 

that for any candidate parameter vectors, 1  and 2 , we again have the approximation1 
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1 Recall that 1

n
is the unit vector in n . 

Figure 7.3. Local Occupancy Probabilities for Bivariate Densities 
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While such graphic representations are not possible in higher dimensions, 2n  , it 
should be clear that the same approximations hold for all n . So as a direct extension of 
(7.1.3), it follows that for any given sample observation, ny , if the relevant set of 

possible values of a given parameter vector, 1( ,.., )k   , is denoted by k  ,2 then 

the maximum-likelihood estimate, ̂ , of parameter vector   is again defined by the 
condition that: 
 

(7.1.5) ˆ( | ) max ( | )kf y f y


 





 

 
Given the fact that sample y  is the known quantity and   is unknown, it is usually more 
convenient to define the corresponding likelihood function, ( | )l y , by 
 
(7.1.6) ( | ) ( | ) , kl y f y     
 
and replace condition (7.1.5) by 
 

(7.1.7) ˆ( | ) max ( | )kl y l y


 





 

 
Finally, because densities are positive (in the range of realizable samples, y ), and 
because the log-likelihood function,3  
 
(7.1.8) ( | ) log[ ( | )]L y l y   
 
is always monotone increasing in ( | )l y , it follows that maximum-likelihood estimates, 
 , can be equivalently characterized by the log-likelihood condition: 
 

(7.1.9)  ˆ( | ) max ( | )kL y L y


 





 

 
The reason for this transformation is that multivariate density functions often involve 
products – as exemplified by the important case of independent random sampling, 

1 1( | ) ( ,.., | ) ( | )n
n i if y f y y f y     .  Moreover, since logs convert products to sums, 

this representation is often simpler to analyze (as for example when differentiating 
likelihood functions). 
 
7.2  Maximum Likelihood Estimation for General Linear Regression Models 
 
To apply this estimation procedure, we start in Section 7.2.1 by considering the most 
familiar case of Ordinary Least Squares (OLS). By applying essentially the same 
arguments as in Section 7.1 of Part II, we then extend these results to Generalized Least 

                                                 
2 For example, if 2

1 2
( , ) ( , )       for 2( , )N   , then 2

1 2 2
{( , ) : 0}      . 

3 In these notes “log” always means natural log, so the symbols ln and log may be used interchangeably. 
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Squares (GLS) in Section 7.2.2. These maximum-likelihood estimates for GLS will then 
serve as the general framework for obtaining comparable results for the spatial regression 
models, SEM and SLM in Sections 7.3 and 7.4 below. 
 
7.2.1  Maximum Likelihood Estimation for OLS 
 
Here we start with the standard linear model, 
 
(7.2.1) 2, ~ (0, )nY X N I      

 
which in turn implies that Y must be multi-normally distributed as, 2( , )nY N X I  . So 

as the special case of expression (3.2.11) in Part II with X   and 2
nI  , it follows 

that Y has multi-normal density, 2( | , )f y   ,  given by 
 

(7.2.2)  
2 1( ) ( ) ( )2 /2 2 1/2

1
2( | , ) (2 ) | | ny X I y Xn

nf y I e
     

     

 
[where the parameter vector,  , for the general version in (7.1.5) above is here given by 

2 2
0 1( , ) ( , ,.., , )k        ]. By observing that 2 1/2 2 1/2 2 /2| | ( ) | | ( )n n

n nI I       

and 2 1 2 1 2( )n n nI I I       , we see that this density can be simplified to: 

 

(7.2.3) 2 ( ) ( )2 2 /2
1

2( | , ) (2 )
y X y Xnf y e

 
  

    
 
so that the appropriate log-likelihood function for the OLS model is given by: 
 
(7.2.4) 2 2

2
1

2 2 2
( , | ) log(2 ) log( ) ( ) ( )n nL y y X y X            

 

Thus to obtain the maximum-likelihood estimates, 2ˆ ˆ( , )  , of the model parameters, we 

must maximize (7.2.4) with respect to   and 2 . To do so, notice first that since   

appears only in the last term (which is negative), it follows that for any choice of 2 , the 
function L  is always maximized with respect to   by minimizing the squared deviation 
function: 
 
(7.2.5) ( ) ( ) ( )SSD y X y X      
 
in a manner identical to expressions (7.1.10) and (7.1.11) in Part II. Thus expression 
(7.1.12) of Part II shows that this solution is again given by: 
 

(7.2.6) 1ˆ ( )X X X y    
 
While this simple identity might appear to suggest that there is really no need for 
maximum likelihood estimation in the case of OLS, the real power of this method 
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becomes evident when we turn to the estimation of 2 . Indeed, the method of least 
squares used for OLS is not directly extendable to 2 , so that other methods must be 
employed. Even in the case of geostatistical regression, where a comparable estimate of  

2  was developed in expression (7.3.19) of Part II, the actual estimation procedure 
involved a rather ad hoc application of nonlinear least-squares procedure for fitting 
spherical variograms to data. But in the present setting, we can now obtain a theoretically 

more meaningful estimate. In particular, by substituting ̂  from (7.2.5) into (7.2.4), we 

can derive the exact maximum-likelihood estimate, 2̂ , of 2  by minimizing the reduced 
function, 
 

(7.2.7) 2 2ˆ( | ) ( , | )cL y L y    
 

                                      2
2

1
2 2 2

ˆ ˆlog(2 ) log( ) ( ) ( )n n y X y X


          
 

where the subscript “c” reflects the common designation of this function as the 
concentrated likelihood function of parameter, 2 [also called a profile likelihood 
function]. But since the first order condition for a maximum yields: 
 

 (7.2.8)    2 2 2

2
2 )

1 1 1
2 2 (

ˆ ˆ0 ( | ) ( ) ( )c
nd

L y y X y X
d    


       

 

                                                      2
1 ˆ ˆ( ) ( )n y X y X        

 

we see that the maximum-likelihood estimate for 2  is given by,4 
 

 (7.2.9) 2 1 ˆ ˆˆ ( ) ( )n y X y X      

 
This can be given a more familiar form in terms of estimated residuals, 1ˆ ˆ ˆ( ,.., )n     as 
 

(7.2.10)  2 2

1
1 1ˆ ˆ ˆˆ

n

iin n   


    
 

which is seen to be the “natural” estimator of 2 2var( ) ( )E    .  
 
7.2.2 Maximum Likelihood Estimation for GLS 
 
To extend these estimation results to GLS, we start with the general linear model,  
 
(7.2.11) 2, ~ (0, )Y X N V      
 

                                                 
4 One may also check that the second derivative of 

c
L  evaluated at 2̂  is negative and thus yields a 

maximum.  
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where the matrix, V , is assumed to be known.5 So in this setting, OLS is seen to be the 
special case with nV I . The key feature of this model is that, like the OLS model in 

(7.2.3) above, the only unknown parameters are the beta coefficients,  , together with 

the positive variance parameter, 2  [so that again, 2( , )   ].  As with OLS, this 

implies that Y is again multi-normally distributed, where in this case, 2~ ( , )Y N X V  , 
with density: 
 

(7.2.12) 
2 1( ) ( ) ( )2 /2 2 1/2

1
2( | , ) (2 ) | |

y X V y Xnf y V e
     

     
 

By employing parallel matrix identities, 2 1/2 2 1/2 1/2 2 /2 1/2| | ( ) | | ( ) | |n nV V V         and 
2 1 2 1( )V V    , this can again be simplified to: 

 

(7.2.13) 
1

2 ( ) ( )2 2 /2 1/2
1

2( | , ) (2 ) | |
y X V y Xnf y V e

 
  

     
 

which is seen to yield the associated log-likelihood function: 
 
(7.2.14)      2 2 1

2
1 1

2 2 2 2
( , | ) log(2 ) log( ) log | | ( ) ( )n nL y V y X V y X             

 

So to obtain the maximum-likelihood estimate, ̂ , of  , it now follows (as an extension 

of the OLS case) that for any choice of 2 , the function L will be maximized by choosing 

̂  to minimize the quadratic form, 1( ) ( )y X V y X    , [which is identical in form to 
expression (7.1.27) of Part II, and may again be interpreted as a type of weighted least-
squares problem]. But at this point, we may now observe [as in expression (7.1.15) of Part 
II] that if T denotes the Cholesky matrix for V,6 then the matrix identity 
 

(7.2.15) 1 1 1 1 1( ) ( )V TT V T T T T           , 
 

allows us to reduce this quadratic form as follows: 
 

(7.2.16) 1 1 1( ) ( ) ( ) ( ) ( )y X V y X y X T T y X             
 

                                                           1 1 1 1( ) ( )T y T X T y T X        
 

                                                           ( ) ( )y X y X       
 

But this is precisely the squared deviation function in (7.2.5) for the new data set, 1y T y  

and 1X T X . So it follows at once from (7.2.6) that the GLS maximum-likelihood 

estimate, ̂ , of   is given [as in expressions (7.1.21) through (7.1.24) in Part II] by  

                                                 
5 Unlike the model specification in expression (7.1.8) of Part II, the matrix V need not be a correlation 

matrix (i.e., its diagonal elements need not be all ones). However, since 2V  is required to be a 
nonsingular covariance matrix, V , must be symmetric and positive definite (as in Section A2.7.2 of the 
Appendix to Part II). 
6 Here existence of T is ensured by the Cholesky Theorem in Section A2.7.2 of the Appendix to Part II. 
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(7.2.17) 1 1 1 1 1 1ˆ ( ) [( ) ( )] ( ) ( )X X X y T X T X T X T y               
 

                               1 1 1 1 1ˆ[ ( ) ] ( )X T T X X T T y        
  
so that by (7.2.15), 
 

(7.2.18) 1 1 1ˆ ( )X V X X V y      
 
Moreover, precisely the same maximization arguments for 2 in (7.2.8) and (7.2.9) above 
now show that the GLS maximum-likelihood estimate for 2  is given by 
 

(7.2.19) 2 1 1 1 11 1ˆ ˆ ˆ ˆˆ ( ) ( ) ( ) ( )n ny X y X T y T X T y T X                 

 

                                                                1 11 ˆ ˆ( ) ( ) ( )( )n y X T T y X       

 
so that again by (7.2.15), 
 

(7.2.20) 2 11 ˆ ˆˆ ( ) ( )n y X V y X      

 
Thus the maximum-likelihood estimation results for OLS are seen to be directly 
extendable to the class of GLS models (7.2.11). 
 
7.3 Maximum Likelihood Estimation for SEM 
 
To apply these general results to SE-models, we start by recalling from expressions 
(6.1.7) and (6.1.8) that SEM can be written as  
 
(7.3.1) 2, ~ (0, )Y X u u N V    

 
where the spatial covariance structure, V , is given by 

 
(7.3.2) 1 1 1( ) ( )V B B B B    

      

 
with B  given in terms of weight matrix, W, by 

 
(7.3.3) nB I W    

 
So SEM can be viewed as an instance of the GLS model in (7.2.11), where V now takes 
the specific form V  in (7.3.2). However, it must be emphasized that unlike (7.2.11), the 

matrix V  involves an unknown parameter,  . So to be precise, (7.3.1) should be viewed 
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as a GLS model conditioned on  . But nonetheless, we can still employ (7.2.14) to write 
down the appropriate log-likelihood function for SEM as 
 
 
(7.3.4)   2 2 1

2
1 1

2 2 2 2
( , , | ) log(2 ) log( ) log | | ( ) ( )n nL y V y X V y X               

 
In particular, we now know from (7.2.18) and (7.2.20) that for any given value of  , the 

maximum-likelihood estimates for   and 2 , conditional on  , are given respectively 
by 
 

(7.3.5) 1 1 1ˆ ( )X V X X V y        
 

and 
 

(7.3.6) 2 11 ˆ ˆˆ ( ) ( )n y X V y X          

 
where the subscript on these estimates reflects their dependency on the value of  . But 
since these conditional estimates are expressible as explicit (closed form) functions of  , 
we can substitute these results into (7.3.4) and obtain a concentrated likelihood function 
for   in a manner similar to that of 2  in the case of OLS [in expression (7.2.7) above]. 
In the present case, this concentrated likelihood takes the following form: 
 

(7.3.7)      2ˆ ˆ( | ) ( , , )cL y L       

 

                               2 1
2

1 1
2 2 2 ˆ2

ˆ ˆˆlog(2 ) log( ) log | | ( ) ( )n n V y X V y X    
           

 
To further simplify this expression, we first note from (7.3.6) that the last term in (7.3.7) 
reduces to a constant, since 
 

(7.3.8) 1 2
2 2

1 1
2ˆ ˆ2 2

ˆ ˆ ˆ( ) ( ) [ ] ny X V y X n                

 
Moreover, it follows from standard properties of matrix inverses and determinants [as in 
expressions (A31.18), (A3.1.20), (A3.2.70) and  (A3.2.71) of the Appendix] that 
 
(7.3.9) 1 1 1 1 1 2| | | ( ) | | | | ( ) | | | | | | |V B B B B B B B       

             

 
So by substituting these identities into (7.3.7) we obtain the simpler form of the 
concentrated likelihood function for  : 
 
(7.3.10) 2

2 2 ˆ( | ) [1 log(2 )] log | | log( )c
n nL y B          
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With these results, the desired maximum-likelihood estimation procedure for SEM is now 
evident. In particular, we first maximize the concentrated likelihood function, ( | )cL y , 

to obtain the estimate, ̂ , and then use (7.3.5) and (7.3.6) to obtain the remaining 

estimates, ̂  and 2̂  as: 
 

(7.3.11)  1 1 1
ˆ ˆ ˆ

ˆ ˆ ( )X V X X V y          
 

and 
 

(7.3.12) 2 2 1
ˆ ˆ

1 ˆ ˆˆ ˆ ( ) ( )n y X V y X         

 
Since ( | )cL y  is a smooth function in one variable, the first step can be accomplished 

by standard numerical “line search” methods. So for reasonably small sample sizes, n, 
this estimation procedure is very efficient.  
 
But for larger sample sizes (say, 500n  ), an additional problem is created by the need to 
evaluate the n-square determinant, | |B , at each step of this procedure. However, such 

computations can often be made more efficient by means of the following observation. 
Recall from the discussion of eigenvalues and eigenvectors in Section 3.3.1 above that 
nonsingular matrices such as B  have a “spectral” representation in terms of the diagonal 

matrix, 1( ,.., )ndiag     , of their eigenvalues, together with the nonsingular matrix, 

1( ,.., )nX x x   , of their associated eigenvectors as: 

 
(7.3.13) 1B X X   

   

 
So again by standard determinant identities [(A3.2.70) and (A3.2.72) in the Appendix], it 
follows that 
 

(7.3.14) 1 1

1
| | | | | | | | | | | | | | | |

n

ii
B X X X X        

 


             

 
Moreover, if the eigenvalues of the weight matrix, W , in (7.3.3) are denoted by i  with 

associated eigenvectors, , 1,..,ix i n , so that 

 
(7.3.15) , 1,..,i i iW x x i n   

 
then it follows from (7.3.3) that 
 
(7.3.16) ( ) (1 ) , 1,..,i n i i i i i i i iB x I W x x Wx x x x i n              

 
Thus we see that the eigenvalues of B  are obtainable from those of W  by the identity 
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(7.3.17) 1 , 1,..,i i i n     
 

(with corresponding eigenvector, i ix x  ). In particular, this implies from (7.3.13) that 
 

(7.3.18) 
1

| | (1 )
n

ii
B 


   

 

and thus that the log determinant in (7.3.10) is given simply by 
 

(7.3.19) 
1

log | | log(1 )
n

ii
B 


   

 
So by calculating the eigenvalues 1( ,.., )n   of the weight matrix, W, we can rapidly 

compute the determinant, | |B , for any value of  . While the computation of these 

eigenvalues can itself be time consuming, the key point is that this calculation need only 
be done once. This procedure is so useful, that it is incorporated into almost all software 
packages for calculating such maximum-likelihood estimates (when n is sufficiently 
large).7 
 
7.4 Maximum-Likelihood Estimation for SLM 
 
In most respects, maximum-likelihood estimation for SL-models is virtually identical to 
that for SE-models.  To begin with, recall from expression (6.2.6) that SLM can be 
written as                                               
 
(7.4.1) 2, ~ (0, )Y X u u N V     

 
where 1X B X 

  and where V  and B  are again given by (7.3.2) and (7.3.3). So the 

only formal difference here is that for each given value of  , we now obtain a GLS 
model in which both V  and X depend on  .  So the corresponding log likelihood 
function takes the form, 
 
(7.4.2)   2 2 1

2
1 1

2 2 2 2
( , , | ) log(2 ) log( ) log | | ( ) ( )n nL y V y X V y X                 

 
which in turn implies that for the SLM case, the maximum-likelihood estimate for   
conditional on   is given by:  
 

(7.4.3) 1 1 1ˆ ( )X V X X V y           

 

                                                 
7 However, it should also be noted that for extremely large sample sizes (say 1000n  ) the numerical 
accuracy of such eigenvalue calculations becomes less reliable. In such cases, (7.3.19) is often 
approximated by using only those terms with eigenvalues of largest absolute magnitudes. 



  NOTEBOOK FOR SPATIAL DATA ANALYSIS                                      Part III. Areal Data Analysis 
______________________________________________________________________________________ 
 

________________________________________________________________________ 
 ESE 502                                                     III.7-12                                               Tony E. Smith 

For computational purposes, it is often more convenient to reduce this expression by 
observing that 
 
(7.4.4) 1 1 1( ) ( )X V X B X B B B X      

      

                                      1 1( ) ( )X B B B B X   
     

                  1 1( )X B B B B X X X   
       

 
and similarly that  
 

(7.4.5)  1 1 1( ) ( ) ( )X V B X B B X B B B X B        
            

 
So the maximum-likelihood estimate of   given   reduces to the simpler form 
 

(7.4.6) 1ˆ ( )X X X B y     

 
Similarly, the maximum-likelihood estimate for 2  conditional on   is given by 
 

(7.4.7) 2 11 ˆ ˆˆ ( ) ( )n y X V y X           

 
But by using the same arguments in (7.4.4) and (7.4.5) we see that 
 

(7.4.8)    1 1 1ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )( )y X V y X y B X B B y B X                       

 

                                                           1 1ˆ ˆ[ ( )] ( )[ ( )]B B y X B B B B y X              

 

                                                           1 1ˆ ˆ( ) [( ) ]( )( )]B y X B B B B B y X               

 

                                                           ˆ ˆ( ) ( )B y X B y X        

 
and thus that the maximum-likelihood estimate for 2  conditional on   for SLM 
reduces to: 
 

(7.4.9) 2 1 ˆ ˆˆ ( ) ( )n B y X B y X          

 
By substituting these expressions into (7.4.2), we again obtain a concentrated log 
likelihood function for  , namely 
 

(7.4.10)   2

2 11 1
2 2 2 ˆ2

ˆ ˆˆ( | ) log(2 ) log( ) log | | ( ) ( )c
n nL y V y X V y X


                  
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As with SEM, this can be reduced by again observing from (7.4.7) that 
 

(7.4.11) 2 2

1 21 1
2ˆ ˆ2 2

ˆ ˆ ˆ( ) ( ) ny X V y X n
 

                

 
which together with (7.3.9) shows that the concentrated likelihood function for   has 
exactly the same form for SLM and for SEM, i.e., 
 
(7.4.12) 2

2 2 ˆ( | ) [1 log(2 )] log | | log( )c
n nL y B          

 
So the only difference between (7.3.10) and (7.4.12) is the explicit form of 2ˆ  in (7.3.6) 

and (7.4.9), respectively. In particular, this implies that all the discussion about numerical 
maximization of concentrated likelihoods to obtain ̂  is identical for both models. In 
particular, the eigenvalue decomposition in (7.3.19) is precisely the same. So to complete 
the estimation procedure, it remains only to substitute this estimate, ̂ , into (7.4.6) and 
(7.4.9) to obtain the respective estimates, 
 

(7.4.13) 1
ˆ

ˆ ( )X X X B y    
 

and 
 

(7.4.14) 2
ˆ ˆ

1 ˆ ˆˆ ( ) ( )n B y X B y X       

 
 
7.5 An Application to the Irish Blood Group Data 
 
At this point, it is instructive to consider an application of these spatial regression models 
to an empirical example, namely the Irish Blood Group data in Section 1.2 above. To do 
so, we start with a standard OLS regression  analysis in Section 7.5.1 below and test the 
residuals for spatial autocorrelation (as in Section 4.3 above). The spatial regression 
models, SEM and SLM, are then applied to this data in Section 7.5.2. 
 
7.5.1 OLS Residual Analysis and Choice of Spatial Weights Matrices 
 
Recall from Figures 1.7 and 1.8 above that the “footprint” of the 12th Century Anglo-
Norm counties, known as the Pale, can still be seen in the spatial density pattern of Blood 
Group A in 1958. So an interesting question to explore is how much of this pattern can be 
statistically accounted for by this single explanatory variable.8 To do so, we now consider 
a simple regression 
 
(7.5.1) 0 1 , 1,..,i i iY x i n       

                                                 
8 Note that the Irish Blood Group data set in [BG] contains one other potentially relevant explanatory 
variable, namely the number of place names (per unit of area) ending in “town” within each county. 
However, in the present example we focus only on the (marginal) effect of the Pale itself. 
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 where relevant dependent variable, iY  is the proportion of adults with Blood Group A in 

each county i , and the single explanatory variable, ix , is taken to be the indicator (zero-

one) variable for the Pale (corresponding to the red area in Figure 1.8 above), where 
 

(7.5.2) 
1 ,

0 ,i

if i Pale
x

if i Pale


  

 

 
To run this regression, we here use the ARCMAP version of OLS, and employ the 
ARCMAP data set in Eire.mxd. While JMP is generally more suitable for such analyses, 
performing OLS inside ARCMAP has the particular advantage of allowing the regression 
residuals to be mapped directly.  This program can be found on the ArcToolbox path:  
 
Spatial Statistics Tools > Modeling Spatial Relationships > Ordinary Least Squares 
 
In the window that opens, type the entries shown on the left in Figure 7.4 below (where 
as usual, path names are machine specific): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Notice that both the coefficient estimates and diagnostics are “optional” tables, which  
should definitely be added. These will appear in the Table of Contents, as shown at the 
bottom right in Figure 7.4. The relevant portion of eire_output (for our purposes)9 is 
shown in Table 7.1 below: 

                                                 
9 Note in particular that the “robust” estimates and tests in this Table have not been shown. As with a 
number of other statistical diagnostics in ARCMAP, these robust-estimation results are difficult to interpret 
without further documentation. 

Figure 7.4. Running Ordinary Least Squares in ArcToolbox 
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So the “Pale effect” is seen to be positive and very significant, indicating that Blood 
Group A levels are significantly higher inside the Pale than elsewhere in Eire. But as we 
have seen many times before, this significance may well be inflated by the presence of 
spatial dependencies among Blood Group levels that are not accounted for by the Pale 
alone. So the remaining task is to test the regression residuals for spatial autocorrelation. 
These residuals are shown graphically on the right in Figure 7.6 below, where the pattern 
of Blood Group values in  Figure 1.7 is reproduced on the left for ease of comparison. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Before analyzing these residuals, it is important to emphasize that the “default” residuals 
that appear in ARCMAP (as indicated on the right side of Figure 7.4) have been 
normalized to Studentized Residuals (StdResiduals). So to be comparable with the rest of 
our analysis, this plot must be redone in terms of the Residuals column in the Attribute 
Table, as is done in Figure 7.5.10   

                                                 
10 Note that studentized residuals (again not documented in ARCMAP) are useful for many testing 
purposes when the original assumption of independent residuals holds. But in the presence of possible 
spatial dependencies, it is generally preferable to analyze the raw residuals themselves. 

0 50 miles0 50 miles

Figure 7.5. Blood Group values and OLS Residuals 

Table 7.1. Coefficient Estimates and P-Values 
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Note from the plot of these residuals in Figure 7.5 that (as with many linear regressions) 
the highest Blood Group values in the Pale are underestimated (red residuals) and the 
lowest values outside the Pale are overestimated (blue residuals). This by itself tends to 
preserve a certain amount of the positive correlation seen in the original Blood Group 
data.  
 
But to determine the statistical significance of such residual correlations, we must of 
course employ an appropriate spatial weights matrix, W. Because the present Eire 
example provides a dramatic illustration of how important this choice of W can be, we 
now consider this choice in some detail. To do so, a number of candidate weight matrices 
from Sections 2.1.2 and 2.1.3 were applied to this residual data, with test results 
summarized in terms of p-values in Table 7.2 below. Here the first column Asymp 
displays the results of the standard asymptotic Moran test in Section 4.2.1 above. The 
remaining three colums, Moran, Rho, and Corr, show comparable results for the 
sac_perm test in Section 4.3.1 above (using 999 simulations). 
 
 

 Asymp Moran Rho Corr 
W_nn 0.540 0.595 0.504 0.589 

W_nns 0.235 0.282 0.280 0.285 
W_nn5 0.228 0.113 0.117 0.115 

W_queen 0.249 0.091 0.118 0.106 
W_share 0.016 0.035 0.058 0.039 

W 0.010 0.019 0.026 0.020 
 
 
 
 
The first spatial weights matrix considered is the simple (centroid) nearest-neighbor 
matrix, nnW , which (as already mentioned above Figure 1.18) is very restrictive for areal 

data in terms of potentially relevant neighbors ignored. Here it is clear that no spatial 
autocorrelation is detected by any method using this matrix. A slightly more appropriate 
version is the symmetric nearest-neighbor matrix, nnsW , [expression (2.1.10) above with 

1k  ] shown in the next row. Here the results are all still very insignificant, but are 
nonetheless dramatically more significant than for the asymetric case. The reason for this 
in the case of Eire can be seen in Figure 7.6 below, where county centroids are shown as 
blue dots, and where the red line emanating from each centroid is directed toward its 
nearest neighbor. This figure (which extends the Laoghis County illustration in Figure 
1.18 above) confirms that such neighbor relations are relatively sparse throughout Eire. In 
particular, there are very few mutual nearest neighbors, i.e., red lines with both ends 
connected to centroids. So when moving from nearest neighbors, nnW , to symmetric 

nearest neighbors, nnsW , it is now clear that many more relations are added to the matrix, 

thus allowing many more possibilities for spatial correlation to be considered. 
 

Table 7.2. P-values for the Eire OLS Residuals 
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The third and fourth rows show respective results for the queen contiguity matrix, queenW , 

[expression (2.1.15)] and for one of its k-nearest-neighbor approximations, namely, the 
five nearest neighbor version,  5nnW  [as in expression (2.1.9) with 5k  , and as also used 

in Figure 1.18 for Laoghis County]. These two cases are of special interest, since they are 
by far the most commonly used weights matrices for analyzing areal data. But in both 
cases, spatial autocorrelation is at best seen to be weakly significant – and is totally 
insignificant for the standard asymptotic Moran test.11  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In view of this lack of significance, the results in the final two rows are quite striking. 
These show respective results for the boundary shares matrix, shareW  [expression 

(2.1.17)], and for the combined distance-shares matrix, W, of Cliff and Ord (1969) 
[expression (2.1.18)]. Because we shall employ this latter matrix, W, in our subsequent 
analyses, it is here convenient to reproduce its  typical elements, ijw , as follows, 

 

(7.5.3) 
1

1

ij ij
ij

ik ikk i

l d
w

l d









 

 

                                                 
11 In fairness, it should be pointed out (as is done for example in ARCMAP) that such asymptotic tests 
typically require more samples (areal units) for statistical reliability. A common rule of thumb (that we 
have seen already for the Central Limit Theorem) is that n be at least 30. 

Figure 7.6. Nearest-Neighbor Relations in Eire 
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where ijl  is the fraction of the boundary of county i  shared with county j , and ijd  is the 

distance between their respective centroids.12 While it is difficult to explain exactly why 
these two matrices capture so much more significance, one can gain insight by simply 
noting the unusual complexity of county boundaries in Eire. These complexities have 
most likely resulted from a long history of interactions between neighboring counties, so 
that shared boundary lengths may well reflect the degree of such interactions. Moreover, 
in so far as centroid distances tend to reflect relative travel distance between counties, it 
is reasonable to suppose that such distances reflect other dimensions of interaction. In any 
case, this example provides a clear case where it is prudent to consider a variety of tests 
in terms of alternative spatial weights matrices before drawing any firm conclusions 
about the presence of spatial autocorrelation. One rule of thumb is to try several (say 
three) different matrices which exhibit sufficient qualitative differences to capture a range 
of interaction possibilities. As stressed at the beginning of Part III, one of the most 
perplexing features of areal data analysis is the absence of any clear notion of “spatial 
separation” between areal units. 
 
7.5.2 Spatial Regression Analyses 
 
As stated above, we here employ the combined distance-shares matrix, W, in (7.5.3) 
which captures the most significant amount of spatial autocorrelation in Table 7.2 [and 
which constitutes the original matrix used by Cliff and Ord (1969) in their classic study 
of this Eire data]. To construct such a matrix, we first note that the procedure for 
constructing boundary-share weights is developed in Sections 3.2.2 and 3.2.3 of Part IV 
(as mentioned in Section 2.2.2 above), and is also discussed in more detail in Assignment 
6. For the case of Eire, such boundary shares are given by matrix, W_share, in the 
MATLAB workspace, Eire.mat. Using the MATLAB script, eire_wts.m, these shares 
( ijl ) can be combined with centroid distances ( ijd ) to yield the desired combined 

distance-shares weight matrix, W, in the workspace.13  
 
Given this weight matrix, we now employ the spatial regression models, SEM and SLM, 
to capture the relation between Blood Group levels and the Pale in a manner that 
accounts for the spatial autocorrelation detected in Table 7.2. The estimation procedures 
for SEM and SLM are implemented in the MATLAB programs, sem.m and slm.m, 
respectively. The inputs required for each program consist of a data vector, y, for the 
dependent variable, a data matrix, X, for the explanatory variables, and an appropriate 
spatial weights matrix, W, relating the relevant set of areal units. In the present case, y is 
the vector of Blood Group proportions for each county, X is the vector, x, identifying 
those counties in the Pale, and W is the combined distance-shares matrix above. 
 

                                                 
12 Further discussion of this weight matrix can be found in Upton and Fingleton (1985, pp.287-288) [see 
Reference 18 in the class Reference Materials]. 
13 Here it is of interest to note that these weights differ slightly from those of Cliff and Ord (1969), which 
can be found in Table 5.1 of Upton and Fingleton (1985), and which are also reproduced as matrix, W2, in 
the workspace, Eire.mat. This illustrates the fact that such constructions will differ to some degree 
depending on the particular map of Eire that is used. (Indeed, digital maps did not even exist in 1969 when 
the original work was done.)  
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Before running these models, it should be noted that there are two additional inputs, 
vnames and val (also described in the program documentation). We have already seen 
vnames used as the list of variable names in previous applications (as for example in 
Cobalt Example of Section 7.3.4 in Part II). For the present case of a single variable, one 
need only write the variable name in single quotes, which here is ‘Pale’. The final input, 
val, represents the optional input of eigenvalues for W used to calculate the log 
determinant in (7.3.19) above. In the case of Eire with 26n  , this is hardly necessary. 
But for very large weight matrices, W, it is worth noting that the corresponding vector of 
eigenvalues is easily obtained in MATLAB with the command: 
 
>> val = eig(W); 
 
With these preliminary observations, we can now run both SEM and SLM, using the 
respective commands: 
 
>> sem(y,X,W,‘Pale’); 
 
>> slm(y,X,W,‘Pale’); 
 
It should also be noted that there are a number of data outputs given by these two models. 
But for our present purposes, it is enough to examine their screen outputs, as shown in 
Figure 7.7 below. Here it is clear that there is a strong parallel between the output formats 
of each model. In particular, they are quite comparable in terms of both their output 
results and diagnostics (as discussed in more detail below). Note also that these two 
formats look very much the same as for OLS regression in the sense that significance 
levels (p-values) are reported for each parameter estimate, together with various measures 
of “goodness of fit”. But as we shall see below, the actual methods of obtaining these 
results (and in some cases, even their meaning) differs substantially from OLS. 
Nonetheless, the basic interpretations of parameter estimates and their significance levels 
will remain the same as in OLS. So before getting into the details of calculation methods, 
it is appropriate to begin by examining these results in a qualitative way.  
 
With respect to SEM, notice first that while the Pale effect continues to be positive (as in 
Table 7.1 for OLS), this effect is now both smaller in magnitide (1.55 versus 4.25) and 
dramatically less significant (with a p-value of .0788 versus .000012). Notice also that the 
level of spatial autocorrelation, ˆ 0.7885  , is significantly positive. As we have seen 
before, this suggests that such differences are largely due to the presence of spatial 
autocorrelation. While the exact nature of these effects is difficult to identify in the 
present spatial regression setting, we can nonetheless make certain useful observations. 
First, if the relevant data matrix for this Eire example is denoted by [1 , ]nX x , then it 

follows from expression (7.1.12) in Part II together with and  (7.3.11) above that the OLS 
and SEM estimates of 0 1( , )     are given respectively by 

 

(7.5.4) 1ˆ ( )OLS X X X y    
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Figure 7.7. Regression Results and Autocorrelation Tests for SEM and SLM 

               
                SEM OUTPUT 
 
FINAL REGRESSION RESULTS:  
 
VAR          COEFF        Z-VAL         PROB  
const        28.82487      20.66107     0.000000  
Pale         1.553209      1.757660     0.078805  
Variance = 2.1251 
 
AUTOCORRELATION RESULTS: 
 
              VAL        Z-VAL         PROB  
rho     0.788456     7.466704     0.000000  
 
GOODNESS-OF-FIT RESULTS: 
 
Extended R-Square         =    0.3313 
Extended R-Square Adj  =    0.3034 
Squared_Correlation       =    0.5548 
Log Likelihood Value     =  -49.8773 
AIC =  107.7546 
AIC_corrected = 109.6593 
BIC = 112.7869 
 
TESTS OF SEM MODEL:  
 
TEST             VAL           PROB  
LR               7.374837     0.006614  
Com-LR    18.427035     0.000018  
 
MORAN z-score and p-val = (0.2741,0.3920) 

                   
                SLM OUTPUT 
 
FINAL REGRESSION RESULTS: 
 
VAR          COEFF        Z-VAL         PROB  
const        7.130157      2.218746     0.026504  
Pale          2.014177     3.471544      0.000517  
Variance = 1.6146 
 
AUTOCORRELATION RESULTS:  
 
             VAL        Z-VAL         PROB  
rho     0.726419     6.466525     0.000000  
  
GOODNESS-OF-FIT RESULTS:  
 
Extended R-Square         =    0.7335 
Extended R-Square Adj  =    0.7224 
Squared_Correlation       =    0.7512 
Log Likelihood Value     =  -45.6632 
AIC = 99.3263 
AIC_corrected = 101.2311  
BIC = 104.3587 
 
TEST OF SLM MODEL:  
 
TEST          VAL           PROB  
LR         15.803078      0.000070  
 
 
MORAN z-score and p-val = (-0.7550,0.7749) 

    SAC_PERM TEST (N = 999) 
  
       INDEX      VALUE     SIGNIF 
 

       Moran       -0.0252       0.4544  
 

       corr           -0.0445       0.4534  
 

       rho            -0.0784       0.4541 

    SAC_PERM TEST (N = 999) 
  
       INDEX      VALUE     SIGNIF 
  
       Moran       -0.1734        0.8135  
 

       corr           -0.3110        0.8097 
  
       rho            -0.5579        0.8086 
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and, 
 

(7.5.5) 1 1 1
ˆ ˆ

ˆ ( )SEM X V X X V y       

 
In contrast to OLS, the beta estimates for SEM are thus seen to depend on the estimated 
level of spatial autocorrelation, ̂ , together with the choice of spatial weights matrix, W, 

implicit in ˆV . So while in theory such estimates are still unbiased [recall expression 

(7.1.26) in Part II], their sensitivity to ̂  tends to inflate the variance of these   
estimates. 
 
This can be seen in part by considering the standard errors of the estimated Pale 

parameter, 1̂ , for both OLS and SEM. To do so, recall first from Table 7.1 that the 

standard error for 1̂  under OLS was given by, 

 

(7.5.6) 1̂( ) 0.7775OLSs    

 
To derive the comparable standard error under SEM, we begin by noting that appropriate  

“Z-VAL” for 1̂  in Figure 7.7 is given [in a manner analogous to expression (7.3.26) in 

Part II] by  
 

(7.5.7) 
1

1

1
ˆ

ˆ

ˆ
z

s



  ,  

 

so that the estimated standard error for 1̂  under SEM is given from Figure 7.7 by,  

 

(7.5.8) 
1

1
1

ˆ

ˆ 1.553209ˆ( )  0.88368
1.757660SEMs

z


     

 
This shows that standard errors of beta estimates do indeed tend to be larger in the 
presence of spatial autocorrelation.  
 
Before turning to the SL-model, it is important to note that while the estimated spatial 
autocorrelation level, ̂ , for this SE-model is significantly positive, it is not evident that 

̂  has successfully eliminated all spatial autocorrelation effects found for weight matrix, 
W, in Table 7.2. To address this issue, we may again appeal to the results developed for 
all GLS models in expressions (7.1.18) and (7.1.19) in Part II, which show that if the 
spatial covariace structure, V , [in (7.3.2) and (7.3.3)] has been correctly estimated, then 

the Cholesky reduction of this model to OLS form should yield residuals that exhibit no 
significant spatial autocorrelation (with respect to W). In the present case, however, there 
is no need for Cholesky decompositions, since V  in (7.3.2) is already factorized in terms 
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of 1B
 . In fact the reduction of SEM to an OLS form can be made even more transparent 

by simply recalling from  expression (6.1.9) that 
 
(7.5.9) 1 2, ~ (0, )nY X B N I      

 
                        2, ~ (0, )nB Y B X N I         

 
                        2, ~ (0, )nY X N I        

 
where Y B Y  and X B X  . So to test the success of this SE-model it suffices to 

analyze the residuals: 
 

(7.5.10) ˆ ˆ
ˆˆ SEMY X     

 

of the estimated OLS model in (7.5.9), by again using sac_perm.m. Since this procedure 
is detailed in part (c) of Assignment 6, it suffices here to observe that the full command 
for sem.m in Section 7.5.2 above is of the form: 
 
>> [OUT,cov,DAT] = sem(y,X,W,‘Pale’); 
 
where the matrix OUT contains a number of useful transformations of the regression 
outputs. In particular, the residuals in (7.5.10) are contained in the third column, so that 
the command, 
 
>> res_SEM = OUT(:,3); 
 
produces a copy, res_SEM, of these residuals that can be tested using sac_perm as 
follows: 
 
>> sac_perm(res_SEM,W,999); 
 
The results of this test are shown in the lower left panel of Figure 7.7, and confirm that 
this application of SEM has indeed been successful in removing the spatial 
autocorrelation found under weight matrix, W.  
 
Turning next to the SL-model, the most important difference to notice here is that while 
the Pale effect on Blood Group A is again positive – it is now vastly more significant 
than for the SE-model, with p-value = 0.0005. Moreover, by substituting the maximum-

likelihood estimates 2ˆ ˆˆ( , , )    for each model into their respective log-likehood 
functions in (7.3.4) and (7.4.2), we obtain maximum log-likehood values for SEM and 
SLM that constitute one possible measure of their goodness of fit to this Eire data (see 
Section 9 below for a more detailed discussion of goodness-of-fit measures). As seen in 
the GOODNESS-OF-FIT section for each model in Figure 7.7, these values are given 
respectively by, 
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(7.5.11) 2ˆ ˆˆ( , , ) 49.8773SEML        
 

and 
 

(7.5.12) 2ˆ ˆˆ( , , ) 45.6632SLML          

 
So in terms of this likelihood comparison, it is clear that SLM also yields a much better 
fit to the Eire data than SEM (i.e., a much higher log-likelihood value). 
 
This raises the natural question as to why SLM is so much more successful in capturing 
this spatial pattern of Blood Group A levels in Eire. Interestingly enough, the answer 
appears to lie in the ripple effect underlying the spatial autoregressive multiplier matrix, 

1 1( )nB I W    , for these models, as detailed in Section 3.3 above. The key point here 

is that while this ripple effect applies only to unobserved residuals in the SE-model, it 
also applies to the explanatory variables in the SL-model, as is evident in expression 
(6.2.4) above. More specifically, since our present weight matrix, W, in expression (7.5.3) 
is row normalized, it follows from expression (2.1.19) above that 
 

(7.5.13) 

111 1

1

1 1

1 1

1 1

jjn

n n

n nn njj

ww w

W

w w w

                       






     


 

 
which in turn shows that  
 
(7.5.14) 1 ( )1 1 1 (1 )1n n n n n nB I W W          

 
                             1 1 11 ( 1 ) [(1 )1 ] (1 ) 1n n n nB B B B             

 

                              1 1
11 1n nB 


   

 
So in the present case, expression (6.2.4) for SL-models now takes the form:  
 

(7.5.15) 01 1 1 1 1
0 1

1

[1 , ] 1n nY B x B B B x B    


   


    

    
 

 

                         01 1 1 1 1
0 1 111 1 ( )n nB B x B B x B    


        

       

 
                       1

0 11nY x B        
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where 0 0 / (1 )     and 1x B x 
 . But since 0  is essentially independent of  for 

estimation purposes (i.e., 0  can assume any value given appropriate choices of 0 ), it 

follows that the only difference between SL-model (7.5.15) and the SE-model in (7.5.9) 
is that Pale data vector, x , has now been tranformed to x . Moreover, recalling from 

expression (3.3.8) that x  can be written as 

 
(7.5.16) 1 2 2( )nx I W x x Wx W x          

 
it is natural to designate this transformed vector as the rippled Pale.  
 
With these preliminary observartions, it should now be clear that the relative success of 
the SL-model versus the SE-model in this Eire case can be attributed entirely to this 
rippled Pale effect. The dramatic nature of this effect in the Eire case is illustrated in 
Figure 7.8 below, where values of the rippled Pale are plotted on the far right (and where 
the maximum and minumum values of the rippled Pale have been rescaled to be the same 
as those of Blood Group A). Further reflection suggests that this remarkable fit may not 
be simply a coincidence. Indeed, the gradual intermingling of blood-group types between 
Anglo-Normans and the indigenous Eire population might well be viewed as a “rippling” 
of intermarriage effects over many generations.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
With this qualitative overview of SEM and SLM applications to Eire, we turn now to a 
more detailed development of the many diagnostics displayed in Figure 7.7. To do so, we 
start in Section 8 below with a development of the fundamental significance tests for 
model parameters.  
 

Blood Group A Original Pale Rippled Pale 

Figure 7.8. Comparison of Pale Effects and Rippled Pale Effects 


