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8. Parameter Significance Tests for Spatial Regression 
 
Before developing significance tests of parameters for spatial regression, it is appropriate 
to begin by stating a few general properties of maximum-likelihood estimators that will 
be crucial for the analysis below. (These properties are developed in more detail in 
Section A3.7 of the Appendix.) Here we employ the following notational conventions. 
First, observe that since both log likelihood functions and sampling distributions of 
maximum-likelihood estimators depend on the given sample size, n, we now make this 

explicit by writing nL  and n̂ , and replace expression (7.1.9) with the more sample-

explicit form: 
 

(8.1) ˆ( | ) max ( | )n n nL y L y   

 
In addition, note that the symbol,  , in (8.1) is treated as a variable which denotes 

possible parameter values. The desired estimator, n̂  , is then distinguished as the value 

of   that maximizes the log-likelihood function, ( )nL  . But it is also important to 

distinguish the true value of  , which we now denote by 0 . In particular, note that all 

distributional properties of the random vector, n̂ , will necessarily depend on the true 

distribution of y, say with density 0( | )f y  .  

 
In these terms, the single most important property of maximum-likelihood estimators is 

their consistency, namely that for sufficiently large sample sizes, the estimator, n̂ , is 

very likely to be close to the true value, 0 . More precisely, as n becomes large, the 

chance of n̂  being further from 0  than any arbitrarily small amount,  , shrinks to zero, 

i.e., 
 

(8.2)  0
ˆlim Pr || || 0n n        for all 0   

 

This is expressed more compactly by saying that n̂  converges in probability to 0  and is 

written as 
 

(8.3) 0n̂
prob

   

 
This consistency property ensures that given enough sample information, maximum-
likelihood estimators will eventually “learn” the true values of parameters. Without such 
a guarantee, it is hard to consider any estimator as being statistically reliable.  
 
The single most useful tool for establishing such consistency results is the classical Law 
of Large Numbers (LLN), which states that for any sequence of independently and 
identically distributed (iid) random variables, 1( ,.., )nX X , from a statistical population, X, 
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with mean, ( )E X  , the sample mean, nX  converges in probability to this population 

mean as n increases, i.e., 
 

(8.4) 1
1

( )
n

n in i prob
X X E X 


    

 
Since this law is one of the two most important results in statistics (and will be used 
several times below), it is worth pointing out that unlike the other major result, namely 
the Central Limit Theorem, assertion (8.4) is obtainable by elementary means that are 
completely intuitive. To do so, recall first from expression (3.1.18) of Part II that we have 
already shown that nX  is an unbiased estimator of  , i.e., that for n, 

 

(8.5) ( )nE X      

 

Moreover, if we let 2var( )X  , then it was shown in expression (3.1.19)  of Part II that 
for all n, 
 

(8.6) 2 2var( ) [( ) ] /n nX E X n     

 
In particular, this implies that the expected squared deviation, 2[( ) ]nE X  , of nX  from 

  must shrink to zero as n becomes large. But since the mean (center of mass) of  nX  is 

always the same, namely at  , this implies that the probability distribution of nX  must 

eventually concentrate around  , as shown schematically in Figure 8.1 below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here sample sizes 2,20n   are shown with 2 1  , so that the respective sample-mean 
variances are given by 1/2 and 1/20.1 For the particular epsilon interval [ , ]      

                                                 
1 The densities plotted here are for ~ ( ,1)X N  . 

2( )f X  

20( )f X  

   
• 

Figure 8.1  Law of Large Numbers 
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shown, it is clear that almost all of the probability mass for 20X  is already inside this 

interval. So even without a formal proof, it should be clear that nX  must converge in 

probability to  .2  
 
Given the general consistency property in (8.3), the second major property of maximum-
likelihood estimators is that their sampling distributions are always asymptotically 
normal with means given by the true parameter values. This can be expressed somewhat 
more formally (in a manner analogous to the Central Limit Theorems in Section 3 of Part 
II) by asserting that for sufficiently large sample sizes, n,  
 

(8.7) 0
ˆ ˆ[ ,cov( )]n d nN    

 

where the relevant covariance matrix, ˆcov( )n , is here left undefined, and will be 

developed in more detail below. Note in particular from (8.7) that n̂  is always an 

asymptotically unbiased estimator of 0 , i.e., that 3 

 

(8.8) 0
ˆlim ( )n nE     

 
It is these asymptotic properties that make it possible to construct approximate 
significance tests for parameters even without knowing the exact distributions of 
maximum-likelihood estimators.  
 
With respect to significance tests for SEM and SLM in particular, recall that all such tests 
in Figure 7.7 above use z-values [as in expression (7.5.7) above] rather than the standard 
t-values used for parameter significance tests in OLS models [as in expression (7.3.26) of 
Part II]. The reason for this is that even though we are assuming multi-normally 

distributed errors in both SEM and SLM, the exact distributions of estimators 2ˆ ˆˆ( , , )    
for these models are not necessarily normal, or even expressible in closed form. So we 
must appeal to the asymptotic normality of such estimators to carry out significance tests, 
and it is for this reason that z-values are used. (See Section 8.4.1 below for further 
discussion of z-values versus t-values). 
 
It should be evident here that (with the notable exception of the Central Limit Theorems 
developed in Section 3 of Part II) the present asymptotic analysis is the most technically 
challenging material in this NOTEBOOK. In view of this, our present objective is simply 
to illustrate these results by examples where these general asymptotic properties reduce to 
more familiar results obtainable by elementary means. We start with the classic example 

                                                 
2 A formal proof amounts simply to Chebyschev’s Inequality, which shows in the present case that for any 

0k  , 2Pr(| | ( / ) ) 1 /
n

X k n k    . So as long as k  increases more slowly than n , both /k n  

and 21 / k can be made arbitrarily small. 
3 It might seem obvious from (8.3) that condition (8.8) should hold.  But in fact these two conditions are 
generally quite independent (i.e., each can hold without the other). 
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of estimating the mean of a univariate normal random variable in Section 8.1 below, and 
then proceed to a multivariate example in Section 8.2. This second example involves the 
General Linear Model, and will provide a useful conceptual framework for the SEM and 
SLM results to follow.  
 
8.1 A Basic Example of Maximum Likelihood Estimation and Inference 
 
To illustrate the general methods of parameter inference for maximum likelihood 
estimation it is instructive to begin with the single-parameter case of a normally 
distributed random variable, 2~ ( , )Y N   , with known variance, 2 , but with unknown 

mean,  .4 For a given random sample, 1( ,.., )ny y y , the log likelihood of   given y  

then takes the familiar form [recall expression (3.2.6) and (3.2.7) in Part II]: 
 

(8.1.1)  2

1 1

2
1
21

2
( | , ) log ( | ) log

n n

n ii i

iy

L y f y e



   


 

 
 

 
  

 

   

 

                               
2

1
1
2

1
log

2

n i
i

y 
 

           
  

 

                                 2

21
2 1

log 2 ( )
n

ii
n y


  


     

 
If we now use the simplifying notation nL  for first derivatives,5 and solve the usual first-

order condition for a maximum with respect to  , we see that 
 

(8.1.2) 
1 12 2 2

1 10 ( | ) ( | ) ( )
n n

n n i ii i
nd

L y L y y y
d      
  

        

 

   
1 1

1ˆ0
n n

i n i ni iny n y y 
 

        

 
 
and thus that ˆn  is precisely the sample mean, ny . So the main advantage of this 

example is that the sampling distribution of this particular maximum-likelihood estimator 
is obtainable by elementary methods.  
 
 

                                                 
4 In fact, this is one of the prime examples used by early contributors to Maximum Likelihood Estimation, 
including Gauss (1896) and Edgeworth (1908), as well as in the subsequent definitive work of Fisher 
(1922).  For an interesting discussion of these early developments see Hald, A (1999) “On the History of 
Maximum Likelihood in Relation to Inverse Probability and Least Squares”, Statistical Science, 14: 214-
222 
5 Be careful not to confuse this use of primes with that of vector and matrix transposes, like A , 
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8.1.1 Sampling Distribution by Elementary Methods 
 
Note first that consistency of this estimator is precisely the Law of Large Numbers in 
(8.4) with X  replaced by the random variable Y  in this case. As for the asymptotic 
normality condition in (8.7), we have a much sharper result for the sample mean. In 
particular, it follows as a very special case of the Linear Invariance property (Section 
3.2.2 of Part II) of the multi-normal random vector, 1( ,.., )nY Y , that the sample mean, 

1
1( )n

n i inY Y  , is exactly normally distributed. In particular, if the true mean of Y  is 

0( )E y  , so that 2
0~ ( , )Y N   , then by linear invariance we obtain the exact sampling 

distribution of ˆn , 

 
(8.1.3) 2

0ˆ ~ ( , / )n nY N n    

 
 
8.1.2 Sampling Distribution by General Maximum-Likelihood Methods 
 
Given these well-known results for ˆn , we now consider how they would be obtained 

within the general theory of maximum-likelihood estimation. In the present case, the 
general asymptotic normality result in (8.7) asserts that  
 
(8.1.4) 0ˆ ˆ[ ,var( )]n d nN    

 
which is clearly consistent with (8.1.3). From a practical perspective, our main objective 
will be to show how the large-sample variance, ˆvar( )n , is calculated and to verify that it 

is precisely, 2 / n . In doing so, we shall also illustrate the general strategy for analyzing 
the large sample properties of maximum-likelihood estimators. This will not only yield 
an asymptotic approximation to the variance of such estimators, but will also show why 
they are both consistent and asymptotically normal. (A more detailed development is give 
in Section A3.7 of the Appendix.) 
 
Standardized Likelihood Functions 
 
The key observation to be made here is that by replacing data values, iy , with their 

associated random variables, iY , the log-likelihood function in (8.1.1) can be viewed as a 

sum of iid random variables, ( ) log ( | )i iX f Y  , 

 

(8.1.5) 1 1 1
( | ,.., ) log ( | ) ( )

n n

n n i ii i
L Y Y f Y X  

 
                                                          

 
[where we now suppress the given parameter, 2 , except when needed]. So if we divide 
both sides by n and let 1

n nnL L , then this is seen to be the sample mean , ( )nX  , for a 

sample of size n from the random variable, ( ) log ( | )X f Y  , i.e., 
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(8.1.6) 1 1 1
1 1( | ,.., ) log ( | ) ( ) ( )

n n

n n i i ni in nL Y Y f Y X X   
 

     

 
Thus, if we now denote the common mean of these random variables by  
 
(8.1.7) ( ) [ ( )] [log ( | )]L E X E f Y     
 
[where the expectation is with respect to 2

0~ ( , )Y N   ], then it follows from the LLN 

that 1( | ,.., )n nL Y Y converges in probability to this mean, i.e., 

 
(8.1.8) 1( | ,.., ) ( )n n

prob
L Y Y L   

 
Notice also that since 1/ n  is simply a positive constant, this transformation of nL  has no 

effect on maxima. So the maximum-likelihood estimator, ˆn , for sample data, 1( ,.., )ny y , 

must still be given by 
 
(8.1.9) 1ˆ max ( | ,.., )n n nL y y    

 
For purposes of analysis, this scaled version of nL  thus constitutes a perfectly good 

“likelihood” function, and is usually designated as the standardized likelihood function. 
In these terms, the LLN ensures that these standardized likelihood functions, 

1( | ,.., )n nL y y , must have a unique limiting form, ( )L  , given by (8.1.8) which may be 

designated as the limiting likelihood function. This implies that essentially all large-
sample properties of maximum-likelihood estimators can be studied in terms of this 
limiting form, and in particular, that the large-sample distribution of ˆn  can be obtained.  

 
In the present case, we can learn a great deal by simply computing this limiting likelihood 
function. To do so, recall from (8.1.1) and (8.1.7) that 
 

(8.1.10) 
2

1
2

1
( ) [log ( | )] log

2

Y
L E f Y E

 
 

            
 

 

                                  2

21
2

1
log

2
E Y 

 
        

 

 

               2

2 21
2

log 2 2E Y Y            

 

                                   2

2 21
2

log 2 ( ) 2 ( )E Y E Y           
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But since 0( )E Y   and 2 2 2 2
0( ) var( ) [ ( )]E Y Y E Y      , it then follows that 

 

(8.1.11) 2

2 2 2
0 0

1
2

( ) log( 2 ) ( ) 2L                  

 

                                 2

2 2
0 0

1 1
2 2

[log( 2 ) ] ( 2 )            

 
                                 2

2
0

1
2

( )c       

 

where 1
2 log( 2 )c     is a constant depending only on  . So we see that in the 

present case, L  is a simple quadratic function, as shown by the solid black curve in 
Figure 8.2 below, where we have used the parameter values, 0 1   and 2 1  .  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notice also that this limiting function achieves its maximum at precisely the true mean 
value, 0 , which can be seen from the following first order condition (that is shown in 

the Appendix to hold for all limiting likelihood functions):  
 

(8.1.12) 2
1

0 0( ) ( ) ( ) 0L L


         
 

Next observe from expression (8.1.8) that for any given value of   on the horizontal 

axis, the likelihood values, 1( | ,.. )n nL y y , should eventually be very close to the limiting 

likelihood value, ( )L  , for all sufficiently large data samples, 1( ,.., )ny y . However, this 

does not imply that the entire function, 1( | ,.. )n nL y y , will be close to the limiting 

function, ( )L  . Here one requires a “uniform” version of probabilistic convergence (as 
detailed in the Appendix). For the present, it suffices to say that under mild regularity 
conditions, one can ensure uniform convergence in probability on any given interval 
containing the true mean, 0 , such as the interval, [ 0.5,2.5]I   , about 0 1   shown 

Figure 8.2. What this means is that as sample sizes increase, realized likelihood 

Figure 8.2. Limit Curve and ε-Band Figure 8.3. Estimate Interval for ε-Band   

-0.5 0 0.5 1 1.5 2 2.5 -0.5 0 0.5 1 1.5 2 2.5

• 
  

  L  

• 
0  ˆn  

• 
minˆ  maxˆ  

0( )L   

0( )L    

0( )L    
• 

nL  
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functions, 1( | ,.. )n nL y y , will eventually be contained in any given  -band on interval I 

(such as the one shown) with probability approaching one. One such realization, nL , is 

shown (schematically) by the blue curve in Figure 8.3,6 with corresponding maximum-
likelihood estimate, ˆn , also shown.  

 
Consistency of ˆn   
 

This convergence property of likelihood functions, nL , in turn implies consistency of 

their associated maximum-likelihood estimates, ˆn . To see this, note that in order to stay 

inside this  -band, each function, nL , evaluated at 0  must achieve a value, 0( )nL   in 

the interval of values 0 0[ ( ) , ( ) ]L L      shown on the left in Figure 8.2. Thus the 

maximum value of nL  must be at least 0( )L   , which means that this maximum 

(tangency) point on nL  must lie somewhere above the horizontal red line shown in Figure 

8.3, as illustrated by the example in the figure. But since this maximum is by definition 
achieved at ˆ( )n nL  , this in turn implies that ˆn  must lie somewhere in the corresponding 

 -containment interval, min maxˆ ˆ[ , ]   , of  -values on the horizontal axis. Finally, 

observe that as  -bands are chosen to be smaller, their corresponding  -containment 
intervals must eventually shrink to the single value, 0 . So for sufficiently large sample 

sizes, n, we see that maximum-likelihood estimates, ˆn , must eventually be arbitrarily 

close to 0  (with probability approaching one), and thus that such estimators satisfy 

consistency. While this consistency argument is certainly more complex than the direct 
appeal to the Law of Large Numbers for the simple case of ˆn nY  , it serves to illustrate 

the approach used for all maximum-likelihood estimators. Moreover, it helps to provide 
some geometric intuition for the large-sample variance of such estimators, to which we 
now turn. 
 
Large-Sample Variance of ˆn   
 

First observe that by taking the second derivative, ( / )L d d L  , of the limiting 

likelihood function and evaluating this at 0 , we see from (8.1.12) that 

 
(8.1.13) 2 2

1 1
0( ) ( ) ( )d

dL L L
            

 
But for sufficiently large sample sizes, n, the scaled likelihood functions, nL , were seen 

to be uniformly close to L  in the neighborhood of 0 , so that their shapes should be 

                                                 
6 Here it is worth noting from expression (8.1.1) that like the limiting curve, L , all such realizations, nL , 

in the present case must be smooth quadratic functions (such as the one shown).  



  NOTEBOOK FOR SPATIAL DATA ANALYSIS                                      Part III. Areal Data Analysis 
______________________________________________________________________________________ 
 

________________________________________________________________________ 
 ESE 502                                                     III.8-9                                               Tony E. Smith 

similar to L  in this neighborhood. Thus it is reasonable to expect that (8.1.13) should 
hold approximately for such functions, i.e., that 
 
(8.1.14) 2

1
0 0( ) ( )nL L


      

 
But this in turn implies from the definition of nL  that the original log-likelihood 

functions, nL , must satisfy: 
 

(8.1.15) 20 0 0 0( ) ( ) ( ) ( )n n n n
nL n L L n L


          
 

By inverting this expression and multiplying by -1, we see that 
 

(8.1.16) 
21

0( )n nL     
 

Finally, since we happen to know that the right hand side is precisely the variance of 
ˆn nY  , we see that this variance is well approximated by the negative inverse of the 

second derivative of the log-likelihood function, nL , evaluated at the true mean, 0 , i.e., 

 
(8.1.17)  1

0ˆvar( ) ( )n nL     

 
While all of this might seem to be purely coincidental, it is shown in the Appendix that 
this relation is always true for maximum-likelihood estimators.  More importantly for our 
present purposes, this geometric argument actually suggests why this should be so. To 
begin with, note that while the first derivative, ( )L  , of the limiting likelihood function 

reveals its slope at each point,  , the second derivative, ( )L   reveals its curvature, i.e., 

rate of change of slope at  . So 0( )L   corresponds geometrically to the curvature of 

the limiting likelihood function at the true mean, 0 . With this in mind we now illustrate 

the effects of such curvature in Figures 8.4 and 8.5 below.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.5. Estimate Interval for σ   = 1/4 

0 0.5 1 1.5 2-0.5 0 0.5 1 1.5 2 2.5

min̂  min̂  max̂  
• • • 

max̂  
• 

0  
0  

Figure 8.4. Estimate Interval for σ   = 1 2 2 
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Figure 8.4 simply repeats the relevant features of Figure 8.3.  Here we used the variance 
parameter, 2 1  , which implies from (8.1.13) that 0( ) 1L    . Note in particular that 

this negative sign reflects the concavity of L  required for a maximum at 0 . In Figure 

8.5 we have used the same value of   for the  -band around function, L , but have now 
reduced the variance parameter to 2 1/ 4  . This in turn is seen to yield more extreme 
curvature, 0( ) 4L    , at 0 . But the key point to notice is that this sharper curvature 

necessarily compresses the corresponding  -containment interval that delimits the 
feasible range of maximum-likelihood estimates, ˆn , for large n. By comparing these two 

figures, one can see that the permissible deviations from 0  in Figure 8.5 are only about 

half those in Figure 8.4 (decreasing from about 0.8 to 0.4). This in turn implies that the 
permissible squared deviations are only about a quarter as large. Moreover, the constancy 
of curvature in the present example implies that this same relation must hold for all  , 
and thus that the expected squared deviations of ˆn  should also be about a quarter as 

large. But this is precisely the relative variance of ˆn  at each level of curvature. In short, 

we see that for large samples, n, with log-likelihoods close to the limiting likelihood, the 
desired variance of ˆn  is indeed (inversely) proportional to negative curvature, as in 

(8.1.17).  
 
Finally, it should be noted that while the constancy of curvature in this example makes 
such relations easier to see, this is of course a very special case. More generally, all that 
can be said is that for sufficiently large samples, n, almost all realizations of ˆn will be so 

close to 0  that curvature can be treated as constant over the relevant range of ˆn . 

 
 
Asymptotic Normality of ˆn   
 
To motivate asymptotic normality of this estimator, note first that the exact sample-mean 
form of ˆn  allowed a direct application of the CLT by simply rescaling this estimator. 

However, since the exact form of such estimators is rarely available, general arguments 
for asymptotic normality are necessarily more subtle in nature. But if one assumes that 
likelihood functions are sufficiently smooth, then one can appeal to local approximation 
arguments. In particular, if the standardized likelihood function, nL  , is continuously 

twice differentiable (as in normal-density cases) then the tangent line defined by the first 
derivative, nL , at the true parameter value, 0 , yields the best local linear approximation 

to values, ( )nL  , in the neighborhood of 0 . This tangent line [with slope, 0( )nL  ], is 

shown (in red) in Figure 8.6 below. But by the consistency result above, it follows that 
for sufficiently large n we may assume that the estimator ˆn  is itself close to 0 , and 

thus that nL  is approximately linear on the interval between 0  and ˆn , as shown in the 

figure.   
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More formally, this implies that the slope, 0( )nL  , can be approximated by the ratio of 

differences, 
 

(8.1.18) 0
0

0

ˆ( ) ( )
( )

ˆ
n n n

n
n

L L
L

  
 

  


  

 
So by appealing once more to (8.1.14), we see that this ratio should be approximately 
constant for all large n, i.e., that 
 

(8.1.19) 0
0

0

ˆ( ) ( )
( )

ˆ
n n n

n

L L
L

  
 

  


 

 
Finally, noting that by definition, ˆ( ) 0n nL   , it follows by letting 0 01/ ( )a L    that 

 
(8.1.20) 0 0 0ˆ ( )n na L      

 
Note in particular from (8.1.14) that this relation holds for the quadratic likelihood 
function (8.1.1) with 2

0a  . 

 
More generally, the local linear relation in (8.1.20) implies that limiting distribution of  

0ˆn   must be essentially the same as that of 0( )nL  . But the limiting distribution of 

0( )nL   is readily obtainable. To see this, recall from the definition of nL  in expression 

(8.1.6) that if we let ( | ) log ( | )L y f y   [and employ the linearity properties of 
derivatives] then 

Figure 8.6. Local Linear Approximation 

• 
• 
ˆn0

• 

0( )nL 

0( )nL 

nL    

nL 
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(8.1.21) 0 1 0 01 1
1 1( | ,.., ) log ( | ) ( | )

n n

n n i ii in nL y y f y L y  
 

     

 

           0 0 1 01
1( ) ( | ,.., ) ( | )

n

n n n iinL L y y L y  


        

 
Thus 0( )nL   is itself seen to be a sample mean of classical form with iid random 

variables, 0( | ) , 1,..,iL Y i n  . But since the classical the CLT shows that a simple 

rescaling of sample means must be asymptotically normally distributed, it follows from 
(8.1.19) that essentially the same rescaling will apply to 0ˆn   . As detailed in Section 

A3.7.3 of the Appendix, the appropriate scale factor turns out to be n . So by recalling 

from (8.1.17) that 1
0ˆvar( ) ( )n nL     , we obtain the limiting result 

 

(8.1.22)    1
0 0ˆ 0, ( )n d nn N L        

 
Thus to apply this large-sample distribution, all that remains to be done is to compute the 
large-sample variance in (8.1.22). 
 
Computation of Large-Sample Variance 
 
Since direct computation of the variance in (8.1.22) requires knowledge of 0 , we must 

estimate this quantity. But since ˆn  is a consistent estimator of 0 , it is natural to use the 

estimated variance: 
 

(8.1.23)  1ˆ ˆvar( ) ( )n n nL     

 
In practice this can be calculated by numerically approximating the second derivative of 
the log-likelihood function at the maximum, i.e., 1ˆ ˆ( ) ( | ,.., )n n n n nL L y y   . However, 

when this second derivative can be computed as an explicit function of the sample data, 

1( ,.., )ny y , it is often more appropriate to use mean values.  

 
By way of motivation, it should be noted that perhaps the weakest link in the chain of 
arguments above was the supposition that curvature of the likelihood function, 0( )nL  , at 

the true mean is well approximated by that of the limiting likelihood function, 0( )L  , 

i.e., that 0 0( ) ( )nL L   , as in expression (8.1.14) above.  Since averaging produces 

smoothing effects, it should thus be more reasonable to suppose that 
 

(8.1.24) 0 0 1 0( ) ( | ,.., ) ( )n n nE L E L Y Y L             
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and then to approximate the large-sample variance by:7 
  

(8.1.25)    1 1

0 0 1ˆvar( ) [ ( )] [ ( | ,.., )]n n n nE L E L Y Y         

 
Finally we note that the negative expected curvature value used in (8.1.20) is of much 
wider interest, and (in honor of its discoverer) is usually designated as Fisher 
information,8 
 
(8.1.26)  0 0 1( ) ( | ,.., )n n nE L Y Y    

 
In these terms, the variance approximation in (8.1.20) can be rewritten as 
 
(8.1.27) 1

0ˆvar( ) [ ( )]n n     

 
Note in particular that since higher values of 0( )n   mean lower variances of ˆn  and 

thus sharper estimates of 0 , this measure does indeed reflect the amount “information” 

in nL  about 0 .  For computational purposes, we must again substitute ˆn  for 0 , to 

obtain the large-sample variance estimate, 
 

(8.1.28)  1ˆ ˆvar( ) [ ( )]n n n     

 
In subsequent sections it will be shown that explicit expressions for Fisher information 
can be obtained for both SEM and SLM. So we shall employ this expectation version of 
variance estimates in our analyses of these models. Thus, to avoid any possible confusion 
of (8.1.28) with (8.1.23) above, we now follow the standard convention of designating 
the more direct estimate of negative curvature in (8.1.23) as observed Fisher information,  
 
(8.1.29) 0 0( ) ( )obs

n nL     

 
and thus redesignate (8.1.23) as observed large-sample variance estimate,  
 
 

(8.1.30)  1ˆ ˆvar ( ) [ ( )]obs
n n nobs      

                                                 
7 As shown in Section A3.7.3 of the Appendix, it is this expected-curvature expression that is used in 
formal convergence proofs. So while both approximations are used in practice, the main advantage of the 
(8.1.17) approach is that it allows the role of geometric curvature to be seen more easily. 
8 Alternative definitions of Fisher Information are developed in Section A3.7.3 of the Appendix. 
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8.2  Sampling Distributions for General Linear Models with Known Covariance 
 
We next develop a multi-parameter example in which the sampling distributions of 
parameter estimates can again be obtained by elementary methods. Here we start with 
following General Linear Model 
 
(8.2.1) , ~ (0, )Y X N V     
 
where the covariance matrix, V, is assumed to be known. As in Section 7.2.2, this in turn 
implies that 
 
(8.2.2) ~ ( , )Y N X V  
 
Before proceeding with this case, it is worth noting that (8.2.2) is in fact a direct 
extension of our previous model in Section 8.2.1. In particular, that model is seen to be 
the special case in which, 2

nV I  with 2  known, and in which 1nX  . Thus 

 reduces to a single parameter, 0( )    ,  in this case, and we see that:  

 
(8.2.3) 2 2~ ( 1 , ) ~ ( , ) , 1,..,n n i

iid
Y N I Y N i n      

 
So it is perhaps not surprising that the same methods above can be applied to this more 
general version.9  
 
8.2.1 Sampling Distribution by Elementary Methods 
 
As mentioned above, the only difference here is that we are now in a multi-parameter 
setting where sampling distributions must be obtained for the vector of maximum-
likelihood estimators in (7.2.18) above, i.e., for 
 

(8.2.4) 1 1 1ˆ ( )n X V X X V Y      

 
But since this is simply a linear transformation of the random vector, Y , we can obtain 

the sampling distribution of ̂  by again appealing directly to expression (3.2.2) of the 
Linear Invariance Theorem. To do so, note simply that if we let 
 
(8.2.5) 1 1 1( )A X V X X V      
 

so that ˆ
n AY  ,  then it follows at once from (3.2.2) together with (8.2.2) above that 

 

(8.2.6)  ˆ ~ ( , )n N AX AVA    , 

                                                 
9 Here we ignore questions of consistency, which involve a somewhat more complex application of the 
Law of Large Numbers [as for example in Theorem 10.2 in Green (2003)]. 
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and thus that ˆ
n  is exactly multi-normally distributed. Moreover, as we have already 

shown in expressions (7.3.21) and (7.3.22) of Part II,  ˆ
n  has mean vector 

 

(8.2.7) 1 1 1ˆ( ) ( ) ( )nE AX X V X X V X          

 
and covariance matrix, 
 

(8.2.8)       1 1 1ˆcov( ) cov ( )n X V X X V         
 

                                1 1 1 1 1 1( ) cov( ) ( )X V X X V V X X V X         
 

                        1 1 1 1 1 1( ) ( )X V X X V V V X X V X         
 

                                1 1 1 1 1( ) ( ) ( )X V X X V X X V X        
 

                                1 1( )X V X   
 

so that the exact sampling distribution of ˆ
n  is given by 

 

(8.2.9)   1 1ˆ ~ [ ,( ) ]n N X V X     

 
As in the single-parameter case above, this distribution allows us to construct 
significance tests for all j  coefficients. 

 
8.2.2 Sampling Distribution by General Maximum-Likelihood Methods 
 

Here we shall focus only on those aspects of the Maximum-Likelihood approach that are 

needed for calculating the desired sampling distribution of ˆ
n , as in (8.2.9) above. Thus, 

as a direct extension of expression (8.1.4), we start by assuming that ˆ
n  is both 

asymptotically multi-normal and asymptotically unbiased, i.e.,  
 

(8.2.10) ˆ ˆ[ ,cov( )]n d nN    
 

So the main task is to estimate the covariance matrix, ˆcov( )n , in (8.2.10). To do so, 

recall from expression (8.1.17) that the desired asymptotic variance estimate was 
obtained in terms of the second derivative of the log-likelihood function evaluated at the 
true parameter value. Exactly the same result is true in the multi-parameter case, except 
that here we must calculate partial derivatives of the log-likelihood function with respect 
to all parameters. The details of partial derivatives for both the scalar and multi-
dimensional case are developed in Sections A2.5 through A2.7 in the Appendix to Part II 
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(which we here designate as Appendix A2). In the present case, the log-likelihood 
function is precisely the same as that in expression (7.2.14) above with 2 1  , i.e., 
 
(8.2.11) 11 1

2 2 2( | ) log(2 ) log | | ( ) ( )nL y V y X V y X          

 
As shown for the OLS case in Section A2.7.3 of Appendix A2, maximizing this function 
with respect to parameter vector,  , amounts to setting all partial derivatives of ( | )L y  
equal to zero, where the vector of partial derivatives is called the gradient vector of 

( | )L y , and is written as: 
 

(8.2.12) 
1

( | )

( | )

( | )
k

L y

L y

L y




















  


 

  

 

But since   only appears in the last term of (8.2.11), it follows that this first order 
condition for a maximum reduces to: 
 

(8.2.13) 11
20 ( | ) [ ( ) ( )]L y y X V y X           

 

                                              1 1 11
2 [ 2 2 ]y V y y V X X V X              

 

                                              1 1X V y X V X      
 

where the last line follows from expressions (A2.7.7) and (A2.7.11) of Appendix A2. 
Notice that solving this expression for   yields precisely the maximum-likelihood 
estimate in (8.2.4)  above. But our present interest in the matrix of second partial 
derivatives of L  at the true value of   , say 0 ,10 
 

(8.2.14)    

2 2

2
11

0
2 2

2
1

0 0

0

0 0

( | ) ( | )

( | ) [ ( | )]

( | ) ( | )

k

k k

L y L y

L y L y

L y L y

 

    

  

 

 
 

 
 


 

  




         
 



  


 

 

which (as in Section A2.7 of Appendix A2) is designated as the Hessian matrix for 
( | )L y  evaluated at 0 . So by the last line of (8.2.13) [together with (A2.7.7) in 

Appendix A2]11, we see that 
 

                                                 
10 Note that the intercept coefficient in   is here designated as “

1
 ” precisely to avoid notational conflicts 

with this true coefficient vector, 
0

 . 

11 In particular, it follows from (A2.7.7) that for any symmetric matrix, 
1

( ,.., )
n

B b b   , we must have 

1
( ,.., )

x x x n
Bx b x b x B B        . 
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(8.2.15)  
0

1 1
0( | ) [ ]L y X V y X V X     

      
 

                                         1( )X V X    
 

                                         1X V X   
 
But, if we again replace data vector, y , by its corresponding random vector, Y , and take 

expectations (under 0 ) then we see in this case that 

 
(8.2.16) 1

0[ ( | )]E L Y X V X      

 
Thus by (8.2.8) this is now seen to imply that 
 

(8.2.17)   11 1
0

ˆcov( ) ( ) [ ( | )]n X V X E L Y 
      

 
So if Fisher information in (8.1.21) is here replaced by the corresponding Fisher 
Information matrix,  
 
(8.2.18) 0 0( ) [ ( | )]n E L Y     

 

then it follows from (8.2.17) that the covariance of ˆ
n  is precisely the inverse of the 

Fisher Information matrix, i.e., 
 

(8.2.19) 1
0

ˆcov( ) ( )n n     

 
While this is of course a very special case in which covariance is exactly inverse Fisher 
Information, it serves to motivate the general results to follow. 
 
8.3 Asymptotic Sampling Distributions for the General Case 
 
Given this multi-parameter example, it can be shown that the asymptotic sampling 
distributions for general maximum likelihood estimates are essentially of the same form. 
In particular, if the log-likelihood function for n samples, 1( ,.., )ny y y   from a 

distribution with k unknown parameters, 1( ,.., )k    , is denoted by ( | )L y  [as in 

(7.1.8) above], and if the maximum-likelihood estimator for   is denoted by n̂  [as in 

(7.1.9), with sample size, n , made explicit], then (under mild regularity conditions) n̂  is 

both asymptotically multi-normal and asymptotically unbiased, i.e.,  
 

(8.3.1) 0
ˆ ˆ[ ,cov( )]n d nN    
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where 0  is the true value of  . So expressions (8.1.4) and (8.2.10) are both seen to be 

instances of this general expression. Moreover, the asymptotic covariance matrix, 
ˆcov( )n , takes the same form as expression (8.2.17) through (8.2.19). In particular, if we 

again denote the relevant Fisher Information matrix by 
 
(8.3.2) 0 0( ) [ ( | )]n E L Y     
 

then the asymptotic covariance of ˆ
n  is precisely the inverse of the Fisher Information 

matrix, i.e., 
 

(8.3.3) 1
0

ˆcov( ) ( )n n     

 
So in these terms, the explicit form of (8.3.1) is simply 
 

(8.3.4) 1
0 0

ˆ [ , ( ) ]n d nN      

 

Finally, this distribution is again made operational by appealing to the consistency of n̂  

to replace 0  with n̂  and write 

 

(8.3.5) 1
0

ˆ ˆ[ , ( ) ]n d n nN      

 

But taking this approximation to be the relevant sampling distribution for n̂ , one can 

proceed with a range of statistical analyses regarding the nature of 0 . But rather than 

developing testing procedures within this general framework, it is more convenient to do 
so in the specific contexts of SEM and SAR, to which we now turn. 
 
8.4  Parameter Significance Tests for SEM 
 
For the SE-model in (7.3.1) through (7.3.3), it follows at once that the relevant parameter 
vector is given by 2( , , )    ,12 with likelihood function, 
 
(8.4.1) 2( | ) ( , , | )L y L y     
 
                                2

2
1 1

2 2 2 2
log(2 ) log( ) log | | ( ) ( )n n B y X B B y X              

 
where nB I W   . For this model, if we now designate the sum of diagonal elements 

of any matrix, ( )ijA a , as the trace of A, written  ( ) i iitr A a  , and if (for notational 

                                                 
12 For notational simplicity, we here drop transposes and implicitly assume that both   and   are column 

vectors. 
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simplicity) we let 1 1G WB B W  
   ,13 then it can be shown [see Ord (1975) and 

Appendix B in Doreian (1980)] that the expected value of the Hessian matrix for ( | )L Y  
evaluated at the true value of   is given by 14 
 

(8.4.2) 

2

2 2 2 2

2

( ) ( ) ( )

[ ( | )] ( ) ( ) ( ) ( )

( ) ( ) ( )

E L E L E L

E L Y E L E L E L E L

E L E L E L

 

       

 



   

      


    

 

 

                                            

2

4 2

2

1

1
2

1

0 0

0 ( )

0 ( ) [ ( )]

n

X B B X

tr G

tr G tr G G G

 



   



 



  


  
   

 

 

 
where for simplicity we now drop the subscripts “0” denoting “true” values. It then 
follows at once from (8.3.2) and (8.3.3) that asymptotic covariance matrix of the 

maximum-likelihood estimators, 2ˆ ˆ ˆ ˆ( , , )    ,15 is given by 
 

(8.4.3) 1 1ˆcov( ) ( ) [ ( | )]n E L Y        
 

                               

2

4 2

2

1
1

1
2

1

0 0

0 ( )

0 ( ) [ ( )]

n

X B B X

tr G

tr G tr G G G

 



   



 




  


 
   

 

 
 

Thus the desired asymptotic sampling distribution of 2ˆ ˆˆ( , , )    for SEM is given by 
 
 

(8.4.4) 

2

4 2

2

1

2 2

1

1
2

1

ˆ 0 0

ˆ ~ , 0 ( )

ˆ 0 ( ) [ ( )]

n

X B B X

N tr G

tr G tr G G G

 



   



 



 
 
 

                    

 

 

                                                 
13 The last equality follows from the fact that 1 1

0 0
( ) ( )n n n n

n n
WB W W W W B W     

 
     . Because of 

this, G  is defined both ways in the literature [compare for example Ord (1975) and Doreian (1980)]. 
14 Note in the last line of (8.4.2) that 0 denotes a zero vector of the same length as  , together with its 

transpose, 0 . 
15 Again for notational simplicity, we now drop the sample-size subscripts (n) on estimators. 
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Before applying this distribution to construct specific tests, it is of interest to notice from 
the pattern of zeros inside this covariance matrix that further simplifications are possible 
here. In particular this covariance matrix is seen to be the inverse of a block diagonal 
matrix. But just as in the case of simple diagonal matrices, matrix multiplication shows 
that the inverse of any ( 2 2 ) block diagonal matrix is given by 
 

(8.4.5) 
1 1

1

A A

B B

 




 

   
 

 
so that (8.4.3) can be rewritten as  
 

(8.4.6) 4 2

2

2 1

11
2

1

( )

ˆ ( )cov( )

( ) [ ( )]

n

X B B X

tr G

tr G tr G G G

 



   

 











  
 

  
     

 

 

In particular, this shows that ̂  is uncorrelated with either 2̂  or ̂ , so that by the 

general properties of multi-normal distributions, we may conclude that ̂  is completely 

independent of 2 ˆˆ( , )  . This in turn implies that the joint distribution of 2ˆ ˆ ˆ( , , )    in 

(8.4.4) can be factored into a product of the marginal distributions for ̂  and 2 ˆˆ( , )  . 

With respect to ̂  in particular, this marginal distribution is seen to be of the form 
 

(8.4.7) 2 1ˆ ~ [ , ( ) ]N X B B X       

 
But since the covariance expression can be rewritten as 
 

(8.4.8)   12 1 2 1 1 1 1( ) [ ( ) ] ( )X B B X X B B X X V X     
           

 
where 2 1( )V B B    , it follows from expressions (8.2.8) [together with (6.1.6) and 

(6.1.7)] that expression (8.4.6) is precisely the instance of the GLS in Section 7.6.2 above 
for the case of an SE-model with known spatial dependency parameter given by  .  In 

other words, the independency property of SEM allows all analyses of ̂  to be carried 

out using the GLS model in (8.2.9) for any given values of the other parameters, 2( , )  . 
As we shall see below, this simplification is not true for SLM. 
 
8.4.1 Parametric Tests for SEM 
 
To develop appropriate tests of parameters for SEM, recall that all unknown true 

parameter values 2( , , )    in the above expressions are estimated using 2ˆ ˆˆ( , , )   . So 
in these terms, the estimated asymptotic covariance for purposes of statistical inference is 
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obtained by substituting these estimated values 2ˆ ˆˆ( , , )    into (8.4.6). For notational 

convenience, we denote this estimated covariance matrix by SEMS , which is now seen to 

have the block diagonal form: 
 

 

(8.4.9) 

2 1
ˆ ˆ

12
ˆ4

2 4
ˆ ˆ ˆ ˆ

ˆ ( )

ˆ/ 2 ( )
ˆ

ˆ ˆ( ) [ ( )]

SEM

X B B X

S n tr G

tr G tr G G G

 



   






 





  
 

  
     

 

 

                              

0 0

0

2 2

2

2
ˆ ˆ ˆ

2
ˆ ˆ ˆ

2

ˆˆ ˆ

2
ˆˆ ˆ

k

k k

s s

s s

s s

s s

  

  

  



 
 
 
 

  
 
 
 
 



  
  

 
 

Before using these estimates, notice from (8.4.6) that we have here factored out the 
quantity, 4̂ ,  in the lower diagonal matrix [see also Ord (1975), expression (19) in 
Doreian (1980), and expression (5.48) of Upton and Fingleton (1985) – which is class 
reference number 18]. The reason for this can be seen from the first row of the 
(unfactored) lower block-diagonal matrix in (8.4.6), which will have all elements close to 
zero when variance, 2 , is large. So to avoid possible numerical stability problems when 
computing the inverse of this matrix, it is convenient to introduce such a factorization. 
 
To apply these estimates, we first consider the most important set of parameter tests, 
namely tests for beta coefficients, , 0,1,..,j j k  , in the linear term, X   (where as 

usual, the intercept, 0 ,  tends to be of less interest than the slope coefficients, 1,.., k  , 

for explanatory variables). While such analyses are is conceptually similar to those for 
Geo-Regression in Section 7.3.2 above, there are sufficient differences to warrant a more 
careful development here. For parameter, j , it follows at once from (8.4.7) that the 

marginal distribution of the estimator, ˆ
j , must be normal and of the  form 

 

(8.4.10) ˆ ˆ~ [ ,var( )] , 0,1,..,j j jN j k     

 

where ˆvar( )j  is by definition the thj  diagonal element of the covariance matrix, 
2 1( )X B B X    . Here we have estimated this quantity by diagonal element, 2

ˆ
j

s


, of 

matrix, SEMS , in (8.4.9). So by using this estimate, (8.4.10) can be rewritten as, 
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(8.4.11) 2
ˆ

ˆ ~ ( , ) , 0,1,..,
j

j jN s j k


    

 
This is the operational form of the sampling distribution that we shall employ for testing 
the significance of j . To employ the standard normal tables, one must first standardize 

ˆ
j  to obtain the corresponding z-statistic: 

 

(8.4.12) ˆ
ˆ

ˆ
~ (0,1), 0,1..,

j

j

j jz N j k
s


 
    

 

where 2
ˆ ˆ

j j
s s
 
  denotes the standard deviation of ˆ

j . So under the null hypothesis, 

0j  , it follows from (8.4.12) that the z-score, ˆ
ˆ /

j
j jz s


 , must be standard normal, 

i.e., that 
 

(8.4.13) 
ˆ

ˆ
~ (0,1) , 0,1,..,

j

j
jz N j k

s



   

 
Finally, if the observed z-score value is denoted by obs

jz ,16 then the p-value for this (two-

sided) test is thus given by 
 
 

(8.4.14)  Pr | | | |obs
j j jp z z   

 
 

We shall illustrate this test for the Eire example below. But before doing so, it is 
important to point out that this test treats 2

ˆ
j

s


in (8.4.11) as a “known” quantity, and in 

particular ignores all variation in this estimator. But in OLS, for example, this estimator 

can be shown to be both chi-square distributed and independent of ˆ
j , so that the ratio, 

2
ˆ

ˆ /
j

j s


 , is t-distributed. Thus, the relevant tests of j  coefficients in OLS are t-tests. But 

in more general settings such as SEM, the distribution of 2
ˆ

ˆ /
j

j s


 is unknown. So the 

standard “fall back” position is to treat 2
ˆ

j
s


as a constant (by appealing implicitly to its 

large-sample consistency property), and to employ the normal distribution in (8.4.11) for 
testing purposes.  
 
The consequence of this convention is to inflate significance levels (i.e., reduce p-values) 
to some degree. In the OLS case, this can be seen by noting that t-distributions have fatter 

                                                 
16 Here “observed” means the actual value calculated by maximum-likelihood estimation. 

| |obs

j
z  

/ 2
j

p  / 2
j

p  
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tails than the standard normal distribution, thus increasing the p-value in (8.4.14) for any 
given observed value, obs

jz . Because of this, some analysts prefer to use a more 

conservative t-test based on the number of parameters in the model (as in the OLS case). 
In particular, if we now re-designate the ratio in (8.4.13) as a pseudo t-statistic, 
 

(8.4.15) 
ˆ

ˆ

j

j
jt

s



  

 
and let vT denote the t-distribution with v degrees of freedom, then [following Davidson 

and MacKinnon (1993, Section 3.6)] one can construct a corresponding pseudo t-test of 
the null hypothesis, 0j  , by assuming that jt  is t-distributed with degrees of freedom 

equal to n minus the number of model parameters. In this case, the relevant parameter 
vector 2( , , )    is of length, 3k  , so that17 
 

(8.4.16) ( 3)
ˆ

ˆ
~

j

j
j n kt T

s



   

 
The appropriate p-value for this test is then given by the probability in (8.4.14) with 
respect to the t-distribution in (8.4.16), and will be dented by t pseudo

jp  . While these values 

are not reported in the screen output of sem.m or slm.m (as for the Eire example in 
Figure 7.7), we shall report them here just to illustrate the types of significance inflation 
that can occur.  
 
But before turning to the Eire example, we first construct a test of the other key 
parameter of the SE-model, namely the spatial dependence parameter,  .18 Here it is 

important to note that unlike the simple (and appealing) rho statistic, ˆW , in Section 4.1.1 

above, which unfortunately yields an inconsistent estimate of  , the present maximum-

likelihood estimator, ̂ , of   is consistent (assuming of course that the SE-model is 
correctly specified). So from a theoretical perspective, formal hypothesis tests based on 
this estimator are of great interest. Here the same testing procedure for j  coefficients 

can be applied with the appropriate changes. First, it again follows from (8.4.4) that the 
estimator, ̂ , is normally distributed, so that as a parallel to (8.4.11), we now have 
 

(8.4.17)  2
ˆˆ ~ ,N s   

                                                 
17 Given that ̂  in (7.3.11) is functionally independent of 2 , one could in principle use ( 2)v n k    in 

(8.4.16). However, we here adopt the (conservative) approach of using all parameters to calculate v. 
18 Note that while the error variance, 2 , is also a model parameter, and indeed is also asymptotically 

normally distributed by (8.4.4), one is rarely interested in testing specific hypotheses about 2 . So 

following standard convention, we simply report the estimated value, 2̂ , in screen outputs like Figure 7.7. 
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where 2
ˆ ˆs s  . Moreover, since the natural null hypothesis for this parameter is again, 

0   (here denoting the absence of spatial autocorrelation), we have the corresponding 
z-score, 
 

(8.4.18) ˆ
ˆ

ˆ
~ (0,1)z N

s



  

 

under this hypothesis. So the presence of non-zero spatial autocorrelation (either positive 
or negative) is now gauged by the two-sided p-value, 
 

(8.4.19)  ˆ ˆ ˆPr | | | |obsp z z     

 
where ˆ

obsz  is again the observed z-score value. While this is always the default test 

employed in spatial regression software, it should be noted that (as in Section 4 above) a 
one-sided test for positive spatial autocorrelation is generally of more relevance. But we 
choose to employ the (more conservative) two-sided test to maintain comparability with 
other software. Finally, as with tests of   coefficients above, we shall also report the p-

value, ˆ
t pseudop
 , for the corresponding pseudo t-test that captures at least some of the 

statistical variation in the estimator, ̂ . 
 
8.4.2 Application to the Irish Blood Group Data 
 
To apply these results to the Eire case, we first note that the estimated covariance matrix, 

SEMS , in (8.4.9) is one of the outputs of sem.m, denoted by cov. In the present case, this 

matrix for the Eire data take the form in Figure 8.6 below, where each row and column is 

labeled by its corresponding parameter estimator 2
0 1

ˆ ˆ ˆˆ( , , , )    : 

 
 
 
 
 
 
 
 
 
 
 
 
This clearly illustrates the block diagonal structure of SEMS . To relate this covariance 

matrix to the SEM results in Figure 7.7, we focus on the important “Pale” coefficient, 1 . 

By recalling that the standard error of 1̂  in (8.4.12) is given from Figure 8.6 by 

Figure 8.6. SEM Parameter Covariance Matrix 

1.9464 ‐ 0.3061 0 0

‐ 0.3061 0.7809 0 0

0 0 0.3874 ‐ 0.0211

0 0 ‐ 0.0211 0.0112

0̂  

0̂  2̂  

1̂  

2̂  

̂  

̂  1̂  
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(8.4.20) 
1 1

2
ˆ ˆ 0.7809  0.8837s s
 
    

 

we see that the z-score for a two-sided test of the hypothesis, 1 0  , is given by19 
 

(8.4.21) 
1

1
1

ˆ

ˆ 1.5532
1.7577

.8837
z

s



    

 

as in Figure 7.7. Finally, the desired p-value for this test is given by 
 
(8.4.22) 1 1Pr(| | 1.7577) 2 ( 1.7577) 0.0788p z       

 
as in Figure 7.7. To compare this results with the corresponding pseudo t-test for 1 , 

observe first that in this case there are 4 parameters, 2
0 1( , , , )    , so that the for the 

26n   counties in Eire, the appropriate two-sided p-value is calculated with respect to a 
t-distribution with 26 4 22v     degrees of freedom, yielding 
 
(8.4.23) 1 0.0927t pseudop    

 
This is still weakly significant ( .10 ), but is noticeably less significant than the result in 
(8.4.22) based on the normal distribution. However, it should be noted that the sample 
size, 26n  , in this Eire example is quite small. So in larger sample sizes, where the tails 
of ( 3)n kT    are much closer to those of (0,1)N , this difference will be far less noticeable. 

 
Finally, for completeness, we also calculate the corresponding tests for the spatial 
dependency parameter,  . As in (8.4.21), the relevant z-score in (8.4.18) is seen from 
Figures 7.7 and 8.6 to be 
 

(8.4.24) ˆ
ˆ

ˆ 0.7885
7.467

0.0112
z

s



    

 
with corresponding p-values for the z-test and pseudo t-test given by: 
 
(8.4.25) 14

ˆ ˆPr(| | 7.467) 8.2 10p z 
            and   7

ˆ 1.82 10t pseudop
    

 
So while the pseudo t-test again yields a somewhat weaker result, both p-values are 
vanishingly small,20 and confirm that spatial autocorrelation in this model is strongly 
present.  

                                                 
19 Note that since all of the following calculation examples are done to a much higher degree of precision 
than the numbers shown, the results on the right hand sides will not agree “exactly” with the indicated 
operations on the left-hand sides. 
20 Note that the reported value in Figure 7.7 is not zero, but rather is simply smaller than the number of 
decimal places allowed in this (default) printing format. 
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8.5  Parametric Significance Tests for SLM 
 
Using the same notation as above, recall that the log-likelihood function for the SL-model 
in (6.2.2) through (6.2.4) is given by 
 
(8.5.1)   2( | ) ( , , | )L y L y     
 
                             2 1

2
1 1

2 2 2 2
log(2 ) log( ) log | | ( ) ( )n n V y X V y X              

 
where 1X B X 

  and where   is now the spatial dependency parameter for the 

dependent variable, y , rather than for the residual errors,  . If for notational simplicity 

we let 2( , ) [ ( )]H tr G G G X G G X              , and again let 1G WB 
 , then the 

same analysis of this log-likelihood function as in (8.4.2) and (8.4.3) above [see 
Appendix B in Doreian (1980)] yields the corresponding covariance matrix for SLM: 
 

(8.5.2)   

2 2

4 2

2 2

1

2

1 1

1
2

1 1

0

ˆ ˆˆcov( , , ) 0 ( )

( ) ( , )

n

X X X G X

tr G

X G X tr G H





 

 

 

 



  

  


  


 
    

 

 
Thus the appropriate asymptotic sampling distribution for SLM is given by: 
 

 

(8.5.3) 

2 2

4 2

2 2

1

2 2

1 1

1
2

1 1

ˆ 0

ˆ ~ , 0 ( )

ˆ ( ) ( , )

n

X X X G X

N tr G

X G X tr G H





 

 

 

 

 
 
    

                     

 

 

The key difference from SEM is that the present covariance matrix, 2ˆ ˆˆcov( , , )   , is not 
block diagonal. The essential reason for this can be seen by comparing the reduced forms 
for SEM and SLM in (6.1.8) and (6.2.6), respectively, which we now reproduce: 
 
(8.5.4) 2, ~ (0, )Y X u u N V    

 
(8.5.5) 2, ~ (0, )Y X u u N V     

 
These are seen to differ only in that X  for SEM is replaced by 1X B X 

  for SLM. So 

the difference here is that   in SLM is directly influencing the mean of Y while in SEM 

it is not [i.e., 1( | )E Y X B X   rather than ( | )E Y X X  ]. It is this linkage between 

  and   in SLM that creates non-zero covariances between ̂  and the ̂  components. 
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8.5.1 Parametric Tests for SLM 
 

If we now substitute consistent maximum-likelihood estimates 2ˆ ˆˆ( , , )    for the true 

parameter values in (8.5.2), and again factor out 4̂  (for numerical stability in calculating 
the inverse), then the estimated covariance matrix, SLMS , is seen to have the form: 

 

(8.5.6) 

1
2 2

ˆ

4 2
ˆ

2 2 4
ˆ ˆ

2

ˆˆ ˆ0

ˆ ˆ0 ( )

ˆ ˆˆˆ ˆ ˆ( ) ( , )

SLM
n

X X X G X

S tr G

X G X tr G H





 

  
 

     


  


 
    

 

 
Given this estimated matrix, it follows by using the same notation as for SEM that all 
relations in expressions (8.4.11) through (8.4.19) continue to hold, where 

2ˆ ˆˆ({ : 0,1,.., }, , )j j k    is  now the vector of maximum-likelihood estimates for SLM 

rather than SEM, and where the standard deviations,  2ˆ ˆˆ({ : 0,1,.., }, , )
j

s j k s s  , are now 

the square roots of the diagonal elements of SLMS rather than SEMS . So aside from these 

differences, all z-tests and pseudo t-tests are identical in form. 
 
8.5.2 Application to the Irish Blood Group Data 
 
As with sem.m, the MATLAB program slm.m offers an optional output of the SLMS  

matrix, designated by cov, which in a manner to Figure 8.6 above, now has the form: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notice in particular that all elements of this covariance matrix are nonzero. So while 
there appear to be no direct links between   and 2  in the Fisher information matrix for 
SLM [recall (8.3.2)], there are indirect links as seen in its inverse. More generally, only 
block-diagonal patterns of zeros in the Fisher information matrix ensure independence in 
the multi-normal case.   
 

Figure 8.7. SLM Parameter Covariance Matrix 

10.327 0.8259 0.4129 ‐ 0.3589

0.8259 0.3366 0.0381 ‐ 0.0331

0.4129 0.0381 0.2172 ‐ 0.0145

‐ 0.3589 ‐ 0.0331 ‐ 0.0145 0.0126

0̂  

0̂  2̂  

1̂  

2̂  

̂  

̂  1̂  
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With these observations, the relevant test statistics can again be obtained from (the right 
panel of) Figure 7.7 together with the diagonal elements of SLMS in Figure 8.7. For 1  we 
see in this case that   
 

(8.5.7) 
1

1
1

ˆ

ˆ 2.0142
3.472

.3366
z

s



    

 
which in turn yields the following p-value for the z-test in Figure 7.7, together with the 
corresponding pseudo t-test: 
 
(8.5.8) 1 1Pr(| | 3.472) 2 ( 3.472) 0.00052p z         and  1 0.0022t pseudop    

 
So again we see that the significance level for the z-test is inflated. But even for the more 
conservative pseudo t-test, the “Pale” effect is here vastly more significant than for SEM, 
as was seen graphically in Figure 7.8 above. 
 
Turning finally to the spatial dependency parameter,  , we may again use Figures 7.7 
and 8.7 to obtain the following z-score, 
 

(8.5.9) ˆ
ˆ

ˆ 0.7264
6.467

0.0126
z

s



    

 
and corresponding p-values, 
 
(8.5.10) 11

ˆ ˆPr(| | 6.467) 9.99 10p z 
            and   6

ˆ 1.66 10t pseudop
    

 
So even though the “Rippled Pale” in Figure 7.8 fits the Blood Group data far better than 
the “Pale” itself, these results show that there remains a great deal of spatial 
autocorrelation that is not accounted for by this single explanatory variable.  
 


