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9. Goodness-of-Fit Measures for Spatial Regression 
 
Unlike Ordinary Least Squares, where there is a single dominant measure of goodness of 
fit – namely R-squared (and adjusted R-squared), no such dominant measure exists for 
more general linear models. So relative goodness of fit for models such as SEM and SLM 
is best gauged by employing a variety of candidate measures, and attempting to establish 
“dominance” in terms of multiple measures. Recall from Figure 7.7 that seven different 
measures were reported for each of these models. So the main objective of this section is 
to clarify the meaning and interpretation of these measures. To do so, we begin in Section 
9.1 below with a detailed investigation of the classical R-squared measure. Our objective 
here is to show why it is appropriate for classical OLS but not for more general models. 
This will lead to “extended” R-squared measures that can be applied to both SEM and 
SLM. 
 
9.1 The R-Squared Measure for OLS 
 
To motivate R-squared 2( )R  as a goodness-of-fit measure for OLS, we start with a 
simplest case of a single explanatory variable, x, and consider a scatter plot of data points, 
( , ), 1,..,i iy x i n , used to estimate a regression of y on x, as shown in Figure 9.1 below.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From an estimation viewpoint, the regression problem for this data is to find a linear 
function, 0 1y x   , which best fits this data.  If we let ie  denote the actual deviation 

of point ( , )i iy x  from this function (or line), so that by definition, 
 
(9.1.1) 0 1 , 1,..,i i iy x e i n       
 

then the regression line is defined to be that linear function, 0 1
ˆ ˆy x   , which 

minimizes the sum of squared deviations, 2
i ie . In this case, the desired regression line is 

given by the blue line in Figure 9.2 [where only the single representative data point, 
( , )i iy x , from Figure 9.1 is shown here]. 

Figure 9.1.  Basic Data Plot Figure 9.2.  Regression Line 
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To evaluate “goodness of fit” for this line, we first construct an appropriate benchmark 
for comparison. To do so, it is natural to ask how we might “fit” y-values if the 
explanatory variable, x , were ignored altogether. This can be accomplished by simply 
setting 1 0  , so that model (9.1.1) reduces to:  
 
(9.1.2) 0 , 1,..,i iy e i n    
 

In this setting the least-squares fit, 0̂ , is now obtained by minimizing the sum of squares 
 
(9.1.3) 2

0 0( ) ( )ii
S y    

 
By solving the first-order condition for this problem, we see that 
 

(9.1.4) 0 0
0

ˆ ˆ0 ( ) 2 ( )( 1)ii
d

d S y       

 

                        0 0
ˆ ˆ0 ( )i ii i

y y n        

 

                        0
1ˆ

iin y y    

 
and thus that the best least-squares fit to y in this case is precisely the sample mean, y . 
[Recall also the arguments of expressions (7.1.35) and (7.1.36) in Part II]. In other words, 
if one ignores possible relations with other variables, then the best predictor of y values 
based only on data ( : 1,.., )iy i n  is given by the sample mean of this data. So the flat line 
with value y  in Figure 9.1 represents the natural benchmark (or null hypothesis) against 
which to compare the performance of any other possible regression model, such as 
(9.1.1). But for this benchmark case, it is clear that “goodness of fit” to the y-values can 
be measured directly in terms of their squared deviations around y . This can be 
summarized in terms of the sum of squared deviations,  
 

(9.1.5) 2 2

1
( )

n

y ii
S y y


    

 
designated here as the total variation in y.1  Note in particular that with respect to this 
measure, one has a perfect fit (i.e., iy y  for all 1,..,i n ) if and only if 2 0yS  .  

 
In this setting, candidate explanatory variables, x , for y only have substance in so far as 
they can reduce this benchmark level of uncertainty in y. As we shall see, it is here that 

                                                 
1 Equivalently, one could take averages, and use the sample variance, 2 2 / ( 1)y ys S n  , of y in model (9.2). 

But as we shall see below, it turns out to be simpler and more direct to consider the fraction of total 
variation in y that can be accounted for by a given regression model.  
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the R-squared measure ( 2R ) comes into play. In short, 2R  captures the reduction in 
uncertainty about y that can be achieved by regressing y on any given set of explanatory 
variables. The key idea can be seen in an intuitive way by reconsidering the regression 
shown in Figures 9.1 and 9.2 above. Note first that the full deviation, iy y , of the 

representative point, ( , )i iy x , from the benchmark flat line, y , is shown explicitly in 
Figure 9.1. In the presence of the regression line in Figure 9.2, this deviation can be 
decomposed into two parts by using the predicted value, ˆiy , of iy  for this regression. 

The lower segment, ˆiy y , reflects that part of the overall deviation, iy y , that has 

been “explained” by the regression line, and the upper segment, ˆi iy y , reflects that part 

left “unexplained” by the regression. In this context, the essential purpose of 2R  is to 
yield a summary measure of the fractional deviations accounted for by the regression.  
 

But notice that this example point, ( , )i iy x , has been carefully chosen so that both the 

deviation, iy y , and its fractional parts are positive. To ensure positivity, it is more 

appropriate to ask how much of the squared deviation, 2( )iy y , is accounted for by the 
regression line. Note moreover that not all points will yield such “favorable” results for 
this regression. For example, data points that happen to be very close to the y -line will 

surely be better predicted by y  than by the regression, so that 2 2ˆ( ) ( )i i iy y y y   . 
Thus the key question to be addressed how well a given regression is doing with respect 
to total variation of y in (9.1.5). In the context of Figure 9.2, the main result will be to 
show that this total variation can be decomposed into the sum of squared deviations of 
both ˆi iy y  and ˆiy y , i.e., that 
 
(9.1.6) 2 2 2 2 2ˆ ˆ ˆ ˆ( ) ( ) ( )y i i i i ii i i i

S y y y y y y e           

 
If these terms are designated respectively as model variation and residual variation, then 
this fundamental decomposition says that 
 
(9.1.7) total variation model variation residual variation    
 

In this setting, the desired 2R  measure (also called the Coefficient of Determination) is 
taken to be the fraction of total variation accounted for by model variation, i.e., 
 

(9.1.8) 
2

2
2

ˆ( )

( )
ii

ii

y ymodel variation
R

total variation y y


 





 

 
Note from (9.1.7) that this can equivalently be written as 
 

(9.1.9) 
2

2
2

ˆ
1 1

( )
ii

ii

eresidual variation
R

total variation y y
   





 

 
where this ratio can be viewed as the fraction of “unexplained” variation.  
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The task remaining is to demonstrate that this decomposition holds for linear regressions 
with any number of explanatory variables. To do so, we begin by developing a “dual” 
representation of the regression problem which (among other things) will yield certain 
key results for this construction. 
 
9.1.1 The Regression Dual 
 
To motivate this representation, we again begin with the simplest possible case of one 
explanatory variable, x, together with only three samples, ( 1,2,3, ),i iy ix  , as shown in 
Figure 9.3 below. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
This sample plot is simply another instance of the scatter plot in Figure 9.1, where a 
candidate line, 0 1x  , for fitting these three points is shown in blue. As in expression 
(9.1.1), this yields the identity,  
 
(9.1.10) 0 1 , 1,2,3i i iy x e i       
 

where again the desired regression line, 0 1
ˆ ˆ x  , minimizes the sum of squared 

deviations, 2 2 2 2
1 2 3i ie e e e    . But recall that (9.1.6) can also be written in vector form 

as, 
 

(9.1.11) 
1 1 1

2 0 1 2 2 0 3 1

3 33

1
1 1
1

y x e
y x e y x e

x ey
   

   
                     

 

 

where in particular, the vectors, 1 2 3( , , )y y y y   and 1 2 3( , , )x x x x   denote all data values 
of the dependent variable and explanatory variable, respectively. These two vectors are 
shown (in blue) in Figure 9.4, which is usually designated as the variable plot. Here the 
three axes now represent “sample dimensions”, 1 2 3( , , )s s s . The two representations in 
Figures 9.3 and 9.4 exhibit a certain duality property in that the roles of samples and 
variables are reversed. For plots such as Figure 9.3, the axes are variables and the points 
are samples.  However, the axes in Figure 9.4 are samples and the points are variables 

Figure 9.3 Sample Plot Figure 9.4. Variable Plot 
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[here drawn as vectors from the origin]. Each of these representations has its own 
advantages. For the present case of a single explanatory variable, x, the more standard 
sample plot has the advantage of allowing any number of samples to be plotted and 
displayed. The variable plot in Figure 9.2 is far more restrictive in this context, since the 
present case of a single explanatory variable with three samples is essentially the only 
instance in which a graphic representation is even possible.2 Nonetheless, this dual 
representation, or regression dual, reveals key geometric properties of regression that 
simply cannot be seen in any other way.  This is more apparent in Figure 9.5 below, 
where we have included the unit vector, 31 (1,1,1)  from expression (9.1.11) as well. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note also that we have now colored the vectors, x  and 31 , and have connected them with 
a dashed line to emphasize that these two vectors define a two-dimensional plane called 
the regression plane. In geometric terms, the linear combinations, 0 3 11 x  , in 
expression (9.1.10) above represent possible points on this plane (so for example, 

0 1 1/ 2   , corresponds to the point midway on  dashed line joining x  and 31 ). In 

these terms, the regression problem of finding a point, 0 3 1
ˆ ˆ1 x  , in the regression 

plane that minimizes the sum of squared deviations, 2
i ie , has a very clear geometric 

interpretation. In particular, since the relation, 
 
(9.1.12) 2 2 2

0 3 1 0 3 1( 1 ) || || || ( 1 ) ||i ie y x e e y x             
 
shows that this sum of squares is simply the squared distance from y  to 0 3 11 x  ,  
the regression problem in this dual representation amounts geometrically to finding that 

point, 0 3 1
ˆ ˆˆ 1y x   , in the regression plane which is closest to y. Without going into 

further details, this closest point is precisely the orthogonal projection  of y  into this 

                                                 
2 Note that while more variables could in principle be included in Figure 9.4, the associated regression 
would be completely overdetermined. More generally, when variables outnumber sample points, there are 
generally infinitely many regression planes that all yield perfect fits to the data. 

Figure 9.6. Regression as Projection 
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plane, as shown by the red arrow in Figure 9.6,3 where the red dashed line represents the 
corresponding residual vector, ê , from (9.1.12), as defined by ˆ ˆe y y  . 
 
This view of regression as an orthogonal projection also yields a number of insights into 
the algebraic structure of regression.4 The most important of these follow from the 
observation that since the residual vector, ê , is orthogonal to the regression plane, it must 
necessarily be orthogonal to every vector in this plane. In particular, ê  must be 
orthogonal to both ŷ  and 31 . Not surprisingly, the same is true for regressions in any 
dimension, n  (i.e., with n  samples).5 So we can generalize these observations by first 
extending the present case to multiple regressions with k explanatory variables and n  
samples as, 
 

(9.1.13) 0 1
ˆ ˆ ˆˆ ˆ ˆ ˆ1

k

n j jj
y y e X e x e  


        

 
Here ŷ  is now the orthogonal projection of y into the regression hyperplane spanned by 

the vectors 1(1 , ,.., )n kx x  in n . Moreover (as shown in Section A2.4 of the Appendix to 
Part II), orthogonality between vectors can be expressed algebraically as follows: vectors, 

, na b , are orthogonal if and only if their inner product is zero, i.e., if and only if 
0a b  .6  So these observations yield the following two important inner product 

conditions for any regression in n : 
 
(9.1.14) ˆ ˆ ˆ0 1ne y e    
 
As we shall see, it is precisely these two conditions that allow the total variation of y to 
be decomposed as desired. 
  
9.1.2 Decomposition of Total Variation 
 
To develop this decomposition, we first obtain a vector representation of mean variation 
by employing the following notational conventions. Each sample vector, 1( ,.., )ny y y  , 
can be transformed into deviation form about its about its sample mean, 

                                                 
3 Here the 2s axis has been hidden for visual clarity 
4 An excellent discussion of all these ideas is given in Sections 3.2.4 and 3.5 of Green (2003). In particular, 
his Figure 3.2 gives an alternative version of Figure 9.6. For a somewhat more advanced treatment, see 
Section 1.2 in Davidson and MacKinnon (1993). 
5 As an extension of footnote 2 above, it of interest to note that the present case of one explanatory variable 
with 3n   (non-collinear) samples is in fact the unique case where all the relevant geometry can be seen. 
On the one hand, three points are just enough to yield a non-trivial regression as in Figure 9.3, while at the 
same time still allowing a graphical representation of variable vectors in Figure 9.4. 
6 This is perhaps the most fundamental identity linking the algebra of Euclidean vector spaces to their 

underlying geometry. As one simple illustrative example, note that any vectors, 1( ,0)a a  and 2(0, )b b , 

on the horizontal and vertical axes in 2  must be orthogonal in geometric terms, and in algebraic terms, 

must satisfy 1 20 0 0a b a b      .  
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(9.1.15) 
1

1 1 (1 )
n

i nin ny y y


   
 

as follows, 

(9.1.16) 
1

1n

n

y y
y y

y y

 
 
  

  

 

This is in fact a linear transformation on n , as can be seen by defining the n-square  
deviation matrix, 
 
(9.1.17) 1 (1 1 )n n nnD I    

 
and observing that for all ny , 
 
(9.1.18) 1 1 1( 1 1 ) (1 1 ) 1 (1 ) 1n n n n n n n nn n nDy I y y y y y y y            
 

Like regression, this transformation is also an orthogonal projection, where in this case 
D  projects n  onto the orthogonal complement of the unit vector, 1n , i.e., the subspace 

of all vectors orthogonal to 1n . In algebraic terms, D sends 1n to the origin, i.e., 
 
(9.1.19) 1 11 ( 1 1 )1 1 1 (1 1 ) 1 1 0n

n n n n n n n n n n nn n nD I           , 

 
and leaves all vectors orthogonal to 1n where they are. For example, the residual vector, 

ê , for any regression is orthogonal to 1n  by (9.1.10), and we see that, 
 
(9.1.20) 1 1 1ˆ ˆ ˆ ˆ ˆ ˆ( 1 1 ) 1 (1 ) 1 (0)n n n n n nn n nDe I e e e e e         

 
More generally, as with all orthogonal projections, the matrix D  is symmetric ( D D ) 
and idempotent ( DD D ), i.e.,7 
 
(9.1.21) 2

1 1 2 1( 1 1 )( 1 1 ) 1 1 1 (1 1 )1n n n n n n n n n n n n nn n n n
DD I I I           

 

                            2
2 11 1 1 1 1 1n

n n n n n n n nn nn
I I D         

 
 These facts allow the total variation in (9.1.5) to be expressed directly in terms of D  as, 
 

(9.1.22)   2 2

1
( ) ( 1 ) ( 1 )

n

y i n ni
S y y y y y y


         

                  
                           ( ) ( )Dy Dy y D Dy y DDy y Dy         

                                                 
7 These two conditions in fact characterize the set of orthogonal projection matrices. 
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Moreover, by recalling from (9.1.13) that ˆ ˆy y e  , we may now employ (9.1.14), 

(9.1.20) and (9.1.21) to obtain the following fundamental decomposition of 2
yS : 

 
(9.1.23) 2 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( 2 )yS y e D y e y Dy y De e De          

 
                         ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 2(0)y Dy y e e e y Dy e e           
 
                        ˆ ˆ ˆ ˆy Dy e e    
 
To relate this decomposition to (9.1.6), we note first that if we now denote the residual 
variation term in (9.1.6) by 2

êS  then it follows at one that this is precisely the second term 
in (9.1.23), i.e, that 
 

(9.1.24) 2 2
ˆ 1

ˆ ˆ ˆ
n

e ii
S e e e


   

 
Turning next to the model variation term in (9.1.6), notice again from (9.1.14) that 
 
(9.1.25) ˆ ˆ ˆ ˆ0 1 1 ( ) 1 1 1 1n n n n n ne y y y y y y             
 
 and thus that the mean of the regression predictions, 1ˆ ˆ( ,.., )ny y , is precisely y , i.e.,  
 

(9.1.26)   
1

1 1 1ˆ ˆ(1 ) (1 )
n

i n nin n ny y y y


     

 
Thus if we now denote model variation in (9.1.6) by 2

ŷS , then it follows from (9.1.17) 

and (9.1.26), together with the above properties of D that 
 

(9.1.27)         2 2
ˆ 1

ˆ ˆ ˆ( ) ( 1 ) ( 1 )
n

y i n ni
S y y y y y y


      

 

                        1 1 1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( [ 1 ]1 ) ( [ 1 ]1 ) ( 1 1 ) ( 1 1 )n n n n n n n nn n n ny y y y y y y y            

 
                        1 1ˆ ˆ ˆ ˆ ˆ ˆ([ 1 1 ] ) ([ 1 1 ] ) ( )n n n n n nn nI y I y Dy Dy y D Dy           
 

                        ˆ ˆy Dy  
 
and thus that 2

ŷS  is precisely the first term in (9.1.23). By putting these results together, 

we may conclude that the desired decomposition of total variation for y  is given by 
 
(9.1.28) 2 2 2

ˆ ˆy y eS S S   

 
In these terms, the R-squared measure in (9.1.8) and (9.1.9) can now be re-expressed as: 
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(9.1.29) 
2 2
ˆ ˆ2
2 2

1y e
OLS

y y

S S
R

S S
    

 
where the OLS subscript is here used to emphasize that this decomposition property 
holds for OLS. Notice also from the nonnegativity of all terms in (9.1.28) that 

20 1OLSR  , and thus that 2
OLSR  can be interpreted as the fraction of total variation 

explained by a given OLS regression. For computational purposes, it is more convenient 
to express R-squared in vector terms as, 
 

(9.1.30) 2 ˆ ˆ ˆ ˆ
1OLS

y Dy e e
R

y Dy y Dy

 
  

 
 

 
where the latter form, in terms of unexplained variation, is by far the most commonly 
used in practice. 
 
9.1.3 Adjusted R-Squared 
 
While 2

OLSR  is intuitively very appealing as a measure of goodness of fit, it suffers from 
certain drawbacks. Perhaps the single most important of these is that fact that the measure 
can never decrease when more explanatory variables are added to the model, and in fact 
it almost always increases. This can be most easily seen by relating residual variation to 
the solution of the regression problem itself. Recall that if for any given set of data, 

1( , ,.., ), 1,..,i i kiy x x i n , we define the sum-of-squares function 
 

(9.1.31)  2

0 1 0
( , ,.., )

k

k k i j iji j
S y x   


    

 
over possible beta values 0 1( , ,.., )k   [as in expression (7.1.9) of Part II], then the 

regression problem  is to find those values 0 1
ˆ ˆ ˆ( , ,.., )k    that minimize this function. But 

the residual variation for this regression problem, say ˆ ˆk ke e , is precisely the value of kS at 
the minimum, i.e., 
 

(9.1.32)  2
2

0 10
ˆ ˆ ˆ ˆˆ ˆ ˆ ( , ,.., )

k

k k ik i j ij k ki i j
e e e y x S   


        

  
                                           

0 1( , ,.., ) 0 1min ( , ,.., )
k k kS       

 
So if we add another explanatory variable, 1kx  , and observe that by definition 

0 1( , ,.., )k kS     is just the special case of 1 0 1 1( , ,.., , )k k kS       with 1 0k   , i.e., that 
 

(9.1.33)  2

1 0 1 , 10
( , ,.., ,0) (0)

k

k k i j ij i ki j
S y x x    

     
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                                                     2

0 10
ˆ ( , ,.., )

k

i j ij k ki j
y x S   


     

 
then it follows at once from (9.1.31) through (9.1.33) that 
 
(9.1.34) 

0 11 1 ( ,.., , ) 1 0 1ˆ ˆ min ( ,.., , )
k kk k k k ke e S     

      

 
                                

0( ,.., ) 1 0min ( ,.., ,0)
k k kS     

 
                                

0( ,.., ) 0min ( ,.., )
k k kS     

 
                                ˆ ˆk ke e  
 
Thus, when a new explanatory variable is added to the regression, the resulting residual 
variation never increases, and in fact must decrease unless the new variable, 1kx  , is 

totally unrelated to y  in the sense that 1
ˆ 0k   . Finally, since y Dy  is the same in both 

regressions, we may conclude from last term in (9.1.30) that 2
OLSR  never decreases, and 

almost always increases.8  
 
This property creates serious problems when using 2

OLSR  as a criterion for model 

selection. Since 2
OLSR  can always be increased by adding more variables to a given model, 

this will lead inevitably to the classic problem of “overfitting the data”. Indeed, for 
problems with n  samples, it is easy to see that a perfect fit 2( 1)OLSR   can be guaranteed 
by increasing the number of (non-collinear) explanatory variables, k , to 1n  . For 
example, if there were only 2n   samples, then since two points define a unique line, 
almost any simple regression ( 1)k   must yield a perfect fit.  
 
This serves to underscore the need to modify 2

OLSR  to reflect the number of explanatory 
variables used in a given regression model. This can be accomplished by essentially 
“penalizing” those models with larger numbers of explanatory variables. The standard 
procedure for doing so is to replace 2

OLSR  by the following modification, 2
OLSR  , 

designated as adjusted R-squared: 
 

(9.1.35)    2 21 1
1

ˆ ˆ
1 1 (1 )OLS OLS

n n
n k n k

e e
R R

y Dy
 

  


    


 

 
Here the first equality is the standard definition of 2

OLSR , and the second equality simply 

re-expresses this measure directly in terms of 2
OLSR . While this measure can be given 

                                                 
8 The exact magnitude of this increase is given in Green (2003, Theorem 3.6). 
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some theoretical justification,9 the popularity of 2
OLSR  lies mainly in its simplicity and 

ease of interpretation as a reasonable “penalized” version of 2
OLSR . In particular, note that 

the penalty factor, ( 1) / ( 1 )n n k   , must be greater than one in all cases of interest, and 

always increases with k . This in turn implies that 2 2
OLS OLSR R , and that 2

OLSR  decreases as 

k  increases. Thus, 2
OLSR  does indeed penalize models with larger numbers of explanatory 

variables. Moreover, since 2
OLSR  approaches   as k  approaches 1n  , it is clear that 

models with numbers of variables anywhere close to the sample size will never be 
considered. Note however that this last property also shows that 2

OLSR  need not be 
positive, and thus cannot be given any interpretation relating to the “fraction of variation 
explained”. About all that can be said is that models with negative 2

OLSR  can surely be 
discarded from consideration. At the other extreme, notice that penalty factor, 
( 1) / ( 1 )n n k   , shrinks rapidly to one as sample size, n , increases.  So from a 
practical viewpoint, this penalty has little effect whenever sample sizes are quite large 
compared to the number of explanatory variables being considered. Because of this, it has 
been argued that 2

OLSR  does not penalize models enough. But in any case, this measure is 

unquestionably preferable to 2
OLSR  when comparing regression models of different sizes, 

and is far and away the most popular measure of goodness of fit in this context.  
 

 
9.2 Extended R-Squared Measures for GLS  
 
In spite of the success of 2

OLSR  and 2
OLSR  for OLS models, their appropriateness as 

goodness-of-fit measures for more general models is more problematic. Here it suffices 
to consider the simplest possible extension involving the GLS model in Section 7.2.2 
above, 
 
(9.2.1)  2, ~ (0, )Y X N V      
 
with known covariance structure, V . In this modeling context, the key difficulty is that 
the resulting y-predictions obtained from (7.2.18) by 
 

(9.2.2) 1 1 1ˆˆ ( )y X X X V X X V y       
  
are no longer orthogonal projections.10 So the fundamental decomposition of total 
variation in (9.1.23) and (9.1.28) no longer holds, and the compelling interpretive 

                                                 
9 The standard theoretical justification relies on the fact that (i) / ( 1)y Dy n  yields an unbiased estimate of 

y variance in the null model (9.1.2), (ii) ˆ ˆ / ( 1 )e e n k    yields an unbiased estimate of residual variance, 
2 , in the regression model, and (iii) the second term in (9.1.35) is precisely the ratio of these unbiased 

estimates.  But while this argument is appealing, it does not imply that this ratio is an unbiased estimate of 
the fraction of unexplained variance. Indeed, the expectation of a ratio is almost never the same as the ratio 
of expectations.  
10 An excellent discussion of this issue is given in Davidson and MacKinnon (1993 ,Sections 1.2 and 9.3). 
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features of 2
OLSR  now vanish. In particular, the model-oriented and error-oriented 

definitions of 2
OLSR  in (9.1.30) are no longer equivalent. So there is no unambiguous way 

to define the “fraction of variation explained” by the given GLS model. 
 
But as in the introductory discussion to Section 9.1 above, the residual vector, ˆ ˆe y y  , 
still captures the deviations of data, y , from their predicted values, ŷ , under any GLS 

model.  Moreover, since 1nDy y y   still represents the y  deviations from their least-
squares prediction, y , under the null model [as in (9.1.4) above], it is reasonable to 
gauge the goodness of fit of this model by comparing its mean squared error:  
 

(9.2.3)    2

1
1 ˆ( )

n

i iinMSE y y


   

 
with that under the null model, say 
 

(9.2.4) 2
0 1

1 ( )
n

iinMSE y y


   

 
This comparison is shown graphically in Figures 9.7 and 9.8 below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In particular, the positivity (and common units) of these measures suggests that their ratio 
should provide an appropriate comparison, as given by 
 

(9.2.5) 
2

1

2
0

1

ˆ( ) ˆ ˆ( ) ( )

( 1 ) ( 1 )( )

n

i ii
n

n nii

y yMSE y y y y

MSE y y y yy y




  
 

 



 

 

                                
ˆ ˆ ˆ ˆ ˆ ˆ

( ) ( )

e e e e e e

Dy Dy y DDy y Dy

  
  

  
 

 

Figure 9.8. Model Deviations 
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Figure 9.7. Null Deviations 
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which is precisely the second term in the error-oriented version of 2
OLSR . Finally, since 

smaller values of this ratio indicate better average fit relative to the null model, it follows 
that larger values of the difference,  
 

(9.2.6)   2

0

ˆ ˆ
1 1GLS

MSE e e
R

MSE y Dy


   


         

 
also indicate a better fit. To distinguish this general measure from 2

OLSR , it is convenient 

to designate (9.2.6) as extended 2R . This terminology also serves to emphasize that 
(9.2.6) cannot be interpreted as “explained variation” outside of the OLS case. This is 
made clear by the fact that extended 2R  can be negative. But as with adjusted 2R  for 
OLS, it should be clear that negative values of extended 2R  are a strong indication of 
poor fit. Indeed, models with higher mean squared error than y by itself can generally be 
ruled out on this basis alone.   
 
Finally, as with the OLS case, it should be clear that larger numbers of explanatory 
variables must necessarily reduce MSE and thus increase the value of extended 2R . So 
goodness of fit for GLS models must be also be penalized for the addition of new 
variables. While the penalty ratio, ( 1) / ( 1 )n n k   , in (9.1.35) is somewhat more 
difficult to interpret in the GLS setting,11 it nonetheless continues to exhibit the same 
appealing properties discussed in Section 9.1.3 above. So in the present GLS setting, we 
now the designate 
 

(9.2.7)  2 1
1

ˆ ˆ
1GLS

n
n k

e e
R

y Dy


 


 


 

 
as the appropriate extended form of adjusted 2R  in (9.1.35).   
 
Before applying these extended measures to SEM and SLM, it is also of interest to note 
that there is an alternative approach which seeks to preserve the appealing properties of 

2
OLSR . In particular, recall that one can convert any given GLS model to an OLS model 

that is equivalent in terms of parameter estimation. In the present setting, it follows from 
expressions (7.1.15) through (7.1.18) that if T  is the Cholesky matrix for V, so that 
V TT  , then (9.2.1) can be converted to an OLS model 
 
(9.2.8) 2, ~ (0, )o o o o nY X N I      
 
where these new variables are defined by 
 

                                                 
11 While the simple “unbiasedness” argument in footnote 9 no longer holds, it can still be shown that 

replacing n  by  1n k   corrects bias in the GLS estimate of variance, 2̂ , in (7.2.20). So at least in these 
terms, a justification in terms of “unbiasedness” can still be made.   
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(9.2.9) 1 1 1, ,o o oY T Y X T X T       

 
So if goodness of fit for model (9.2.1) is now measured in terms of 2R  and 2R  for model 
(9.2.8), then it would appear that all of the properties of these measures are preserved. In 
particular, if for any given y data, we set 1

oy T y , then the appropriate prediction, say 
ˆoy , is given  by 

 

(9.2.10) 1ˆˆ ( )o o o o o o oy X X X X X y     
 
So by setting ˆ ˆo o oe y y  , it follows that the appropriate R-squared measure, say 2

oR , is 
given from (9.1.30) by 
 

(9.2.11) 2 ˆ ˆ ˆ ˆ
1o o o o

o
o o o o

y Dy e e
R

y Dy y Dy

 
  

 
 

 
Such measures are typically designated as pseudo R-squared measures for GLS models 
[see for example, Buse (1973)]. However, the most serious limitation of such measures in 
that they account for total variation in 1

oy T y  rather than in y itself. This is not only 
difficult to interpret, but in fact can vary depending on the factorization of covariance 
used. For example, the estimated SEM covariance matrix, ˆV  in (7.3.2) has a natural 

factorization in terms of the matrix, 1
ˆB
 , which will clearly yield different results than for 

the Cholesky matrix. So the essential appeal of the extended 2R  and 2R  measures above 
is that they are directly interpretable in terms of y  and ŷ .  
 
9.2.1 Extended R-Squared for SEM 
 
Turning first to SEM, recall from expression (6.1.8) that for any given spatial weights 
matrix, W, we can express SEM as a GLS model of the form:  
 
(9.2.12) 2, ~ (0, )Y X u u N V    

 
where the spatial covariance structure, V , is given by 

 
(9.2.13) 1 1 1( ) ( )V B B B B    

      

 
with B  given in terms of weight matrix, W, by 

 
(9.2.14) nB I W    

 
So for any given y data, the maximum-likelihood estimate, ˆSEMy , of the conditional 
mean, ( | )E Y X X  , is given by 
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(9.2.15) 1 1 1 1
ˆ ˆ ˆ ˆ ˆ ˆ

ˆˆ ( ) ( )SEMy X X X V X X V y X X B B X X B B y                  

 
Finally, letting 
 
(9.2.16) ˆ ˆSEM SEMe y y   
 
it follows from (9.2.6) that the extended 2R measure for SEM is given by, 
 
 

(9.2.17)   2 ˆ ˆ
1 SEM SEM

SEM

e e
R

y Dy


 


         

 
with associated extended 2R  measure, 
 
 

(9.2.18)  2 21
11 (1 )SEM SEM

n
n kR R
     

 
 
These two values are reported for the Eire data in the left panel of Figure 7.7 as 
 

 
(9.2.19) 2 20.3313 ( 0.5548)SEM OLSR R      
 
and  
 
(9.2.20) 2 20.3034 ( 0.5363)SEM OLSR R   
 
 

where the corresponding OLS values are given in parentheses. As expected, these 
extended measures for SEM are lower than for OLS since they incorporate more of the 
true error variation due to spatial dependencies among residuals.12 So the main interest in 
these goodness-of-fit measures is their relative magnitudes compared to SLM, or other 
models which may serve to account for spatial dependencies (such as the spatial Durbin 
model in Section 6.3.2). 
 
 
9.2.2 Extended R-Squared for SLM 
 
Turning next to SLM, recall from (6.2.6) that this can also be expressed as a GLS model 
of the form: 

                                                 
12 This can be seen explicitly by observing from the SEM log likelihood function in (7.3.4) that for the OLS 

case of 0  , the estimate, ̂ ,  is chosen precisely to minimize mean squared error. So whenever ˆ 0  , 

one can expect that the associated mean squared error for SEM will be larger than this global minimum. 
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(9.2.21) 2, ~ (0, )Y X u u N V     

 
where V  is again given by (9.2.13) and (9.2.14) for some choice of spatial weights 

matrix, W, and where in this case, 

(9.2.22) 1 1( )nX B X I W X       

So for any given y data, the maximum-likelihood estimate, ˆSLMy , of the conditional 
mean, ( | )E Y X X  , is given in terms of (7.4.13) by 
 

(9.2.23) 1 1 1
ˆ ˆ ˆ ˆ ˆ

ˆˆ ( ) ( )SLMy X X X X X B y B X X X X B y              

 
Thus, by now letting 
 
(9.2.24) ˆ ˆSLM SLMe y y   
 
it follows from (9.2.6) that the extended 2R measure for SLM is given by, 
 

(9.2.25)   2 ˆ ˆ
1 SLM SLM

SLM

e e
R

y Dy


 


         

 
with associated extended 2R  measure, 
 
 

(9.2.26)  2 21
11 (1 )SLM SLM

n
n kR R
     

 
 
These two values are reported for the Eire data in the right panel of Figure 7.7 as 
 
 
(9.2.27) 2 20.7335 ( 0.5548)SLM OLSR R      
 
and  
 
(9.2.28) 2 20.7224 ( 0.5363)SEM OLSR R   
 
 
where the corresponding OLS values are again given in parentheses. So in contrast to 
SEM, we see that both 2

SLMR  and 2
SLMR  for SLM are actually considerably higher than for 

OLS. The reason for this is again explained by the contrast between the “pale” effect in 
X  and the “rippled pale” effect, ˆX  , as illustrated in Figure 7.8 above. However, this 

appears to be a very exceptional case in which ˆ
ˆˆ ( )SLMy X   happens to yield an 
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extraordinarily good fit to y . More generally, one expects both SEM and SLM to yield 

extended 2R  values that are lower than 2
OLSR , so that the spatial components W  and   

serve mainly to capture the hidden variation arising from spatial autocorrelation effects. 
 
9.3 The Squared Correlation Measure for GLS Models 
 

A measure that turns out to be closely related to extended 2R  is the squared correlation 
between y  and its predicted value, ŷ , under any GLS model (including OLS). Here it is 

again convenient to begin with the OLS case, where this measure is shown to be identical 

to 2R . We then proceed to the more general case of GLS models, including both SEM 
and SLM. Finally, the correlation measure itself is given a geometrical interpretation in 
terms of angle cosines in deviation subspaces, which helps to clarify its relevance for 
measuring goodness of fit. 

Let us begin by recalling that the sample correlation, ( , )r x y , between any pair of data 

vectors, 1( ,.., )nx x x   and 1( ,.., )ny y y  , can be expressed in vector form by employing 

the properties of the deviation matrix, D, in (9.1.17) , (9.1.18) and (9.1.21) as follows: 

(9.3.1)          1

2 2

1 1

( )( )
( , )

( ) ( )

n

i n i ni

n n

i n i ni i

x x y y
r x y

x x x x



 

 


 


 

 

                                         
( 1 ) ( 1 )

( 1 ) ( 1 ) ( 1 ) ( 1 )
n n n n

n n n n n n n n

x x y y

x x x x y y y y

 


    
 

                                         
( )

( ) ( )

Dx Dy

Dx Dx Dy Dy




 
 

                                         
x D Dy

x D Dx y D Dy

 


   
 

                                         
x Dy

x Dx y Dy




 
 

so that squared correlation is always of the form 

 

(9.3.2)  
2

2 ( )
( , )

( )( )

x Dy
r x y

x Dx y Dy




 
 

 

Given this general expression, we now consider the correlation between data, y, and 
model predictions, ŷ , for the case of OLS. 
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9.3.1 Squared Correlation for OLS 

First recall from (7.2.6) that for any given data ( , )y X , the predicted value, ŷ , of y is 

given by 
 

(9.3.3)  1ˆˆ ( )OLSy X X X X X y     

 
In these terms, the squared correlation measure for OLS is given in terms of (9.3.2) by 
 

(9.3.4)  
2

2 ˆ( )
ˆ( , )

ˆ ˆ( )( )
OLS

OLS
OLS OLS

y Dy
r y y

y Dy y Dy




 
 

With this definition, our first objective is to show that (9.3.4) is precisely the same as 
2
OLSR . If for notational simplicity we let ˆ ˆOLSy y  and again denote the estimated residuals 

for OLS by ˆ ˆe y y  , then it follows from expression (9.1.14) that  
 

(9.3.5) ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ0 ( )y e y y y y e y y y e y y             
 
and moreover that [see also (9.1.25)], 

 

(9.3.6) ˆ ˆ ˆ0 1 1 ( ) 1 1n n n ne y y y y         
 
But given these two identities, we must have 
 
(9.3.7)  1ˆ ˆ ( 1 1 )n n nny Dy y I y     

                                 1ˆ 1 (1 )n nny y y    

                                 1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 (1 ) ( 1 1 )n n n n nn ny y y y I y y Dy          

 
So it follows at once from (9.3.4) that 
 

(9.3.8)  
2 2

2 ˆ ˆ ˆ ˆ ˆ( ) ( )
ˆ( , )

ˆ ˆ ˆ ˆ( )( ) ( )( )

y Dy y Dy y Dy
r y y

y Dy y Dy y Dy y Dy y Dy

  
  

    
  

 

which together with the first (model-oriented) representation of 2
OLSR  implies that 

 

(9.3.9)  2 2ˆ( , )OLS OLSr y y R  

 
 

For purposes of later comparison, it follows from (9.3.9) that for the Eire case  
 

(9.3.10) 2 2ˆ( , ) 0.5548OLS OLSr y y R   
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9.3.2  Squared Correlation for SEM and SLM 
 
By employing ˆSEMy  in expression (9.2.15), it follows at once that the squared correlation 

measure for SEM is given by, 
 

(9.3.11) 
2

2 ˆ( )
ˆ( , )

ˆ ˆ( )( )
SEM

SEM
SEM SEM

y Dy
r y y

y Dy y Dy




 
 

 

Similarly, by employing ˆSLMy  in expression (9.2.23), it follows that the corresponding 

squared correlation measure for SLM is given by, 
 

(9.3.12) 
2

2 ˆ( )
ˆ( , )

ˆ ˆ( )( )
SLM

SLM
SLM SLM

y Dy
r y y

y Dy y Dy




 
 

 
These values are reported in Figure 7.7 as  
 

(9.3.13) 2 ˆ( , ) 0.5548SEMr y y   
 

and  
 

(9.3.14) 2 ˆ( , ) 0.7512SLMr y y   

 
Notice first that the squared correlation for SEM is identical with that of OLS. This 
appears somewhat surprising, given that their estimated beta coefficients are quite 
different. But in fact, this is an instance of the strong scale invariance properties of 
correlation. To see this, we again use the simplifying notation in (9.3.8),  
 

(9.3.15) 
2

2 ˆ( )
ˆ( , )

ˆ ˆ( )( )

y Dy
r y y

y Dy y Dy




 
 

 
and observe that for the case of only one explanatory variable, the ŷ  values for both 

SEM and OLS, must be linear combinations of 1n  and x , i.e., must be of the form,  
 
(9.3.16) ˆ 1ny a bx   
 
for some scalars a and b. But note first from the properties of the deviation matrix, D, that 
 
(9.3.17) ˆ 1nDy aD bDx bDx    
 
and thus that ˆDy  is already independent of a. Moreover, (9.3.17) in turn implies both that 
 
(9.3.18) ˆy Dy by Dx       and      2ˆ ˆ ˆ ˆ( )y Dy Dy Dy b x Dx     
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Thus by (9.3.15) we must have 
 

(9.3.18) 
2 2 2

2 2
2 2

( ) ( )
ˆ( , ) ( , )

( )( ) ( )( )

by Dx b y Dx
r y y r y x

y Dy b x Dx b y Dy x Dx

 
  

   
 

and may conclude that squared correlation depends only on y  and x . So in particular, 
the squared correlation of OLS and SEM must always be the same for the case of one 
explanatory variable. 
 

However, this is clearly not true for SLM, where [1 , ]nX x  is transformed to 
 
(9.3.19) 1 1 1[ 1 , ]nX B X B B x   

      

 
so that ŷ  is no longer of the form (9.3.16). Thus there is little relation between the 
squared correlations for SLM and OLS, and as we have seen before, the squared 
correlation fit for SLM in (9.3.14) is much higher than for OLS (and SEM). 
 
 

9.3.3 A Geometric View of Squared Correlation 
 
To gain further insight into the role of squared correlation as a general measure of 
goodness-of-fit, it is instructive to start with the correlation coefficient itself. As we shall 

show below, if one writes vectors, , nx y , in deviation form as 1nDx x x   and 

1nDy y y  , then from a geometric viewpoint, the correlation coefficient, ( , )corr x y , in 

(9.3.1) turns out to be precisely the cosine of the angle, ( , )Dx Dy , between these 

vectors, i.e., 
 
(9.3.20) ( , ) cos[ ( , )]r x y Dx Dy  

 
This is most easily seen by first considering the cosine of the angle, ( , )x y  , between 

any pair of (nonzero) vectors, , nx y , as shown for 2n   in Figure 9.9 below:

  

y  

x  

y  

x  

x  

Figure 9.9. Vector Angle Figure 9.10. Right Triangle  
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To calculate the cosine of this angle, we first construct a right triangle by finding the 
point, x , on the x -vector for which the line segment, y x , is orthogonal to x , as 

shown by the red dotted line in Figure 9.10. Since vectors are orthogonal if and only if 
their inner product is zero, this point can be identified by solving: 
 

(9.3.21) 
2

0 ( )
|| ||

x y x y
x y x x y x x

x x x
  

 
        


 

 
Next, recall (from trigonometry) that for this right triangle, the desired cosine of ( , )x y  

is given by the (signed) length of the adjacent side, i.e., || ||x , over the length of the 

hypotenuse, || ||y , so that 

 

(9.3.22) 
2

|| || || ||
cos[ ( , )]

|| || || || || ||

x x y x
x y

y x y


 

  
 

 

 

                                cos[ ( , )]
|| || || ||

x y
x y

x y



 


 

 
Before proceeding further, recall from expression (4.1.12) that this already establishes 
(9.3.20) for the case of “zero mean” vectors. But the more general case is now obtained 
by simply considering the vectors, Dx and Dy. In particular, since by definition, 
 

(9.3.23) || || ( ) ( )Dx Dx Dx x DDx x Dx      

 

and similarly, || ||Dy y Dy , it follows at once from (9.3.1) together with (9.3.22) and 

(9.3.23) that 
 

(9.3.24) 
( )

cos[ ( , )] ( , )
|| || || ||

Dx Dy x Dy
Dx Dy r x y

Dx Dy x Dx x Dx


 
  

  
 

 

and thus that (9.3.20) does indeed hold for all (nonzero) vectors, , nx y . This in turn 

implies that the squared correlation is simply the square of this cosine: 
 

(9.3.25) 2 2( , ) cos [ ( , )]r x y Dx Dy  

 
So in our case, if we now let ŷ  denote the predicted value of data vector, y , for any 

given model (whatsoever), then it follows at once that  
 

(9.3.26) 2 2ˆ ˆ( , ) cos [ ( , )]r y y Dy Dy  
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This geometric view of squared correlation helps to clarify the exact sense in which it 
constitutes a robust goodness-of-fit measure. In particular, it yields a measure of 
“similarity” between y  and ŷ  which is completely independent of the measurement 

units employed. Indeed, this was already shown in arguments of (9.3.16) through (9.3.18) 
above, where shifts of measurement origins were seen to be removed by the deviation 
matrix, D, and where scale transformations were removed by the ratio form of squared 

correlation itself. Even more important is the fact that since 2cos ( )  is close to one if and 

only if   is close to 0 (or  ), the identity in (9.3.26) shows that 2 ˆ( , )r y y  is close to one 

if and only if the vectors, Dy  and ˆDy , point in almost the same (or opposite) directions. 

Algebraically, this implies they are almost exact linear multiples of one another, i.e., that 
ˆDy Dy  for some nonzero scalar,  . In practical terms, this means that the relative 

sizes of all deviation components must be approximately the same, so that if ŷ  denotes 

the sample mean of ŷ , then 

 

(9.3.27) 
ˆ ˆ

,
ˆ ˆ

i i

j j

y y y y
i j

y y y y

 
 

 
 

 
Thus large (or small) deviations from the mean in components of y  are reflected by 

comparable large (or small) deviations the mean in components of ŷ . The shows exactly 

the sense in which prediction, ŷ , is deemed to be similar to data, y , when 2 ˆ( , ) 1r y y  .  

 
Finally, a more detailed geometric investigation of squared correlation is presented in 
Section A3.6.3 of the Appendix. There it shown that one shortcoming of this goodness of 
fit measure is that, by the orthogonality property of OLS in (9.1.14), this model must 
almost always look better than GLS competitors in terms of squared correlation.13 
 
9.4 Measures based on Maximum-Likelihood Values 
 

Recall that our basic strategy for estimating model coefficients, 2( , , )   , was to find 

values 2ˆ ˆˆ( , , )    that maximized the likelihood of observed data, y, given explanatory 

data values, X.  This suggests that a natural measure of fit should be provided by the 

maximum (log) likelihood value, 2ˆ ˆˆ( , , | , )L y X   , obtained. One difficulty here is that 

since likelihood values themselves are probability density values, and not probabilities, 
any direct interpretation of such values is tenuous at best. But the ratios of these values 
for different models might still provide meaningful comparisons in terms of the limiting 
probability-ratio arguments used in expressions (7.1.1) and (7.1.4) above.  
 

                                                 
13 The special case of a single explanatory variable in (9.3.16) above is one of the few exceptions. 
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However, there is a second more serious difficulty with likelihood values that is 
reminiscent of R-squared values. Recall from the argument in expressions (9.1.31) 
through (9.1.34) that R-squared essentially always increases when new explanatory 
variables are added to the model. In fact, that argument really shows that the increase in 
R-squared results from the addition of new beta parameters. But this argument is far 
more general, and in fact shows that maximum values of functions are never decreased 
when more parameters are added. In particular, if we consider the case of two likelihood 
functions, say ( ) 1( ,.., | , )k kL y X   and ( 1) 1 1( ,.., , | , )k k kL y X    , where the first is simply a 

special case of the second with 1 0k   , i.e., with 

 
(9.4.1)  ( ) 1 ( 1) 1( ,.., | , ) ( ,.., ,0 | , )k k k kL y X L y X     

 
then the same argument shows that 
 
(9.4.2)  

1 1( ,.., ) ( ) 1 ( ,.., ) ( 1) 1max ( ,.., | , ) max ( ,.., ,0 | , )
k kk k k kL y X L y X        

 
              

1 1( ,.., , ) ( 1) 1 1max ( ,.., , | , )
k k k k kL y X     

    

 
with strictly inequality almost always holding. What this means for our purposes is that 
log likelihood functions suffer from exactly the same “inflation problem” as R-squared 
whenever new parameters are added. So if one attempts to compare the goodness of fit 
between models that are “nested” in the sense of (9.4.1), [i.e., where one is a special case 
of the other with certain parameters set to zero (or otherwise constrained in value)], then 
the larger model will always yield a better fit in terms of maximum-likelihood values. 
 
This observation suggests that such likelihood comparisons must somehow be penalized 
in terms of the numbers of parameters in a manner analogous to adjusted R-squared. If 

we again let ˆ( | )L y  denote a general log likelihood function evaluated at its maximum 

value, then the simplest of these penalized versions is Akaike’s Information Criterion 
(AIC): 
 

(9.4.3)  ˆ2 ( | ) 2AIC L y K    

 

where K now denotes the dimension of ̂ , i.e., the number of parameters being estimated 
[and where factor “2” in AIC, as well as in the other measures to be developed, relates to 
the form of the log likelihood ratio statistic in expression (10.1.7) below.] For both SEM 

and SLM with parameters, 2
0 1

ˆ ˆ ˆ ˆ ˆˆ( , ,.., , , )k      , this implies in particular that 

( 1) 2 3K k k     . This measure is discussed in detail by Burnham and Anderson 

(2002), where AIC is both defined (p.61) and later derived (Section 7.2). In addition, 
these authors recommend a “corrected” version of AIC (p.66) for sample sizes that are 
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small relative to the number of parameters ( / 40n K  ). This is usually designated as 
corrected AIC (AICc) and can be written in terms of (9.4.3) as 
 

(9.4.4)  
2 ( 1)

( 1)
c

K K
AIC AIC

n K


 

 
     

 
An alternative penalized version of maximum likelihood which directly incorporates 
sample size is the Bayes (or Schwarz) Information Criterion (BIC):  
 

(9.4.5)  ˆ2 ( | ) log( )BIC L y K n    

 
While this measure is also developed in Burnham and Anderson (2002, Section 6.4.1), a 
more lucid derivation can be found in Raftery (1995, section 4.1). Given its heavier 
penalization term for model sizes, K  [when log( ) 2n  ], this measure is well known to 

favor smaller models (i.e., with fewer parameters) than AIC in terms of goodness of fit.   
 
Finally it should be noted that when comparing SEM and SLM for a given specification 
of k explanatory variables, all such measures will differ only in terms of their 

corresponding maximum-likelihood values, ˆ( | )L y , for these two models. So in the 

present case of Eire, where Figure 7.7 shows that 
 

(9.4.6)  ˆ( | ) 49.8773SEML y    

 

(9.4.7)  ˆ( | ) 45.6632SLML y    

 
it is clear that SLM must continue to yield a better fit than SEM with respect to all of 
these criteria.      


