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APPENDIX TO PART III 
 
This Appendix, designated as A3, contains additional analytical results for Part III of the 
NOTEBOOK, and follows the notational conventions in Appendices A1 and A2. 
 
A3.1. The Geometry of Linear Transformations 
 
The ultimate objective of this section of the appendix is to develop the Spectral 
Decomposition Theorem for symmetric matrices, that illuminates many of the most 
important properties of covariance matrices. But to gain an intuitive understanding of this 
result, it is important to understand the geometry of linear transformations as represented 
by matrices. A transformation, T , on n is simply a mapping that assigns every vector, 

nx , to some other vector, ( ) nT x  , called the image of x  under T. A 
transformation,T , is linear if and only if (iff ) it preserves vector addition, i.e., iff for 
each pair of vectors, , nx y , and scalars, ,   , 
 
(A3.1.1) ( ) ( ) ( )T x y T x T y       
 
The intimate connection between matrices and linear transformations is seen most readily 
in 2 . If we let 2

1 (1,0)e   and 2
2 (0,1)e   denote the so-called identity basis 

vectors in 2  (shown in Figure A3.1 below)1,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
then by definition any vector, 2

1 2( , )x x x   can be represented as: 

 

(A3.1.2) 1
1 2 1 1 2 2

2

1 0
0 1

x
x x x x e x e

x
             

    
  

 

                                                 
1 Note that we maintain the convention that all vectors are represented as column vectors, so that transpose 
notation is used for all inline representations [as in expression (1.1.2) of Part II]. 

1e  

2e  

1 1x e  

2 2x e  x  

Figure A3.1. Identity Basis Figure A3.2. Basis Representation 
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This basis representation of x , shown in Figure A3.2, implies from (A3.1.1.) that the 
image of x  under any linear transformation, T, can be represented as 
 
(A3.1.3) 1 1 2 2 1 1 2 2( ) ( ) ( ) ( )T x T x e x e x T e x T e     

 
So if we know where the identity basis vectors, 1 2( , )e e , are sent by T, then we can 

construct the entire transformation. In particular, if we now let 
 

(A3.1.4) 11 21
1 1 2 2

12 22

( ) , ( )
a a

T e a T e a
a a

   
      

   
        

 
then this transformation can be represented for all 2

1 2( , )x x x   by 

 

(A3.1.5) 11 21
1 1 2 2 1 2

12 22

( ) ( ) ( )
a a

T x x T e x T e x x
a a

   
      

   
 

 

                                11 1 21 2 11 12 1

21 1 22 2 21 22 2

a x a x a a x
A x

a x a x a a x

    
          

 

 
where the matrix, 
 

(A3.1.6) 11 12
1 2

21 22

( , )
a a

A a a
a a

 
   

 
 

 

is designated as the matrix representation of transformation T. This is the fundamental 
relation between matrices and linear transformations. In fact, it is so fundamental that 
linear transformations are usually defined by their matrix representations as in (A3.1.5).  
So in the two-dimensional case, each linear transformation can be defined by its matrix 
representation, A, for all 2

1 2( , )x x x   as in Figures A3.3 and A3.4 below:   

 
 
 
 
 
 
 
 
 
 
 
 

1e  

2e  

2Ae  

1Ae  

2 2x Ae  

1 1x Ae  

Ax  

2 2x e  

2 2x e  

Figure A3.3. Basis Image Vectors Figure A3.4. General Image Vectors 
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More generally, if the identity basis2 in n  is associated with the columns of the identity 
matrix, 1 2( , ,.., )n nI e e e , and if the images of these basis vectors under any linear 

transformation, T, are denoted by 1( ) ( ,.., ) , 1,..,n
i i i inT e a a a i n    , then  for all 

1( ,.., ) n
nx x x   , T again has the matrix representation 

 

(A3.1.7) 
1

1 1 1
( ) ( )

i
n n n

i i i i ii i i

in

a

T x x T e x a x

a
  

 
     
 
 

     

 

                                

11 11 1 1

1
1

n

j jj n

n
n nn nnj jj

a x a a x

A x

a a xa x





                      






    


 

    
In the analysis to follow, we shall use the terms matrix and transformation 
interchangeably. Note also that is this equivalence that motivates the basic multiplication 
rules of matrix algebra.  So the meaning of these rules is often best understood in this 
way.  
 
To examine some of the more important matrix properties, we begin by observing that  
every matrix can be written in two equivalent ways. First there is a column representation 
of A, 
 

(A3.1.8) 
11 1 11 1

1

1 1 1

( ,.., )
n n

n

n n n nn

a a a a

A a a

a a a a

      
              

            


     


 

 

where ja  denotes the thj column of A. There is also a row representation of A, 
 

(A3.1.9) 
11 1 11 1 1

1 1 1

[ ]

[ ]

n n

n n n nn n

a a a a a

A

a a a a a

     
            
          

 
    

 
 

 

where ia  denotes the thi  row of  A.3 This in turn implies that matrix products, AB, can be 

written in two ways: 

                                                 
2 A fuller discussion of vectors bases for linear spaces is given on page A3-16 below.  
3 It is important to note, for example, that 1a  in (A3.1.9) is not the transpose of 

1
a  in (A3.1.10). To be 

more precise here, one could use the “dot” notation, 
j

a , for columns and 
i

a  , for rows. However, we 

choose not to add this notational complexity since the rows and columns of A will generally be clear in 
context.  
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(A3.1.10) 
1

1 1
( ,.., )

n

n i ii

n

b

AB a a a b

b


 
    
  

  

 

and 
 

(A3.1.11) 
1 1 1 1

1

1

( ,.., )
n

n

n n n n

a a b a b

AB b b

a a b a b

     
       
        


   


 

 
Both of these representations are very useful, and will be used throughout the analysis to 
follow. As one immediate application, it is important to note that for every matrix, 

( : , 1,.., )ijA a i j n  , the transpose matrix, ( : , 1,.., )jiA a i j n   , represents a linear 

transformation closely related to that of A. In particular, the rows of A  are the columns of 
A . So from a transformation viewpoint, A , represents the “row space” of A. Moreover, 
if for any matrices A and B we use the representations  
 

(A3.1.12) 
1 1

1 1( ,.., ) , ( ,.., )n n

n n

a b

A A a a B b b B

a b

    
            
       

   

 

then (A3.1.11) together with the identity, a b b a  , imply that, 
 

(A3.1.13) 
1 1 1 1 1 1 1

1

1 1

( ,.., ) ( )
n n

n

n n n n n n n

b b a b a a b a b

B A a a AB

b b a b a a b a b

         
               
              

 
      

 
 

 

and hence that the transpose of a product, AB , is the product of their transposes in the 
reverse order. 
 
A3.1.1  Nonsingular Transformations and Inverses 
 
Perhaps the single most important feature of a linear transformation is whether or not it 
has an “inverse”. In particular, a linear transformation A is said to be nonsingular iff there 
exists another linear transformation, 1A , called the inverse of A such that  
 
(A3.1.14) 1

nA A I    

 
This inverse transformation can be equivalently defined by the requirement that for all  

, nx y , 
 
(A3.1.15) 1A y x Ax y     
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This version also shows that 1
nAA I  . For if we let 1( ,.., )nX x x  be defined by 

, 1,..,i iAx e i n  , so that nAX I , then by (A3.1.15), 1 , 1,..,i iA e x i n    implies that 
1 1

nA A I X   , and hence that 1
nAA I  . Note also that since 1A is well defined as a 

transformation (i.e., 1A y  is uniquely defined), it must be true that A  is a one-to-one 

transformation, i.e., for all 1 2, nx x  , 

 
(A3.1.16) 1 2 1 2x x Ax Ax    

 
For if 1 2Ax y Ax   then we would have 1

1 2{ , }x x A y , so that 1A y  is not uniquely 

defined. As an additional consequence of (A3.1.14), note that for any pair of nonsingular 
transformations, A and B, we must have 
 
(A3.1.17) 1 1 1 1 1 1( ) ( ) n nB A AB B A A B B I B B B I          

 
Since the same argument shows that 1 1( ) nAB B A I   , it then follows from (A3.1.14) that 

AB  must also be nonsingular, and in particular, has a well defined inverse 1( )AB   given 
by 
 
(A3.1.18) 1 1 1( )AB B A    
 
A similar argument shows that transposes, A , of nonsingular matrices, A, must also be 
nonsingular. To see this, observe that we may take transposes of the matrices in (A3.1.14) 
and use (A3.1.13) to obtain 
 
(A3.1.19) 1 1 1 1( ) ( ) ( ) ( )n nA A I A A A A I A A              

 
So by again appealing to (A3.1.14), we see that A  has a well-defined inverse, 1( )A  , 
given by 
 
(A3.1.20) 1 1( ) ( )A A    
 
In other words, the inverse of  A  is the transpose of 1A (so that the operations of taking 
transposes and inverses are said to commute). 
 
To examine some of the more geometric properties of nonsingular transformations, 
observe that if for any set, nS   , we let  
 
(A3.1.21) ( ) { : }nA S Ax x   
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denote the image of S under transformation  A, then nonsingular transformations A must 
map n onto itself, i.e., 
 
(A3.1.22) ( )n nA    
 
Since ( )n nA    by definition, (A3.1.22) follows from the observation that for any 

nx , 1( ) ( )nA A x x x A     , so that ( )n nA  . In summary, every 
nonsingular transformation is both one-to-one and onto as a mapping.  
 
We next observe that for all transformations, A, the full image set, ( )nA  , is of special 

importance since it is always a linear subspace of n , i.e., it is contained in n and is 
closed under linear combinations [ , ( ) ( )n nx y A x y A      for all scalars, 

,  ]. In particular, since ( )nA   contains all vectors that are expressible as a linear 

combinations of the columns of 1( ,.., )nA a a , it is said to be spanned by these columns, 

and is often written as: 
 

(A3.1.23)  11
( ) ( ) { : } : ( ,.., )

nn n n
i i ni

span A A Ax x x a x x x


         

 
In these terms, we note that one final characterization of nonsingular transformations 
(and perhaps the most basic characterization) is in terms of linearly independent vectors. 
A set of vectors 1{ ,.., } n

kz z    is said to be linearly independent if and only if for all 

scalars, 1( ,.., )k  ,4 

 

(A3.1.24) 
1

0 0, 1,..,
k

i i ii
z i k 


     

 
In these terms, a matrix, 1( ,.., )nA a a , is nonsingular iff its columns 1{ ,.., }na a  are 

linearly independent. So by replacing iz  with ia  and i  with ix  in this general 

definition, we can write this nonsingularity condition for A in matrix form as follows. For 
all nx , 
 
 
(A3.1.25) 0 0Ax x    
 
This characterization of nonsingularity is essentially equivalent to the uniqueness 
condition in (A3.1.16) [since 0Ax   for 0x   would imply that 0 0Ax A  ]. 
 

                                                 
4 Note that for convenience we drop the subscript notation on the n-vector of zeros by 0 (0,.., 0)n

 . The 

dimension of 0 should always be clear in context. So in expression (A3.1.24) for example, the 0 on the left 
is k-dimensional and the 0’s on the right are scalars (one-dimensional). 
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These general properties of nonsingular transformations are well illustrated by the 
transformation, 1 2( , )A a a , in Figures A3.3 and A3.4 above. Here it is evident that every 

vector in 2 is representable as a linear combination of 1 1Ae a  and 2 2Ae a , so that 
2( )span A   . Similarly, the only linear combination which is the zero vector is the pair 

of zero scalars, 0 (0,0) , so that (A3.1.13) holds. Hence, even without producing the 

inverse transformation, 1A , it should be clear that A is nonsingular. 
 
In these notes, we shall deal almost exclusively with nonsingular transformations. But to 
understand the full scope of the matrix decomposition theorems to follow, it is important 
to consider all linear transformations on n . In particular, those linear transformations, 
A, for which no inverse exists are said to be singular transformations. In terms of 
(A3.1.16) above, this means is that there are distinct vectors, x y  with Ax Ay , so that 

the transformation 1A  is not well defined. In view of linearity, this in turn implies that 
there is a nonzero vector, namely x y , with ( ) 0A x y Ax Ay    . This observation 
shows that the characterizing property of singular transformations, A, is that there is a 
nontrivial set of vectors mapped into zero by A. This set is designated as the null space 
for A, written as 
 
(A3.1.26) ( ) { : 0}nnull A x Ax    
 
As the term “space” implies,  ( )null A  is also a linear space, since  
 
(A3.1.27) , ( ) 0x y null A Ax Ay     
 
                                               ( ) 0A x y Ax Ay         
 
                                               ( )x y null A     
 
For a nonsingular transformation this is trivially true, since ( ) {0}null A   by (A3.1.13). 
But for singular transformations, ( )null A  is a proper linear space. In fact, the two linear 
spaces, ( )span A  and ( )null A  completely characterize most of the geometric features of 

every linear transformation. A simple example of a singular transformation, A, in 2 is 
given by 
 

(A3.1.28) 
2 1

2 1
A

 
  
 

 

 
where for the vector, ( 1,2) 0x    , we see from (A3.1.28) that 0Ax  . Here ( )span A  
and ( )null A  are shown in Figure A3.5 below.  
 
 



  NOTEBOOK FOR SPATIAL DATA ANALYSIS                                         Part III. Areal Data Analysis 
______________________________________________________________________________________ 

________________________________________________________________________ 
 ESE 502                                                     A3-8                                               Tony E. Smith 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The image vectors 1 (2,2)Ae   and 2 (1,1)Ae   are seen to be collinear, so that ( )span A  

is reduced to a line, i.e., a one-dimensional subspace of 2 . Similarly, the point x  above 
is also shown, and is seen to generate a one-dimensional subspace, ( )null A , which is 

collapsed into 0 by A. [An example in 3  is given in Figure A3.16 below.] More 
generally, the dimensions of these two subspaces always add to n. To be more precise, for 
any linear subspace, nS   , the dimension of S, denoted by dim( )S  is the maximum 
number of linearly independent vectors in S. So by (A3.1.23), the dimension of ( )span A  

must be the maximum number of linearly independent columns 1( ,.., )na a  of A. Moreover, 

by (A3.1.26) the dimension of ( )null A  must be the maximum number of linearly 
independent vectors mapped to zero by A. As seen in Figure A3.5 
 
(A3.1.29) dim( ( )) dim( ( ))span A null A n   
 
where in this case, 2n  . In turns out that this is always true. Since its validity will be 
apparent from the Singular Value Decomposition Theorem below, we shall not offer a 
proof of this “rank-nullity” theorem here.5 
 
For our later purposes, it is important to note that the maximum number of linearly 
independent columns of any matrix, A, is also called the rank of A, written as ( )rank A . 
When matrices are not square, [as for example in the Linear Invariance Theorem for 
multi-normal random vectors, stated both in expression (3.2.22) of Part II and in 
expression (A3.2.121) below], then it is useful to distinguish between columns and rows 
of matrix A by designating the column rank (row rank) of A to be the maximum number 
of linearly independent columns (rows) of A. In these terms, matrix A is said to be of full 
column rank (full row rank) iff all its columns (rows) are linearly independent, i.e., iff its 
column rank (row rank) is equal to the number of columns (rows) of A. In terms of linear 

                                                 
5 For an elegant on line proof see http://en.wikipedia.org/wiki/Rank%E2%80%93nullity_theorem. 

1Ae  

2Ae  2e  

1e  

( )null A  ( )span A  

x

Figure A3.5. Singular Transformation 



  NOTEBOOK FOR SPATIAL DATA ANALYSIS                                         Part III. Areal Data Analysis 
______________________________________________________________________________________ 

________________________________________________________________________ 
 ESE 502                                                     A3-9                                               Tony E. Smith 

transformations, the row rank of A can also be viewed as the rank of the linear 
transformation represented by A . 
 
With this general discussion of linear transformations, we now consider several specific 
types of transformations that will play a central role in the decomposition theorems to 
follow. 
 
A3.1.2  Scale Transformations 
 
While there are many different types of linear transformations, it turns out that from a 
geometric view point there are essentially only two basic transformation types. The first, 
and by far the simplest, are scale transformations that simply rescale the identity basis 
vectors, as in Figures A3.6 and A3.7 below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A3.6 represents a positive scalar transformation in which all basis vectors are 
scaled by positive multiples. In many cases, such transformations result from simply 
changing the measurement units (dollars, meters, etc.) of the variables represented by 
each axis. However, some scale transformations may involve negative multiples, as in 
Figure A3.7. The matrix representations, 1A  and 2A , of these respective transformations 

are given by the diagonal matrices (with zeros omitted for visual clarity), 
 

(A3.1.30) 1

2

3
A

 
  
 

     ,       2

2

3
A

 
   

 

 
More generally, every diagonal matrix, 
 

(A3.1.31) 
11

11( ,.., )nn

nn

a

A diag a a

a

 
    
 
 

  

1e  

2e  

22e  

13e  1e  

2e  

22e  

13e  

Figure A3.6. Positive Scalars Figure A3.7. General Scalars 
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is the representation of a scale transformation on n . A key feature of these simple 
matrices is that multiplication of diagonal matrices is simply multiplication of their 
corresponding diagonal elements. In (A3.1.30) for example, 
 

(A3.1.32) 1 2 2 1

4

9
A A A A

 
   

 

 
So like real numbers themselves, multiplication of diagonal matrices is commutative, i.e., 
in a sequence of successive scale transformations, the ordering of these transformations 
make no difference. One other key feature is that matrix inversion can be done by 
inspection, since it is evident from (A3.1.14) that the inverse of A in (A3.1.31) must be: 
 

(A3.1.33) 

1
11 11

1

1

1/

1/ nn nn

a a

A

a a







  
      

      

   

 
In other words, undoing a scale transformation amounts to scaling by its reciprocals. 
 
A3.1.3  Orthonormal Transformations 
 
The second important class of linear transformations is far richer, and in fact, is given 
many different names, including isometric transformations, orthonormal transformations 
and rigid motions. From a geometric viewpoint the term “isometric” is perhaps most 
appropriate, since these transformations preserve both distances and angles (as we shall 
see below). But from a matrix viewpoint, the term “orthonormal” is most useful since it 
relates more directly to the corresponding matrix representations, 1( ,.., )nU u u , of such 

transformations. In particular, if both distances and angles are preserved, then since the 
vectors in the identity basis, 1( ,.., )n nI e e , are mutually orthogonal and of unit length, it 

follows that their images  
 
(A3.1.34) 1 1 1( ,.., ) ( ,.., ) ( ,.., )n n nU e e Ue Ue u u   

 
under U must necessarily have the same properties. More precisely, [recalling property 
(A2.4.4) in Appendix A2] it must be true that  
 
(A3.1.35) 2|| || 1 , 1,..,i i iu u u i n      , and 

 
(A3.1.36) 0 , 1,..,i ju u i j n     

 
These defining conditions for orthonormality can be written in equivalent matrix form as 
 



  NOTEBOOK FOR SPATIAL DATA ANALYSIS                                         Part III. Areal Data Analysis 
______________________________________________________________________________________ 

________________________________________________________________________ 
 ESE 502                                                     A3-11                                               Tony E. Smith 

(A3.1.37) 
1 1 1 1

1

1

1 0

( ,.., )

0 1

n

n n

n n n n

u u u u u

U U u u I

u u u u u

       
              
            

 
      

 
 

 
Note also from (A3.1.26) that this condition implies that U must be nonsingular, since  
 
(A3.1.38) 0 0 0 0 0nUx U Ux U I x x          

 
Finally since this in turn implies that   
 
(A3.1.39) 1 1 1( ) ( )U U UU U U U U        
 
we see that the inverse of U  is simply its transpose. This an equivalent form of the 
defining condition in (A3.1.37), though the geometric argument above is far more 
intuitive. All geometric and algebraic properties of such transformations are in turn 
readily established from these equivalent conditions. The most immediate result is that all 
inner products must be preserved, since for any vectors, , nx y , 
 
(A3.1.40) ( ) ( ) ( )Ux Uy x U U y x y      
 
This in turn implies that all distances (lengths) are preserved, since 
 
(A3.1.41) 2 2|| || ( ) ( ) || || || || || ||Ux Ux Ux x x x Ux x       
 
Finally, if   denotes the angle between any pair of vectors, x  and y, as in Figure A3.8 
below, 
 
 
 
 
 
 
 
 
 
 
then since the Law of Cosines asserts that  
 

(A3.1.42) 
2 2 2|| || || || || ||

cos( )
2 || || || ||

x y y x

x y
   

  

 
it follows at once from (A3.1.41) that U must also preserve angles. In other words, all 
geometric figures are mapped into congruent copies by U.  

x

  

|| ||y x  

|| ||y  y

|| ||x  

Figure A3.8. Vector Angles 

0   
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Another natural consequence of the defining condition, nU U I  , is that compositions 

(products) of orthonormal transformations, 1 2U U , must also be orthonormal since  

 
(A3.1.43)  1 2 1 2 2 1 1 2 2 2 2 2( ) ( ) ( ) ( )n nU U U U U U U U U I U U U I         

 
This same argument obviously holds for any finite product,  1 2 nU U U .  

 
 
Rotations and Reflections 
 
Such orthonormal transformations can be further classified into rotations and reflections, 
as illustrated in 2 by Figures A3.9 and A3.10 below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
In Figure A3.9, transformation U defines a counterclockwise rotation of the plane 
through an angle  , and in Figure A3.10, transformation U reflects the plane about the 
dashed line shown, so that images of all points above this line are their reflections below 
the line, and visa versa. Clearly both distances and angles are preserved in both cases. But 
one important difference is that clockwise orderings (called “orientations”) are different. 
In particular, planar rotations are seen to preserve orientation, while reflections do not.  
 
Another key difference from a practical viewpoint relates to the extendibility of these 
concepts to higher dimensions. In particular, while rotations are easily defined with 
respect to angles in 2 , the extension of this definition to n is highly complex (to say 
the least). However, the extension of reflections is completely straightforward. For the 
case of 3 , the reflection line in Figure A3.10 is simply replaced by a reflection plane 
through the origin. For example, the transformation, 1 2 3[ , , ]U e e e  , is seen to reflect all 

points in 3  about the 1 2( , )e e  plane. More generally, every reflection in n is uniquely 

defined by a ( 1)n  -dimensional reflection hyperplane through the origin. In addition, 
such reflections can be given a unified matrix representation as we now show. 
 
 

  

1e  

Figure A3.9.  Rotation 

1Ue  

1e  

2e  

1Ue  

2e  

2Ue  

2Ue  

Figure A3.10.  Reflection 
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Householder Reflections 
 
Observe that each ( 1)n  -dimensional hyperplane is in fact the orthogonal complement 

of a single vector in n . In the illustration above, the 1 2( , )e e  plane can be characterized 

as the orthogonal complement of 3e .  More generally, if for any vector, {0}nv  , we 

let  
 

(A3.1.44) { : 0}nv x x v     
 

denote the orthogonal complement of v , then the reflection about this hyperplane through 
the origin is representable by the Householder matrix, 
 

(A3.1.45)  2
v n v vH I vv    

 

To see this, note first that 
 

(A3.1.46)    2 2 ( ) 2v n v v v vH v I vv v v v v v v v v             

 
so that the image of v  is precisely its refection (through the origin) about v . Moreover, 
for any x v  it also follows that 
 

(A3.1.47)    2 2 ( ) 0v n v v v vH x I vv x x v v x x x             

 
But since vH  is completely defined by this set of images, it then follows that vH  must be 

the unique reflection in n  about v . This is shown graphically by the 2 example in 
Figure A3.11 below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

v

vH v  

x

v  

v  
vH x  

Figure A3.11. Householder Reflection 
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Finally, since every reflection has such a representation, it follows that all reflections are 
representable by Householder matrices, as in (A3.1.45). So all reflections are easily 
computable in n .  
 
From a geometric viewpoint, the importance of this fact is that all orthogonal 
transformations n  are constructible as compositions of (at most n ) reflections. 
Alternatively phrased, every n-square orthonormal matrix is the product of at most n 
Householder matrices. Since this fact will not actually be used in our subsequent 
analyses, we will not prove it here (see footnote 2 below). Rather we simply illustrate this 
general result by showing how all rotations in 2  (such as in Figure A3.9) are equivalent 
to (at most) a pair of reflections in 2 .  For any given angle,  , let the corresponding 
(counterclockwise) rotation be denoted by, R , as in Figure A3.12.  

 
 
 
 
 
 
 
 
 
 
 
 
 
This is clearly not a reflection, and moreover cannot be equivalent to any single 
reflection, since this would necessarily reverse the clockwise order of the basis vectors, 

1e  and 2e , as mentioned above. But it can be represented as a composition of two 

reflections as follows. Choose the first (Householder) refection, 
11 vH H , by setting 

1 1 1v R e e  , and observe that by construction it reflects 1R e  back into 1e , as shown in 

Figure A3.13 below: 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

1e  

Figure A3.12. Angular Rotation 

2e  
2R e  

1R e  

  

1 1 1e H R e  

Figure A3.13. First Reflection 

2e  
2R e  

1R e  
1v  

2 1 2e H R e   
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Notice also that since every reflection is an orthonormal transformation, the image of 

2R e  under 1H  must continue to be orthogonal to that of 1R e . But in two dimensions, 

there are only two possibilities (with unit length), namely 2e  and 2e . In this case, 

1 2 2H R e e   , as shown in the figure. Finally, this configuration is easily reflected back 

into 1 2( , )e e  by simply choosing 
22 vH H  with generating vector, 2 2 2 2( ) 2v e e e    , 

so that the orthogonal complement, 2v , in this case is simply the horizontal axis, as 

shown in Figure A3.14 below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Finally, since all Householder matrices in (A3.1.45) are seen to be symmetric, we may 
then conclude that: 
 
(A3.1.48) 2 1 1 2 1 2 2 1 2[ , ] [ , ]H H R e e e e H H R I    1 2H R H     

 
                                                                  1 2 1 2R H H R H H               

 
 
Hence, each such rotation is seen to be equivalent to this particular pair of reflections.6 So 
in this sense, Householder reflections can be regarded as the fundamental “generator” of 
all orthonormal transformations. 
 

                                                 
6 The proof of the general representation of orthonormal matrices by products of Householder matrices is 
surprisingly difficult to find in standard references. But one can easily show this by extending the standard 
Householder construction of QR decompositions (see for example the nice discussion by Tom Lyche 
available on line at  http://heim.ifi.uio.no/~tom/ortrans.pdf ) which shows in particular that every 

orthonormal matrix, U, can be represented as, 
1 2 n

U H H H T  , for some choice of Householder matrices, 

1 2 n
H H H , together with an upper triangular matrix, T. But by successive multiplications of this 

expression by , 1,..,
i

H i n  , together with (A3.1.37) , we obtain 2 1nT H H H U    , which implies from 

(A3.1.20) that T must also be orthonormal. Finally, since a simple inductive argument can be used to show 

that the only orthonormal triangular matrix is the identity matrix, 
n

I , it then follows that 
1 2 n

U H H H  . 

1 2 1 1e H H R e  

Figure A3.14. Second Reflection 

2R e  2 2 1 2e H H R e  

2v  

2e  
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Orthonormal Bases and Extensions 
 
One final aspect of orthonormality is important to consider. Recall that we have often 
referred to the (orthogonal) columns of the identity matrix, 1( ,.., )n nI e e , as the identity 

basis for n . So before proceeding to the Singular Decomposition Theorem, it is 
appropriate to formalize the more general concept of orthonormal bases. First we extend 
the notion of ( )span A  in expression (A3.1.23) to any set of vectors, 1,..,

n
kz z   as 

follows: 
 

(A3.1.49)  1 11
( ,.., ) : ,..,

k

k i i ki
span z z z  


     

 
Hence a vector, nx , lies in 1( ,.., )kspan z z  iff x can be expressed as a linear 

combination of 1( ,.., )kz z , i.e., iff 1
k
i i ix z   for some scalars, 1,.., k  . Next, recalling 

the definition of linear independence in expression (A3.1.24) above, we now say that a 
set of linearly independent vectors, 1,.., kz z , forms a basis for a given linear subspace, L , 

of n iff  
 
(A3.1.50) 1( ,.., )kspan z z L  

 
The special feature of linear independence is that for  each, x L , the - coefficients in 
the representation, 1

k
i i ix z  , must be unique.7 So in geometric terms, these 

coefficients 1( ,.., )k   yield a natural coordinate system for L.  Notice also that if 

1( ,.., )kz z  is a basis for L, then no larger set 1 1( ,.., , )k kz z z  can be a basis since 1kz L   

implies that 1kz  must already be a linear combination of 1( ,.., )kz z , which would violate 

linear independence. So the size, k, of each basis is a unique characteristic of L, 
designated as the dimension of L, and often written as dim( )L . 
 
The single most important example of these concepts is of course the identity basis 

1( ,.., )ne e  for n itself. But this basis has the important additional feature that its 

component vectors form an orthonormal set, i.e., they are each of unit length and are 
mutually orthogonal [as we have already seen for the columns of orthonormal matrices in 
(A3.1.35) and (A3.1.36) above]. Any basis with these properties is called an orthonormal 
basis. The key feature of such bases is that coordinates of any vector, 1( ,.., )kx span z z , 

are immediately constructible as inner products with the basis vectors, i.e., for each 
1,..,i k , 

 

                                                 
7 To see this, note simply that if 

1 1

k k

i i i i i i
z x z   

 
   then 

1
( ) 0k

i i i i
z  


  ,  so that by linear 

independence, , 1,..,
i i

i k   . 
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(A3.1.51) 
1 1

(1) (0)
k k

i i j j j i j i ij j j i
z x z z z z   

  
          

 
This is why orthonormal bases provide such useful representations of linear spaces. So it 
is important to ask how such bases can be constructed.  
 
In particular, for any given set of vectors, 1,..,

n
kz z  , we next consider how to 

construct an orthonormal basis for 1( ,.., )kspan z z .  There is a remarkably simple 

procedure for doing so, known as the Gram-Schmidt orthogonalization procedure.  
Because the geometry of this procedure is of such fundamental importance, we begin by 
considering orthogonal projections. Given two vectors, , nx y  (as illustrated for 2n   
in Figure A3.15 below), one may ask what vector in the span of y is “closest” to x, or 
equivalently, “best approximates” x ?   
 
 
 
 
 
 
 
 
 
 
 
 
 
If one were to imagine drawing circles around x, denoting points of equal distance from 
x, then the smallest circle touching the line, ( ) { : }span y y   , would be just 

tangent to this line, and would identify the desired closest point, xy  (shown as red in the 

figure). Formally, this amounts to finding the   which minimizes the distance, 
|| ||x y , from x. But since minimizing distance is equivalent to minimizing squared 

distance,  it follows that if we now write 2( ) || ||x y    , as a function of  , then we 
can identify this point by solving the “least squares” minimization problem: 
  
(A3.1.52) 2 2min ( ) || || ( ) ( ) 2x y x y x y x x x y y y                   

 
Since the last equality is just a quadratic function in  , the desired “tangency” is given 
precisely by the first-order condition: 
 

(A3.1.53) 0 ( ) 2 2d
d

x y
x y y y y y x y

y y     


          


 

 
So the vector closest to x  in ( )span y  is given by  

● 
● 

x

y xy  ( )span y  

Figure A3.15.  Simple Orthogonal Projection  

xx y  
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(A3.1.54) x

x y
y y

y y

 
   

 

 
and is designated as the orthogonal projection of x  on y. The term “orthogonal” is of 
most importance for our present purposes, and is motivated  by the fact that the difference 
vector, xx y  (shown  by the red dashed line in the figure) is necessarily orthogonal to y, 

as can be seen by taking inner products: 
 

(A3.1.55) ( ) 0x x

x y
x y y x y y y x y y y x y x y

y y

                
 

 
So if one starts with two vectors, ( , )x y , and wishes to construct an orthonormal basis for 

( , )span x y , then this projection procedure yields a natural choice. In particular, since 

( / )xx y x x x y y y     is automatically a linear combination of ( , )x y , it follows than 

( , )xy x y  yields a pair of orthogonal vectors in ( , )span x y . Hence, by normalizing 

these, we have found an orthonormal basis for ( , )span x y .  
 
This argument implicitly assumes that x  and y  are linearly independent, so that the basis 
will consist of two orthonormal vectors. But notice also that if x  and y  were linearly 
dependent, so that x  was already in ( )span y  [i.e., 0x y   for some  ], then the 

solution in (A3.1.54) would automatically yield xy x  so that ( )xx y  is simply the 

zero vector. In other words, this procedure would identify this linear dependence, and tell 
us that by normalizing only y we would obtain a natural orthonormal basis for 

( , ) ( )span x y span y . 
 
This two-vector example defines the simplest possible instance of the Gram-Schmidt 
procedure. So all that remains is to be done is to show how this procedure can be 
extended to larger sets of vectors. This extension is extremely simple, and only uses the 
two-vector procedure detailed above. To see this, let us proceed to a three vector case. 
Suppose we given linearly independent vectors, 1 2 3, , ( 3)nz z z n  , and wish to 

construct an orthonormal basis 1 2 3( , , )u u u  for 1 2 3( , , )span z z z . To do so, we first construct 

an orthogonal basis 1 2 3( , , )b b b  as follows: 

 
Step 1. Start by setting  
 
(A3.1.56) 1 1b z . 

 
Step 2. Project 2z  on 1b  and construct the difference vector, 
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(A3.1.57) 2 1 2 1
2 2 1 2 1

1 1 1 1

z b z z
b z b z z

b b z z

 
       

  

 
As in the example above, 1 2( , )b b , are now orthogonal, and are both in 1 2 3( , , )span z z z . 

 
Step 3.  Finally, project 3z  on 1b  and 2b  individually and take the vector difference: 

 

(A3.1.58) 3 1 3 2
3 3 1 2

1 1 2 2

z b z b
b z b b

b b b b

   
          

   

 
Then by construction, 1 2 3 1 2 3( , , ) ( , , )b b b span z z z . Moreover, since 1b  and 2b  are already 

orthogonal, it follows that 3b  must necessarily be orthogonal to both 1b  and 2b . To see 

this, note simply that for 1b  we have 

 

(A3.1.59) 3 1 3 2
1 3 1 3 1 1 1 2

1 1 2 2

z b z b
b b b z b b b b

b b b b

   
             

 

 

                                3 2
1 3 3 1 1 3 1 3

2 2

( ) (0) 0
z b

b z z b b z b z
b b

 
          

  , 

 
and similarly for 2b . Given this orthogonal basis, it then follows by setting 

 
(A3.1.60) / || || , 1,2,3i i iu b b i   

 
that we must obtain an orthonormal basis 1 2 3( , , )u u u  for 1 2 3( , , )span z z z . Again, if 

1 2 3( , , )z z z  are not linearly independent, then we need only normalize the nonzero vectors 

obtained. This will not only provide an orthonormal basis for 1 2 3( , , )span z z z , but will 

also indicate the dimension of this linear space. 
 
The generalization of this stepwise procedure follows by simple induction. In  particular, 
to obtain an orthogonal basis for 1( ,.., )kspan z z , suppose we have already obtained an 

orthogonal set 1 2( , ,.., )mb b b  in 1( ,.., )kspan z z  with 3 m k  . To extend this orthogonal 

set, let 
 

(A3.1.61) 1
1 1 11

( ,.., )
m m i

m m i ki

i i

z b
b z b span z z

b b


  

 
    

  
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Then the argument in (A3.1.59) again shows that 1mb   is orthogonal to each , 1,..,ib i m . 

So by induction, we thus obtain an orthogonal basis 1( ,.., )kb b  for 1( ,.., )kspan z z . This in 

turn yields an orthonormal basis 1( ,.., )ku u  by normalizing all nonzero vectors in 

1( ,.., )kb b  as in (A3.1.60). Moreover, the number of such vectors will again identify the 

dimension of 1( ,.., )kspan z z . 

 
One final possibility is of interest. Suppose that we are given an orthogonal basis, 

1( ,.., )kb b  for some 1( ,.., )kspan z z  with k n , and wish to extend this to an orthogonal 

basis for all of n . This is again quite simple, since we already have a basis for n , 
namely the identity basis, 1( ,.., )ne e . So to extend 1( ,.., )kb b  to a larger orthogonal basis, 

1 1( ,.., , )k kb b b   we may proceed by setting m k in (A3.1.61) and then successively letting 

1k iz e   for each 1,..,i n  until a nonzero difference vector, 1kb  , is found. There must 

be one, since not all ie  can lie in the lower dimensional space, 1( ,.., )kspan z z . Once 1kb   

is found, the procedure can be repeated by setting 1m k   in (A3.1.61) and continuing 
down the list of identity basis vectors, ie , until a new nonzero difference vector, 2kb  , is 

found. Again by induction, this procedure must result in a full set of basis vectors, 

1( ,.., )nb b , which yield the desired extension. These can in turn be normalized as in 

(A3.1.60) to obtain an orthonormal basis, 1( ,.., )nu u , for n . Finally, if the original basis 

is already orthonormal, say 1( ,.., )ku u , then this procedure is designated as an 

orthonormal extension of 1( ,.., )ku u  to all of  n . 
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A3.2  Singular Value Decomposition Theorem 
 
While there are of course many special types of matrices that are of analytical interest [as 
for example the triangular Cholesky decompositions of symmetric matrices in (A2.7.44) 
of Appendix A2], our focus above on diagonal matrices and orthonormal matrices was 
for a reason. In the same way that orthonormal matrices have a simple decomposition 
into reflections, it turns out that every n-square matrix, A, is decomposable into a simple 
product of orthonormal and diagonal matrices as follows: 
 
(A3.2.1) A U S V        
 
where U and V are orthonormal and where 1( ,.., )nS diag s s  is a nonnegative diagonal 

matrix with diagonal entries, is , called the singular values of matrix A. In geometric 

terms, every linear transformation is constructible as a composition of a nonnegative 
scale transformation together with two orthonormal transformations. This fundamental 
result, known as the Singular Value Decomposition (SVD) Theorem, holds for all 
matrices (even rectangular matrices).  At this level of generality, it has been designated 
by Gilbert Strang (1993,2009) as the Fundamental Theorem of Linear Algebra. 
 
The main objective of the present section is to establish this theorem. By way of 
motivation, recall from the beginning of these notes that our ultimate objective is to 
establish the Spectral Decomposition (SPD) Theorem for symmetric matrices, which 
asserts that every symmetric matrix, A , can be represented in terms of a single 
orthonormal matrix, W, and diagonal matrix, 1( ,.., )ndiag   , as  

 
(A3.2.2) A W W   
 
where the diagonal entries, i , are called the eigenvalues of A (see Section A3.3 below). 

So except for the nonnegativity of S  in (A3.2.1), it would appear that this important 
result is simply a special case of the SVD Theorem with W U V  . As we shall see 
below, this intuition is correct in many important cases. Moreover, it is essentially correct 
in all cases in the sense that an SPD can always be constructed from any given SVD. It is 
this relationship that provides the main motivation for our consideration of this more 
general result. But as emphasized by Strang’s renaming of this result, anyone interested 
in understanding linear transformations should try to gain some understanding of 
(A3.2.1) in its own right.  
 
While proofs of the SVD Theorem can be found in most standard texts on matrix algebra, 
the most common approach is to start with the SPD Theorem and then apply this result to 
the partitioned symmetric matrix, 
 

(A3.2.3) A

A
M

A

 
   
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in order to establish the SVD Theorem. But this “trick” offers little insight into the 
geometric origins of either result. So the specific objectives of this section are to illustrate 
these origins with an easily visualized geometric example in 2 , and then use these 
insights to motivate a constructive proof of the SVD Theorem.1 
 
To develop our geometric argument, we require one further characterization of 
orthonormal transformations, V.  Recall that all such transformations preserve distances. 
Conversely, to guarantee that V is orthonormal, it is enough to require that all unit 
distances be preserved by V, i.e., that for all nx , 
 
(A3.2.4) || || 1 || || 1x Vx    
 
To see this, note first that since any vector, nx  , can be transformed to have unit 
length by the rescaling, 1

|| ||xx x , it follows from (A3.2.4) that all distances must be 

preserved, since 
 

(A3.2.5)  1 1 1 1
|| || || || || || || |||| || 1 1 || ||x x x xx x V x Vx      

 

                                                            || || || ||Vx x   
 
Moreover by observing from the identity 
 
(A3.2.6)   2 2 2|| || ( ) ( ) 2 || || 2 || ||x y x y x y x x x y y y x x y y               
 

    2 2 21
2 || || || || || ||x y x y x y      

 
that inner products are entirely expressible in terms of distances, it then follows from 
(A3.2.5) that all inner products must be preserved as well. Hence the defining conditions 
for orthonormality in (A3.1.34) and (A3.1.35) must hold, and V is orthonormal.  
 
Given this alternative characterization, we next observe that the product of matrices on 
the right hand side of (A3.2.1) can be directly interpreted geometrically as an 
orthonormal transformation, V  , followed by a rescaling, S , followed by a second 
orthonormal transformation, U .2 But while this composite transformation is of course 
linear, the key question remains as to why every linear transformation, A, can be so 
represented. Assuming that A is nonsingular (so that its inverse exists), a more 
informative geometric approach is to start with transformation, A, and see how to “undo 
it” (i.e., invert it back to the identity) through a series of simple transformations. For the 
two dimensional case, this process can be illustrated by the four panels shown in Figure 
A3.16 below.  

                                                 
1 Another excellent development of these ideas can be found in Section 5.12 of Meyer (2001). 
2 This is illustrated for example in Figure 6.8 of Strang (2009, p.366).   
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Starting from the upper left panel, suppose that a given transformation, A, maps the basis 
vectors 1 2( , )e e  in 2 as shown in the upper right panel. In geometric terms, the key here 

is to consider not only how these basis vectors are transformed, but also how the entire 
unit circle (shown in blue) is transformed. In 2  the image of this circle is always some 
ellipse, as shown (in blue) in the upper right panel. Since the unit circle consists of all 
vectors of unit length, we see that some of these vectors will typically be “stretched” 
more than others by transformation  A. In particular, since the major axis and minor axis 
of this ellipse (shown as thin blue lines) denote the directions of maximum and minimum 
distances from the origin, it follows that the vector on the unit circle which is “maximally 
stretched” by A must be the vector (not shown) that is mapped into the major axis of this 
ellipse. Similarly, the vector that is “minimally stretched” is mapped into the minor axis.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
So to remove all stretch effects, the simplest procedure is to rotate these (orthogonal) 
axes into the coordinate axes, and then rescale them back to unit lengths. The appropriate 
rotation is shown in the lower right panel, and is represented by an orthonormal matrix, 

 

 

1e  

2e  

2Ae  

1Ae  

A  

Figure A3.16. Geometry of SVD 

unit circle 

V  

1S   

U   

1U Ae  

2U Ae  

1
1S U Ae   

1
1S U Ae   
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U  . The rescaling back to unit lengths is then shown in the lower left panel, and is 
represented by a positive diagonal matrix, 1S  . Notice also that by scaling the maximum 
and minimum lengths to unity, all intermediate lengths must also be scaled to unity.3 So 
the ellipse again becomes a unit circle. What this implies is that the transformation 
represented by the product, 1S U A  , has actually mapped the unit circle back into itself. 
So if we now denote this product matrix by  
 
(A3.2.7) 1V S U A   
 
then it follows that V   must satisfy (A3.2.4), and hence must be orthonormal. In 
particular, the images of 1e  and 2e  under this transformation (namely the two vectors,  

1
1S U Ae   and 1

2S U Ae  , shown in the lower left panel of Figure A3.16) must be 

orthogonal. So by construction we may use (A3.1.38) to conclude that 
 
(A3.2.8) 1S U A V U A SV A U SV            
 
and thus that A is representable as in (A3.2.1) [where in this nonsingular case, S  must be 
a positive diagonal matrix].    
 

While this argument is quite transparent in 2 , it is more complex in higher dimensions. 
In particular, if the unit circle is now replaced by the unit sphere in n ,  
 
(A3.2.9) { : || || 1}n

n x x    

 
then one can in principle construct similar arguments for the ellipsoidal images,  
 
(A3.2.10) ( ) { : }n n

nA Ax x      

 
of n  under linear transformations, A. The basic ideas can be illustrated for 3 as shown 

in Figure A3.17 below.  
 
 
                                                 
3 To show this formally, observe first that the equation of the ellipse in the lower right panel must be of the 

form, 2 2

1 1 2 2
a x a x c   for some positive constants, 

1 2
, ,a a c . So for the principle axes of this ellipse, say 

01
( , 0)x  and 

02
(0, )x , it must be true that 2 2

1 01 2 02
a x c a x  . But if the given scale transformation is denoted 

by, 1 1 1

1 2
( , )diag s sS    , so that 1 1 1

1 1 2 2
( , )x s x s xS    , then for this unit scaling it must be also true that 

1 1

1 01 2 02
1s x s x   , so that 

01 1
x s  and  

02 2
x s . These two relations together imply that 2

1 1
a s c  and  

2

2 2
a s c  so that 2 2 2 2 2 2

1 1 2 2 1 1 2 2
( ) ( )c a x a x s c x s c x     . Finally, by canceling c on both sides, we see that, 

1 2 1 2 1 1 2

1 1 2 2 1 1 2 2
1 ( ) ( ) || ( , ) ||s x s x s x s x      , and may thus conclude that 1 1

1 1 2 2
|| ( , ) || 1s x s x   , i.e., that all 

transformed vectors 1 1

1 1 2 2
( , )s x s x   have unit length.  
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In this example, the unit sphere, 3 , shown (in red) on the left is mapped by the linear 

transformation, 
 

(A3.2.11) 

0.7 0 0

0 1.8 0

0 0.7 0.7

A

 
   
 
 

 

 
into the ellipsoidal image set, 3( )A  , shown (in red) on the right. The details of this 

example will be discussed further as we proceed. But for the moment, it should be clear 
that the first principle axis (major axis) of this ellipsoid is the line through the origin (not 
shown) that connects the two ends of this “football-shaped” set. So the point labeled, 

1Av , (to be discussed below) is the image of a point, 1 3v  , which is “maximally 

stretched” by transformation, A . The location of this particular point, 1v , is shown on 3  

(just below the 2x  axis). So by linearity, the other maximally stretched point in 3  (not 

shown) must be just opposite to 1v  on the line from 1v  through the origin. Note also that 

the second principle axis is a line through the origin which is orthogonal to the first 
principle axis and passes through the point labeled, 2Av , in the figure.  

 
While it is possible to construct an orthonormal transformation that rotates these axes into 
the coordinate axes, and then rescale the ellipsoidal image back to a sphere as in Figure 
A3.16 above, the details of such a construction are extremely tedious (especially in 
higher dimensions).  Hence the two most important features of the argument in Figure 
A3.16 are (i) its graphical simplicity in 2 , and (ii) its role in suggesting a more tractable 
approach to the SVD Theorem in n . In particular, this approach is motivated by the 
observation that the critical task in the above argument is to identify those unit vectors in 

Figure A3.17  Example in Three Dimensions 

A 

1x  1x  

2x  2x  
1Av
 

2Av  
 

3  
3( )A   

A 

 
2v  

1v  

 

3x  
3x  
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n  that are mapped by A into the principle axes of the ellipsoidal image, ( )nA  , so that 

the appropriate rotations can be defined.  Note in particular that the vector mapped into 
the major axis of the ellipse in Figure A3.16 (or ellipsoid in Figure A3.17) is by 
definition that unit vector, 1v , with maximal image length, 1|| ||Av . So the most natural 

procedure for identifying 1v  is to solve the maximization problem 

 
(A3.2.12) maximize: || ||Av        subject to:  nv  

 
There will of course be two solutions, corresponding to each end of the ellipse (or 
ellipsoid). But this vector is essentially unique up to a choice of direction. The second 
key point established for the case of 2 was that the vector mapped into the minor axis is 
necessarily determined (up to a choice of direction) as one orthogonal to v. In the case of 

2 , this was established by verifying that the transformation, V  , in (A3.2.7) was 
orthonormal. In higher dimensions, a direct proof of this fact is much more difficult. So 
our approach will be to start by assuming that this is the case, and use this assumption to 
construct a sequence of maximization problems similar to (A3.2.12). The final solutions 
to these problems will be seen to yield precisely desired representation in (A3.2.1), and 
thus show (among other things) that V   in (A3.2.7) is indeed orthonormal in all cases.   
 
Before developing this sequential maximization procedure, it is appropriate to make a 
few preliminary remarks. First of all, this approach to establishing the SVD Theorem is 
known in the literature as the “variational” approach, and is in fact one of the oldest 
approaches to this problem.4  Second, it turns out that there is a more useful way of 
representing image lengths, || ||Av , that will be seen to have added benefits in the 

following analysis. In particular, if for any vector, nv , the image vector,  Av, is simply 

rescaled to a vector of unit length, nu , as shown (in red) for 2n   in Figure A3.18 

below,  
 
 
 
 
 
 
 
 
 
 
 
 
then by construction 
 

                                                 
4 See Stewart (1993) for an interesting historical discussion of this variational approach, which goes back to 
the work of Jordan in the 1870’s.   

 

v

Av  

Figure A3.18. Rescaling Convention 

v

Av  

u

 
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(A3.2.13) Av su  
 
for some scalar, s .  Note that if 0Av   then (A3.2.13) will hold trivially for 0s  . While 
we shall eventually need to deal with this degenerate case, we focus for the present on 
vectors, nv , with 0Av  [i.e., ( )v null A ] so that 0s  . Moreover, by replacing u  
with u  if necessary, we can always ensure that 0s  , so that by construction, 
|| || || || 0Av s u s   . Thus, as an alternative to (A3.2.12), one can find the direction, v , 
of maximal stretch by solving the associated maximization problem: 
 
(A3.2.14) maximize: ( , )s s v u       subject to:  , || || 1, || || 1Av su u v    
 
Note also that since 2|| ||u u u   for any vector, u, it follows from the first constraint that  
 
(A3.2.15) 2|| ||u Av su u s u s     
 
Hence (A3.2.14) can be simplified to  
 
(A3.2.16) maximize:  u Av     subject to:  1 , 1u u v v    
 
As we shall see below, the advantage of this alternative formulation is that will allow us 
to solve simultaneously for all three matrices, , ,U S  and V in (A3.2.1) , where u  and v  
will turn out to be column vectors of U  and V respectively, and where ( )s u Av  will be 
the diagonal elements of S . This constrained maximization problem thus constitutes the 
center piece of the present analysis, and will be used recursively to construction the full 
SVD representation for arbitrary linear transformations. 
 
Before doing so, it is important to note finally that (A3.2.16) must always have a 
solution. While this may seem obvious in our original two dimensional problem, it is less 
so in higher dimensions. In particular, since the objective function, u Av , in (A3.2.16) is 
a bilinear form in u  and v (i.e., it is linear in u for each fixed v, and linear in v for each 
fixed u) there are no natural maxima or minima for this function. But the existence of 
such solutions follows from what is usually called the Extreme Value Theorem. The one-
dimensional version simply states that every continuous function, ( )f x , on a closed 
bounded interval, [ , ]a b   ,  has both a maximum and minimum value. This can be seen 
intuitively as in Figure A3.19 below: 
 
 
 
 
 
 
 
 

Figure A3.19. Extreme Values





 
a b  x 

( )f b  
( )f a  
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The generalized version simply shows that same is true for continuous functions on 
nonempty closed bounded sets in any finite-dimensional space, N .5 In the present case, 
the bilinear form, ( , )f u v u Av  is a continuous function on 2n  constrained to the 

product of unit spheres, 2{ : || || 1} { : || || 1}n n n n n
n n u u v v               , 

which is easily seen to be a nonempty closed bounded set in 2n . Hence there always 
exists a maximum solution to (4). Moreover, since both the objective function, ( , )f u v , 

and constraint functions, u u  and v v , are continuously differentiable on 2n , this 
maximum can be characterized by the first order conditions of the associated Lagrangian 
function [recall expression (A2.8.38) in Section 8 of the Appendix, A2, to Part II of these 
notes]: 
 
(A3.2.17) 1

2( , , , ) [ (1 ) (1 )]L u v s u Av s u u v v         

 
(where the factor of ½ is introduced for notational convenience only). By using 
expressions (A2.7.7) and (A2.7.11) [with nA I ] in Appendix A2, we see that the first 

order conditions for u  and v  are given respectively by  
 
(A3.2.18) 1

20 2 0][u L Av su Av su Av su          

 
(A3.2.19) 1

20 2 ][0v L A u v A u v A u v             

 
where (A3.2.19) also uses the identity, ( ) ( )v u Av u A A u      . Similarly, the first order 

conditions for s  and   reduce to the constraints 
 
(A3.2.20) 1u u v v    
 
At this point, notice that conditions (A3.2.18) and (A3.2.20) are simply the constraints in 
(A3.2.14) that originally motivated this formulation. In particular, transformation A  must 
achieve its maximum stretch, s , at vector v. Hence the most important new information 
provided by this solution is condition (A3.2.19), which shows that there is a parallel 
relation for the transpose, A , of A . In particular, the same argument leading to 
(A3.2.14) shows that maximum stretch,  , of the transpose transformation, A , must be 
achieved at vector u, so that there is a clear duality between these two transformations.  
Moreover, by the symmetry of inner products, it follows from (A3.2.18), (A3.2.19) and 
(A3.2.20) that 
 
(A3.2.21) ( ) ( ) ( ) ( ) ( ) ( )s s u u u su u Av v A u v v v v                
 
So in fact this maximum stretch value must be the same for both A  and A .   

                                                 
5 See for example Theorem 16.6 in Bartle (1964). More general versions can found in Murphy (2008). 
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Before extending this argument to obtain the SVD representation (A3.2.1) for all 
matrices, A, it is essential to distinguish between the nonsingular and singular cases. 
Figure A3.17 above illustrates a typical nonsingular case, which is by far the most 
important case for all applications that we consider in these notes. However, since this 
same representation also holds for singular matrices, it is instructive to see what this 
means for the geometry of linear transformations. To illustrate the basic differences 
between these two cases, we now consider the following modification of transformation, 
A, in expression (A3.2.11) above 
 

(A3.2.22) 0

0.7 0 0

0 1.8 0

0 0.7 0

A

 
   
 
 

 

 
Here the matrix, 0A , differs from A  in only the third column, which is now the zero 

vector. This of course implies that 0 3 0A e  , and hence that 0A  is singular. The 

corresponding modification of Figure A3.17 is shown in Figure A3.20 below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The key difference here is that 0( )span A  is now a two-dimensional plane (shown in 

blue). So the ellipsoid in Figure A3.17 has now been collapsed into an ellipse on this 
plane. Notice also that even though 3  is only the surface of an ellipsoidal solid in 3 , 

the image set, 0 3( )A  , consists of the full area inside the ellipse on the right (including 

the origin). But the initial maximization problem in (A3.2.12) above is still well defined, 
and is seen to have a solution very similar to the full-dimensional case in Figure A3.17. 
Notice in particular that the analysis of this ellipse in 0( )span A  is qualitatively the same 

as that for the ellipse in upper right panel of Figure A3.17 for the 2 case. More 
generally, it will turn out that for any singular matrix, A, one proceeds by first analyzing 

Figure A3.20  A Singular Example in Three Dimensions 

2x  
0 1A v0( )span A  2x   

1v  
0 2A v   2v  1x  1x    

A0 

3x  
3x  
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the ellipsoid in ( )span A , and then extending this analysis to the collapsed dimensions in 
( )null A in order to complete the SVD representation.  

 
This extension process is most transparent in 2 . So before proceeding with the formal 
argument, it is instructive to reconsider the singular example expression (A3.1.28) 
together with Figure A3.5. This figure is reproduced in Figure A3.21 below, where the 
unit circle, 2 , is now included. The image set, 2( )A  , is given by the red line segment 

shown, which by definition lies in ( )span A . So the possible solution vectors, 2v , in 

(A3.2.12) are seen to be either 1v  or 1v , with images, 1Av  and 1Av , corresponding to the 

end points of interval, 2( )A  , as shown in the figure. For purposes of discussion, we now 

focus on 1v . In this case, the full solution to this maximization problem is given by the 

triple, 1 1 1( , , )v s u , where 1u  is the unit-scaled version of 1Av  (shown by the red point), 

with scale factor, 1s , denoting the maximum-stretch value, i.e., 1 1 1Av s u .  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To complete the desired Singular Value Decomposition of matrix A in (A3.1.28), we 
would like to find a unit vector, 2 2v  , than is mapped by A in the minor axis of this 

one-dimensional “ellipse”. But while the major axis is well defined, there appears to be 
no meaningful minor axis. Here is where we use our assumption above that the end points 
of this “axis” must be the images of unit vectors orthogonal to 1v . If so, then there are 

seen to be only two possible choices, namely the points 2v  and 2v  shown in blue. 

Moreover, since these points both lie in ( )null A , it follows by definition that 

2 2 0Av Av  . So under this assumption, the origin must constitute the relevant “minor 

axis”. In addition, 2 2|| || || || 0Av Av   implies that both points are equally good 

solutions. So if we now focus on 2v , then the solution value must be given by 

2 2|| || 0s Av  .  Finally, to complete this solution, observe that if we choose any unit 

Figure A3.21  Singular Example in Two Dimensions 

 1Av  ( )null A  


2v  


2u  


1v  

1v  2  
 



1u  2( )A   2v  

1Av  
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vector , 2u , orthogonal to 1u , (such as the point, 2u ,  just to the right of 2v  in the figure), 

then it is automatically true that 2 2 20Av u  . So this degenerate “maximal stretch” 

solution is summarized by the triple 2 2 2( , , )v s u  where 2 0s  .  Notice that when taken 

together, these two solutions can be written as 
 

(A3.2.23) 1 1 1 1
1 2 1 2

2 2 2 2

( , ) ( , )
Av s u s

A v v u u A V U S
Av s u s

   
        

 

 

where 1 2( , )V v v  and 1 2( , )U u u  are orthonormal matrices by construction. So this in 

turn implies that 
 
(A3.2.24) A U S V    
 
and thus that (A3.2.1) holds for this choice of matrices. In the present case, it can readily 
be verified that these matrices have the exact form: 
 

(A3.2.25) 
1/ 2 1/ 2 2/ 5 1/ 5 2 110

2 101/ 2 -1/ 2 1/ 5 -2/ 5
U S V A

                       
 

 

where for example, 1 10 3.16s   , is the length of the major axis vector, 

 1 10 , 10Av   in Figure A3.21. The most important feature of this singular example is 

that all analysis of the collapsed “minor axis” in ( )null A  is formally identical to that of 
the positive “major axis” in ( )span A . The only difference is that the solutions in the 

collapsed case are nonunique, so that any choice of a unit vector, 2u , orthogonal to 1u  

will work.  
 
Note finally that nonuniqueness of solutions is also possible for positive axes of the 
ellipsoid in ( )span A . A simple example is provided by any orthonormal transformation, 

A U , where ( )n nU    implies that all “axes” of this spherical image must have the 

same length. In this extreme case, there are infinitely many SVD representations of U, 
including the trivial one, n nU U I I . A more interesting example is based on the matrix, 

A , in (A3.2.11) with SVD given by6 
 
 

(A3.2.26)   

0 1 0 1.95 0 0.98924 0.14633

0.9131 0 0.4076 0.7 1 0 0

0.4076 0 0.9131 0.6462 0 0.14633 0.98924

U S V

 

 

 

     
                 
     

  

                     

                                                 
6 This solution was obtained numerically with the MATLAB program, svd.m. 
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0.7 0 0

0 1.8 0

0 0.7 0.7

A

  

 

 

 
While all principle axes in this example are distinct, notice that the lengths of the second 
and third axes (0.7 and 0.6462) are almost the same. Geometrically, this implies that the 
intersection of the surface of the ellipsoid in the right panel of Figure A3.17 with the 
plane orthogonal to the major axis vector, 1Av , must be almost circular (as shown by the 

blue curve in the figure). So one can imagine that this intersection can be made exactly 
circular by an appropriately small modification of the matrix, A .7 In this circular case, it 
should be clear that while the principle axis vector, 1Av , is still unique (up to a choice of 

sign) there is no unique choice of the second principle axis vector, 2Av , shown in Figure 

A3.17. Any selection of a unit vector, 2v , orthogonal to 1v will do. But, as we shall see 

below, the actual maximization problem for identifying this principle axis is still well 
defined, and most importantly, all such choices of 2v  must satisfy the corresponding 

Lagrangian first-order conditions. 
 
With these preliminary observations, we are now ready to extend the maximization 
problem in (A3.2.16) in order to obtain a full singular value decomposition (SVD) of 
matrices, A  (which will further clarify the natural duality between A  and A ).8 
 
 
Singular Value Decomposition Theorem. For any n -square matrix, A , there exist 
orthonormal matrices, ( : 1,.., )iU u i n  , ( : 1,.., )iV v i n   and a nonnegative diagonal 

matrix, ( : 1,.., )iS diag s i n  , such that 

 
(A3.2.27) A U S V   
 
 
 
Proof:  To establish this result, we begin by observing that if (A3.2.27) holds, then [as an 
extension of (A3.2.23) above] it follows by definition that, 
 
(A3.2.28) A USV AV US    

                                                 
7 One such modification, oA , is obtained by simply replacing   with (1.95,0.7,0.7)o diag   and using 

U and V in (A3.2.27) to define o oA US V  . 
8 As mentioned earlier, more compact versions of this SVD Theorem can be obtained by appealing to the 
Spectral Decomposition Theorem and employing the symmetric-matrix device in (A3.2.3) above. [For a 
“variational” version of this proof see Theorem 7.3.10 in Horn and Johnson (1985).] However, it should be 
emphasized that essentially all direct proofs of the Spectral Decomposition Theorem implicitly embed  in 
the complex plane,  , to ensure existence of such decompositions. Hence one of the objectives of the  
present approach is to avoid any appeal to complex number theory whatsoever.   
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                                
1

1 1 1 1,.., ( ,.., ) ( ,.., )n n n n

n

s

Av Av u u s u s u

s

 
    
 
 

  

                    , 1,..,i i iAv s u i n    

 
where the last line is seen to have exactly the same form as (A3.2.18) above. Hence if we 
now denote the solution to (A3.2.17) by 1 1 1( , , )u s v , so that conditions (A3.2.18) through 

(A3.2.20) imply 
 
(A3.2.29) 1 1 1 1 1 1 1 1 1 1, , 1Av s u A u s v u u v v       

 
then our objective is to extend this relation to a full SVD as in (A3.2.28) by generating 
the successive triplets, ( , , )i i iu s v , one at a time. Here it is instructive to generate the first 

triplet, 2 2 2( , , )u s v , in full detail, and then proceed by induction for the rest. To do so, we 

begin by observing that in order for U  and V  to be orthonormal, we must require that 

2 2( , )u v  satisfy the orthogonality conditions, 2 1 2 10u u v v   . So if we now let 

1 1( ) { : 0}nu u u u     and 1 1( ) { : 0}nv v v v     denote the vectors of unit length 

orthogonal to 1u  and 1v  respectively, then in geometric terms, the task is to find 

“maximal stretch” vectors, 2 2 1 1( , ) ( ) ( )u v u v   , for transformation A which generate 

the “second principle axes” of the ellipsoids, ( )nA   and ( )nA  , respectively. [For 

example, the set 1( )v  for the nonsingular illustration in Figure A3.17 above is shown by 

the blue circle on 3 in the left panel, with corresponding image, 1[ ( )]A v , shown by the 

blue circle in the right panel. Similarly, for the singular illustration in Figure A3.20, the 
set 1( )v  is again shown on the left as a (different) blue circle on 3 , with associated 

image now corresponding to interval shown in dark blue in the right panel. [Note that (for 
sake of visual clarity) neither the vector, 1u , or its orthogonal set, 1( )u , are shown in 

these figures.] As a natural extension of (A3.2.17), the appropriate maximization problem 
for determining 2 2( , )u v  is given by 

 
(A3.2.30) maximize: 2 2u Av      subject to:  2 2 1 1( , ) ( ) ( )u v u v    

 
Moreover, 1( )u  and 1( )v are again a nonempty closed bounded subsets of n for 2n   

[implying that 1 1( ) ( )u v   must be a nonempty closed bounded subset of 2n ]. So the 

same argument using the Generalized Extreme Value Theorem again shows that a 
solution to (A3.2.30) must exist. Since the above constraint conditions for 2 2( , )u v  can be 

equivalently stated as 
 
(A3.2.31) 2 2 2 2 2 1 2 11 , 1 , 0 , 0u u v v u u v v        
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it follows that the appropriate Lagrangian function for this problem takes the form: 
 
(A3.2.32) 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1
2( , , , , , ) [ (1 ) (1 )]L u v s u Av s u u v v            

 
                                                             2 2 1 2 2 1( ) ( )u u v v     

 
Here the first order conditions for 2u  and 2v  are given respectively by 

 
(A3.2.33) 

2 2 2 2 2 1 2 2 2 2 10 u L Av s u u Av s u u          
 

(A3.2.34) 
2 2 2 2 2 1 2 2 2 2 10 v L A u v v A u v v             

 
with corresponding first order conditions for 2 2 2 2( , , , )s     given precisely by the 

conditions in (A3.2.31) above. At this point it is important to recall from the discussion in 
Section 8 of the Appendix to Part II that the validity of this Lagrangian formulation 
requires that the constraint gradient vectors be linearly independent [recall expression 
(A3.1.24) above]. But this is automatically guaranteed by the mutual orthogonality of 

2 1( , )u u  and 2 1( , )v v . Hence the task remaining in this second step is to show that 

2 20   , so that (A3.2.33) and (A3.2.34) will have the same form as (A3.2.18) and 

(A3.2.19). But since the solution in (A3.2.32) is assumed to satisfy (A3.2.18) and 
(A3.2.19), together with (A3.2.31), it follows by premultiplying (A3.2.33) by 1u  that 

 
(A3.2.35) 1 2 2 1 2 2 1 1 2 20u Av s u u u u             

 
            2 1 2 1 2 1 1 2 1 1 2( ) ( ) ( ) 0u Av A u v s v v s v v                

 
Similarly, premultiplying (A3.2.34) by 1v , we see that 

 
(A3.2.36) 1 2 2 1 2 2 1 1 2 20v A u s v v v v              
 

             2 1 2 1 2 1 1 2 1 1 2( ) ( ) ( ) ( ) 0v A u Av u s u u s u u                

 
Hence  2 20   , and conditions  (A3.2.33) and (A3.2.34) reduce to  

 
(A3.2.37) 2 2 2Av s u  
 

(A3.2.38) 2 2 2A u v   

 
Moreover, exactly the same argument in (A3.2.21) with 2 2 2( , , )u s v  replacing ( , , )u s v  

now shows that 2 2s  , so that (A3.2.38) becomes 
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(A3.2.39) 2 2 2A u s v   

 
Hence the maximal stretch, 2s , for transformation A  among vectors in 1( )v is achieved 

at 2v , and similarly, the same maximal stretch for transformation A  among vectors in  

1( )u  is achieved at 2u . Most importantly for our present purposes, expression (A3.2.37) 

shows that 2 2 2( , , )u s v  yields the desired second row for the SVD in expression (A3.2.28). 

Note finally that this solution 2 2 2( , , )u s v  may not be unique, even when 1 1 1( , , )u s v  is 

unique [such as in the modification of example (A3.2.11) illustrated above]. But all such 
solutions must necessarily satisfy conditions (A3.2.31), (A3.2.37) and (A3.2.39). 
 
The task remaining is to extend this argument by induction to all rows of (A3.2.28). To 
do so, we start with the inductive hypothesis that for a given k n , the first 1k   rows  
have been filled with triplets, ( , , ) , 1,.., 1i i iu s v i k  , satisfying 

 
(A3.2.40) , 1,.., 1i i iAv s u i k    
 

(A3.2.41) , 1,.., 1i i iA u s v i k     
 

(A3.2.42) 1 , 1,.., 1i i i iu u v v i k      
 

(A3.2.43) 0 , , 1,.., 1,i j i ju u v v i j k i j       

 
If we now let 1 1( ,.., ) { : 0, 1,.., 1}k n iu u u u u i k        denote the set of vectors in n  

orthogonal to 1 1( ,.., )ku u  , and similarly let 1 1( ,.., ) { : 0, 1,.., 1}k n iv v v v v i k        

denote the vectors in n  orthogonal to 1 1( ,.., )kv v  , then since these nonempty sets are again 

closed and bounded, one final application of the Generalized Extreme Value Theorem 
shows that the maximization problem 
 
(A3.2.44) maximize:  k ku Av     subject to:  1 1 1 1( ) ( ,.., ) ( ,.., )k k k ku v u u v v     

 
must have a solution. Moreover, as an extension of (A3.2.31) and (A3.2.32), it follows that 
if the constraint conditions on ( , )k ku v  are written explicitly as 

 
(A3.2.45) 1 , 0 , 1,.., 1k k k k k i k iu u v v u u v v i k          

 
then the appropriate Lagrangian function for (A3.2.44) is seen to have the form: 
 
(A3.2.46) 1 1 1 1

1
2( , , , , ,..., , ,.., ) [ (1 ) (1 )]k k k k k k k k k k k k k kL u v s u Av s u u v v               

 

                                                   
1 1

1 1
( ) ( )

k k

i k i i k ii i
u u v v  

 
     
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Here the first order conditions for ku  and kv  have the respective forms 

 

(A3.2.47) 
1 1

1 1
0

k

k k

u k k k i i k k k i ii i
L Av s u u Av s u u  

 
          

 

(A3.2.48) 
1 1

1 1
0

k

k k

v k k k i i k k k i ii i
L A u v v A u v v    

 
           

 
and the remaining first order conditions are now given by (A3.2.45). [Note again from 
the orthogonality conditions in (A3.2.45) that the constraint gradient vectors in both 
(A3.2.47) and (A3.2.48) are linearly independent, so that this Lagrangian formulation of 
(A3.2.46) is indeed valid.] Next, to show that 0 , 1,.., 1j j j k     , we again 

premultiply (A3.2.47) by ju  and use the inductive hypotheses (A3.2.40) through 

(A3.2.43) together with (A3.2.45) to conclude that 
 

(A3.2.49) 
1

1
0 [ ( ) 0]

k

j k k j k i j i j j j ji
u Av s u u u u u u  


           

 
  ( ) ( ) ( ) 0j j k j k j j k j j ku Av A u v s v v s v v                

 
Similarly, by premultiplying (A3.2.48) by jv , we see that 

 

(A3.2.50) 
1

1
0 [ ( ) 0]

k

j k k j k i j i j j j ji
v A u v v v v v v   


            

 
                        ( ) ( ) ( ) 0j j k j k j j k j j kv A u Av u u u u u                 

 
Hence (A3.2.47) and (A3.2.48) reduce to  
 
(A3.2.51) k k kAv s u  

 
(A3.2.52) k k kA u v   

 
Finally, since the argument in (A3.2.21) with ( , , )k k ku s v  replacing ( , , )u s v  again shows 

that k ks  , we see that (A3.2.52) becomes 

 
(A3.2.53) k k kA u s v   

 
Thus the conditions in (A3.2.40) through (A3.2.43) hypothesized for 1,.., 1i k   are seen 
to hold for k as well, and it follows by induction that they must hold for all 1,..,i n . 
Most importantly for our purposes, conditions (A3.2.40) together with (A3.2.42) and 
(A3.2.43) are now seen to yield a full SVD for A as in expression (A3.2.28).   
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This particular proof of the SVD Theorem has a number of additional geometric 
consequences. Note first from (A3.2.45) and (A3.2.51) that  
 
(A3.2.54) ( ) , 1,..,k k k k k ku Av s u u s k n     

 
so that the stretch values, ks , are indeed the maximum values of the objective function, 

k ku Av , at each step, k.  Moreover, since this objective function is formally the same at 

each step, and since the constraints sets form a nested decreasing sequence of sets, i.e.,  
 
(A3.2.55) 1 1 1 1 1 1( ,.., ) ( ,.., ) ( ,.., ) ( ,.., ) , 1,..,k k k ku u v v u u v v k n         

 
it follows that these maximal values must necessarily form a non-increasing sequence, so 
that 
 
(A3.2.56) 1 2 ns s s    

 
In geometric terms, these singular values thus yield the successive lengths of the principle 
axes corresponding to the ellipsoidal image, ( )nA  , of the unit sphere, n , under the 

linear transformation,  A. In particular, if 1 2 0ns s s    , then A is nonsingular and 

and the n-dimensional ellipsoid, ( )nA  , has a well defined set of principle axes. 

However, if there are say k repetitions of a positive singular value, such as in the 
modified version of Figure A3.17 illustrated above with 2k  , then a k-dimensional 
“slice” through this ellipsoid will be spherical. Similarly, if the last k singular values are 
zero, then A is singular and its null space, ( )null A ,  has exactly dimension k. So a great 
deal of information about A is conveyed by these singular values. 
 
However, it should also be emphasized that the programming formulation of this proof is 
not meant to provide a method for computing the SVD of a matrix. This is particularly 
evident when there are repeated positive singular values (either positive or zero). Here 
there are infinitely many programming solutions, and procedures such as Gram-Schmidt 
orthogonalization must be used to construct appropriate orthonormal sets of solution 
vectors. While there exist very efficient methods for constructing such decompositions 
(often based on Householder representations in section A3.1.2 above), such procedures 
are beyond the scope of these notes.9 
 
We now consider some of the more useful consequences of the SVD Theorem for our 
purposes. As already mentioned, one direct consequence is to clarify the geometric 
relation between A and A . In particular, it follows at once from (A3.2.27) together with 
(A3.1.13) that  
 
(A3.2.57)  A USV A VSU      

                                                 
9 For a discussion of such methods as used by MATLAB, see Chapter 10 of Mohler (2004). 
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So the singular values of A and A  must always be the same. More the above proof shows  
their respective ellipsoidal images, ( )nA   and ( )nA  , of the unit sphere, n , must 

essentially be rotations of one another, where the roles of the orthonormal matrices, U 
and V , are exactly reversed. A simple illustration of this relationship is given in Figure 
A3.22 below, where the unit circle, 2 , is shown in black, and the elliptical images, 

2( )A   and 2( )A  , for a given matrix, A, 10 are shown in blue and red, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Next we consider a number of SVD consequences that will be used in our subsequent 
analyses. 
 
 
A3.2.1. Inverses and Pseudoinverses. 
 
Note first that since the inverse of an orthonormal matrix is simply its transpose, it 
follows at once from the SVD Theorem that for any nonsingular matrix, A, 
 

(A3.2.58) 
1

1
1

1 1
1

1

( ,.., )

n

s

n

ns

u

A U SV A V S U v v

u

 

 
 

      
  

  

 
Thus, by recalling (A3.1.11), we see that the inverse, 1A , can be determined from the 
SVD of A almost by inspection. While this of course assumes that this SVD has already 
been calculated, it nonetheless provides a powerful analytical tool in many contexts. For 
example, it now reveals the behavior of “almost nonsingular” matrices, which by 
                                                 
10 The particular matrix used here was A = [1.0689, 2.9443 ; 0.8095, -1.4384]. 

2( )A   2( )A   

2  

Figure A3.22. Ellipsoidal Relations for Transposes 
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definition have at least one singular value, is , very close to zero. But since this in turn 

implies that 1/ is must be very large, it can be seem from the last equality in (A3.2.58) 

that vectors in the iu  direction are being stretched enormously. So this shows not only 

that 1A  is becoming unstable, but also the directions in which this instability is worst. 
 
Even more important is the fact that this SVD shows how to construct generalized 
inverses for singular matrices. In particular, when no inverse exists for A, this SVD 
representation suggest a very natural “best approximation” to such an inverse. The idea is 
seen most clearly in trying to solve the associated linear equation system, A x b . If 1A  

exists, then there is an exact solution, 1x A b . But if A  is singular, one would like to 
find x  so that Ax is as “close” to b as possible, i.e. so that || ||Ax b  is minimized. But by 
(A3.2.54),11 
 

(A3.2.59) ( ) ( ) ( )Ax b U SV x b U SV x UU b U SV x U b U S x b               
 

where x V x  and b U b . But since U is orthonormal and hence preserves distances, it 
follows that 

(A3.2.60) 
1 1 1 1 1 1

|| || || ||

n n n n n n

s x b x s b

Ax b S x b

s x b x s b

     
               

            

  
    

  
 

 

So this approximation problem has now been reduced to a diagonal form for which the 
solution is seen to be trivial, namely, set 
 

(A3.2.61) 
/ , 0

0 , 0
i i i

i

i

b s s
x

s

  



  

 

Finally, if we assume (for convenience) that the first k components of S  are the positive 
ones, and set 
 

(A3.2.62) 1 1
1( ,.., ,0,..,0)kS diag s s    

 

then it follows from (A3.2.61) together with the definitions of x  and b  that 
 

(A3.2.63) ( )x S b V x S U b x V S U b          
 
Finally, since this argument is completely independent of the choice of b, it follows by 
setting 
 

                                                 
11 The following argument is base on the excellent discussion of SVD properties in Kalman (1996). 
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(A3.2.64) A V S U    
 

that A  yields a natural generalization of (A3.2.58) which is designated as the 
pseudoinverse (or Moore-Penrose inverse) of A. Moreover, since minimizing distance is 
the same as minimizing squared distance, this pseudoinverse, A , always provides the 
least squares solution to linear equation systems.  
 
These observations are immediately applicable to OLS regression. In particular, recall 

from expression (A2.7.69) that the least squares solution, ̂ , for estimating   satisfies 
the linear equation system: 
 

(A3.2.65) ˆ( )X X X y   
 

So if 1( )X X   exists (as was assumed) then 1ˆ ( )X X X y   . But in cases where X X  is 
singular, one can still determine a least squares solution by setting 
 

(A3.2.66) ˆ ( )X X X y    
 
Moreover, even in cases where X X  is technically nonsingular but is in fact “almost 
singular” (i.e., exhibits strong multicollinearities), one can often obtain a more stable 
estimate by using (A3.2.66). So the SVD Theorem is seen to have very practical 
applications in such cases. 
 
A3.2.2. Determinants and Volumes 
 
Recall from expression (3.2.11) in Part II of this NOTEBOOK that we encountered 
determinants in the density function of the multi-normal distribution. The main objective 
of this section is to clarify the role of determinants in such densities, and to emphasize 
their broader role in describing the volume changes associated with linear 
transformations. To do so, we require some preliminary facts about matrix determinants. 
For the simple case of a 2 2  matrix, A, recall that the determinant of A is given by 
 

(A3.2.67) 11 12
11 22 12 21

21 22

| |
a a

A A a a a a
a a

 
    
 

 , 

 
which in turn plays a critical role in calculating the inverse of A: 
 

(A3.2.68) 22 121

21 11

1

| |

a a
A

a aA
  

   
 

 

[In fact, the determinant itself originated as part of the first general solution of linear 
equations (Cramer’s Rule, 1750).] Note in particular from (A3.2.68) that such solutions 
exist iff | | 0A  . The geometric meaning of this relationship will become clear below. 
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But for the present, we simply note that the formula in (A3.2.67) offers little insight by 
itself. Indeed, the general formula for determinants (in terms of alternating-signed sums 
of products of matrix elements)12 is even more obtuse. But one important observation 
about this formula can be made in terms of the following instance of a Householder 
reflection, vA H , in 2  [recall expression (A3.1.44) above], where in this case 

(1, 1)v    [with 2v v  ], so that:  
 

(A3.2.69) 2 2
2 1 1 0 1

1 1 1 0v vA I vv I
             

  

 

By expression (A3.2.67) this matrix has a negative determinant, | | 1A   . To interpret 
the meaning of this negative sign, note from Figure A3.23 below that this transformation 
simply reverses the basis vectors, 1 2( , )e e , so that 1 2 2 1( , ) ( , )A e e e e : 

 
 
 
 
 
 
 
 
 
 
 
More generally, negative values of determinants are always associated with such 
reversals of orientation. But this “sign” property of determinants is not of direct interest 
for our purposes (even though the present Householder example will prove useful later). 
Rather, we are primarily interested in the absolute value of determinants. As mentioned 
above, these absolute values tell us exactly how volumes are transformed under linear 
transformations. The standard example which is often shown in the literature is illustrated 
in Figure A3.24 below: 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
12 See for example section 0.3 in Horn and Johnson (1985) 

1Ae  

2Ae  

v  

v  

Figure A3.23. Order Reversal 

11 21( , )a a   

(1,0)  

(0,1)  (1,1)  
12 22( , )a a   11 12 21 22( , )a a a a    

11 22 12 21a a a a  
1 

Figure A3.24.  Volume Transformation 
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In terms of Figure A3.3, we here set 1 2 1 11 21(1,0) , (0,1) , ( , )e e Ae a a     and 

2 12 22( , )Ae a a   in order to emphasize the role of each matrix element. The key point is 

that the unit area of the unit square on the left is transformed by A into a parallelogram on 
the right with area given precisely by | |A , which in the case is seen to be positive (no 
reversal of orientation). This in turn implies (from linearity) that every area on the left is 
transformed by A into an area scaled by a factor of | |A . But even in this simple case, it is 

not obvious that the parallelogram area should be given by 11 22 12 21a a a a . While the 

geometric proof in this case is not difficult, its generalization to linear transformations, A, 
in n is tedious, to say the least. So our first objective is to show that this relation 
between volume and absolute determinant values can be made completely transparent in 
terms of the SVD of A. 
 
To do so, we must first deal with the (unfortunate) notational fact that the symbol, | | , is 
used both for determinants and absolute values. This is often resolved by using “ det( )A ” 
for the determinant of A, so that its absolute value can be directly represented by 
| det( ) |A . But since the relevant determinants for our purposes will almost always be 
nonnegative, we choose to stay with the simpler notation, | |A . Where it is essential to 
specify absolute values of determinants (such as in the present section) we shall simply 
write, | |A  . 

 
Aside from this notational convention, the only algebraic properties of determinants that 
we require are the product rule, 
 
(A3.2.70) | | | | | |AB A B  
 
the symmetry rule, 
 
(A3.2.71) | | | |A A   
 
and the diagonal rule, 
 
(A3.2.72) 1 2 1 2| ( , ,.., ) |n ndiag a a a a a a   

 
Note in particular that for absolute values, the product rule implies 
 
(A3.2.73) | | | | | |AB A B    

 
Together with the SVD Theorem, these properties of determinants imply that the absolute 
determinant of any matrix is the product of its singular values, i.e., that for all 
transformations, A, in (A3.2.28) 
 

(A3.2.74) 1 1
( ,.., ) | |

n

n ii
A U diag s s V A s 

    
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To see this, note first from (A3.2.72) that | | 1nI  , so that by the defining property of 

orthonormal transformations, U,  
 
(A3.2.75) 21 | | | | | || | | | | | 1nI U U U U U U         

 
Hence the absolute determinant of U  must be unity, i.e., 
 
(A3.2.76) | | 1U orthonormal U    

 
Hence it follows from (A3.2.70) and (A3.2.72) that 
 
(A3.2.77) 1 1( ,.., ) | | | | | ( ,.., ) | | |n nA U diag s s V A U diag s s V        

 
                                                                  1(1) | ( ,.., ) | (1)ndiag s s  

 

                                                                  
1

n

ii
s


   

  
Using this result, it is a simple matter to show that for any linear transformation, A, on 

n , volumes are transformed by a factor of | |A  . To do so, observe that if the unit cube 

in n  is denoted by  
 
(A3.2.78) 1[0,1] { ( ,.., ) : 0 1, 1,.., }n n

n n iC x x x x i n        

 
and if we denote the volume of any set, nT    by ( )vol T ,13 then clearly ( ) 1nvol C  . So 

if the image of nC  under transformation A is denoted by   

 
(A3.2.79) ( ) { : }n nA C Ax x C   

 
then it suffices to show that [ ( )]nvol A C is always given by | |A  . But since each linear 

transformations scales all volumes by the same amount, if we now denote this common 
scale factor by ( ) [ ( )]ns A vol A C ,14 then for all nT   , 

 

(A3.2.80) 
[ ( )] [ ( )]

( ) [ ( )] ( ) ( )
( ) ( )

n

n

vol A T vol A C
s A vol A T s A vol T

vol T vol C
     

 
In these terms, our objective is to show that for any linear transformation,  A, on n , 
 

                                                 
13 The knowledgeable reader will note that technically we here refer to any measurable set, nT   . 
14 Be careful not to confuse scale factors, ( )s A , with singular values, s. 
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(A3.2.81) ( ) | |s A A   

 
Here we need only appeal to certain elementary properties of volume itself. The most 
fundamental property concerns scale transformations of individual coordinates. For 
example, if a transformation scales all coordinate axes by 2 , then volumes increase by a 
factor of 2n . More generally, since positive diagonal matrices, 1( ,.., )nD diag d d , scale 

each coordinate, ix , by a factor of id , i.e., since  

 
(A3.2.82) 1 1 1( ,.., ) ( ,.., )n n nDx D x x d x d x   , 

 
it follows that 1 2[ ( )]n nvol D C d d d  , so that by definition 

 

(A3.2.83) 1 2 1
( , ,.., ) ( )

n

n ii
D diag d d d s D d


    

 
In fact, this is how volumes of n-dimensional “boxes” are computed. Note also that if 
coordinates are scaled by factors, id , one at a time, then since the composition of these 

transformations is precisely D, the cumulative effect of these scale changes is necessarily 
multiplicative. More generally, the cumulative scale effect of any successive 
transformations, say A followed by B , is always multiplicative. For example, if A doubles 
volumes and B triples volumes, then the composite transformation, BA, increases 
volumes by a factor of (2)(3) 6 . More generally, for all transformations, A and B,  
 
(A3.2.84) ( ) ( ) ( )s BA s B s A  
 
The only other property of volume that we require is one we have already seen, namely 
that orthonormal transformations preserve volumes. So by definition, 
 
(A3.2.85) ( ) 1U orthonormal s U   
 
Given these volume properties, it follows at once from the SVD Theorem together with 
(A3.2.84) that 
 
(A3.2.86)  1 1( ,.., ) ( ) ( ) [ ( ,.., )] ( )n nA U diag s s V s A s U s diag s s s V     

 

                                                                   1
(1) (1)

n

ii
s


   

 
                      | |A   

 
This result has far reaching consequences for determinants, and shows why they play 
such a fundamental role in linear algebra. With respect to matrix inverses in particular, 
note that if | | 0A   (so that | | 0A   ) then ( ) 0s A   implies that all volumes are 
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collapsed to zero. So from a geometric viewpoint, A  must collapse the space into a lower 
dimensional subspace, such at the examples in Figures A3.20 and A3.21 above. 
 
A3.2.3 Linear Transformations of Random Vectors   
 
The final objective of this section is to illustrate the consequences of these results for 
linear transformations of random vectors. In particular, our objective is to complete the 
derivation of the multi-normal distribution sketched in Section 3.2.1 of Part II in this 
NOTEBOOK, and to show how the multi-normal density in (3.2.11) is derived. The key  
element we focus on is the role of the determinant, | | , of the covariance matrix,  . In 
fact, this determinant reflects the volume transformation associated with a particular 
linear transformation, as we now show. To do so, we start by considering the standard 
normal random vector, 1( ,.., )nX X X  , of independent standard normal variates, 

~ (0,1), 1,.., .iX N i n  Recall from the Linear Invariance Theorem of Section 3.2.2 of 

Part II that if for some nonsingular matrix, A ,  the random vector, Y , is defined by 
 
(A3.2.87) Y AX      , 
 
then since ~ (0, )nX N I , this theorem asserts that ~ ( , )Y N    with AA  .  Moreover, 

since all covariance matrices,  , are of this form for some A [as we have already seen 
from the Cholesky Theorem in Appendix A2, below expression (A2.7.45)], it follows that 
all multi-normal random vectors, Y, are derivable as linear transformations of the 
standard normal vector, X. In fact, this is precisely how the general multi-normal 
distribution is defined.  
 
Our goal is to establish this result by starting with the probability density of the standard 
normal random vector, X, and show how this density is transformed under (A3.2.87). To 
do so, we first recall from the argument in (3.2.7) of Part II [with ( , ) (0,1)i i   , 

1,..,i n ] that the probability density, 1( ) ( ,.., )nf x f x x , of  the standard normal random 

vector, X, is necessarily of the form: 
 

(A3.2.88)       2 21 1
12 21 1

1 2 2
( ) ( ) ( ) nx x

nf x f x f x e e
 

     

                               2 21 1
12 2( ) / 21

2
(2 )n

n x x x xne e


       

 
where 1( ,.., )nx x x  . So to obtain the desired distribution of Y, it suffices to show that 

this standard normal density is transformed by (A3.2.87) into a probability density, 

1( ) ( ,.., )ng y g y y , of the form (3.2.11) in Part II, i.e., that:  

 

(A3.2.89) 
1( ) ( )/ 2 1/ 2

1
2( ) (2 ) | |

y yng y e
 

       
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But before doing so, it is important to emphasize that even though expressions like 
(A3.2.87) are usually referred to as “linear transformations”, they technically involve 
linear transformations, A, plus translation terms,  (and are properly classified as affine 
transformations).  Only in the case, 0  , is this a linear transformation [as defined in 
(A3.1.1) above]. So to simplify the present development further, we start with the case, 

0  , where (A3.2.87) reduces to a proper linear transformation,  
 

(A3.2.90) Y AX   
 

It will be seen later that adding a nonzero translation term,  , is then  a simple matter. 
 

To begin this development, we start by observing the role of the determinant, | | , in 
(A3.2.89) in fact has nothing to do with “normality” itself. So clarify this role, it is more 
convenient to regard X in (A3.2.90) as a general continuous random vector with 
density, ( )f x . To derive the associated density, ( )g y , of Y , we begin by recalling that all 
probability densities are by definition representations of event probabilities  in  terms of 
volumes. In particular, if for any selected value, 0 01 0( ,.., )ny y y , of Y we consider small 

intervals, 0 0 0( ) [ , ]i i iy y      about each component value, 0iy , for some 0  , and 

denote the n-cube defined by these intervals as,  
 
(A3.2.91) 0 01 02 0( ) ( ) ( ) ( ) n

n            , 

 
then the probability, 0Pr[ ( )]Y  , of event 0 ( )  is represented by the integral of 

density g over this region of n , i.e., 
 

(A3.2.92) 
0 0 01

0 1 1( ) ( ) ( )
Pr[ ( )] ( ) ( ,.., )

n
n nY g y dy g y y dy dy

  


  
       

 
This is illustrated for the case of 2n   on the right-hand side of Figure A3.25 below, 
where the 2-cube, 0 ( ) , is seen to be a square (shown in blue) about point, 0y  : 

  
 
 
 
  
 
  
 
 
 
 
 
 
 

● 

● 

● 

● 
1

0( )f A y  
0( )g y  

1
0A y  

0y  

1y  

2y  

1x  

2x  

0 ( )  1
0[ ( )]A    

1A

02( )  

01( )  

Figure A3.25.  Linear Transformation of Variables 
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So the probability integral in (A3.2.92) is simply the volume under that portion of 
density, g, above this square (also shown in blue). The key point here is that if the value 
of    is sufficiently small, then this volume is well approximated by the box with base, 

0 ( ) , and height, 0( )g y .  More precisely, if the area (more generally, volume) of this 

base is denoted by 0[ ( )]vol  , so that the volume of the box (height   base) is given by, 

0 0( ) [ ( )]g y vol  , then we obtain the approximation:  

 
(A3.2.93) 0 0 0Pr[ ( )] ( ) [ ( )] ( )YY g y vol e       

 
where the magnitude of error term, ( )Ye  , is assumed to be much smaller than 

0[ ( )]vol  , so that as   approaches zero,  

 

(A3.2.94) 0
0

( )
lim 0

[ ( )]
Ye

vol

 


 

 
To gain some feeling for such error representations, observe that if we divide both sides 
of (A3.2.93) by 0[ ( )]vol  , and let 0   then we obtain 

 

(A3.2.95) 0
0 0

0

Pr[ ( )]
lim ( )

[ ( )]

Y
g y

vol








 , 

 
which is essentially definition of probability density, 0( )g y , at 0y .  

 
In order to associate these quantities with the random vector, X, observe from (A3.2.90) 
that since, 1y Ax x A y   , it follows that Y-outcome, y, occurs iff  X-outcome, 

1A y , occurs. So by using the same image notation in (A3.2.10) to write 
 
(A3.2.96) 1 1

0 0[ ( )] { : ( )}A A y y      

 
we obtain the following probability identity 
 

(A3.2.97)    1 1 1
0 0 0Pr[ ( )] Pr [ ( )] Pr [ ( )]Y A Y A X A            

 
This provides the key link between the X and Y distributions. The X-event in the last 
equality is shown (for the 2n   case) on the left-hand side of Figure A3.25 as a 
parallelogram (in red) representing the image of 0( )  under 1A . (Note also that the 

bold red arrow shows the direction of this inverse relationship.)  But since X is 
continuously distributed with density,  f, this probability again has a “box” approximation 
with base, 1

0[ ( )]A   , and height, 1
0( )f A y , i.e., 
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(A3.2.98)    1 1 1
0 0Pr [ ( )] ( ) [ ( )] ( )XX A f A y vol A e          

 
where the error, ( )Xe  , again satisfies 

 

(A3.2.99)  0 1
0

( )
lim 0

[ ( )]
Xe

vol A



 




 

 
But now we are in a position to simplify (A3.2.98) by using (A3.2.86), together with 
(A3.2.80) to obtain 
 

(A3.2.100)  1 1 1
0 0 0[ ( )] ( ) [ ( )] | | [ ( )]vol A s A vol A vol    

      

 
This can be further simplified by recalling from the same argument as (A3.2.75) that 
 
(A3.2.101) 1 1 1 1 1 11 | | | | | || | | | | | | | | |nI A A A A A A A A     

         

 
so that (A3.2.100) becomes: 
 

(A3.2.102)  1 1
0 0[ ( )] | | [ ( )]vol A A vol  

    

 
By combining the results in (A3.2.93), (A3.2.97), (A3.2.98) and (A3.2.102), we obtain 
the identity 
 
(A3.2.103) 0 0 0( ) [ ( )] ( ) Pr[ ( )]Yg y vol e Y       

 

                                                                   1
0Pr [ ( )]X A     

 
                                                                  1 1

0 0( ) | | [ ( )] ( )Xf A y A vol e  
    

 
which after dividing by 0[ ( )]vol   and again using (A3.2.102) yields 

 

(A3.2.104) 1 1
0 0

0 0

( ) ( )
( ) ( ) | |

[ ( )] [ ( )]
Y Xe e

g y f A y A
vol vol

 
 

 
  

 
 

 

                                    
1 1

0 1
0

( )
| | ( )

[ ( )]
Xe

A f A y
vol A




 
 

    
  

 

 
Finally, by letting 0   and using (A3.2.95) and (A3.2.99) , we obtain the density 
relation: 
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(A3.2.105) 0 0
0

( )
( ) lim

[ ( )]
Ye

g y
vol


 

  
1 1

0 0 1
0

( )
| | ( ) lim

[ ( )]
Xe

A f A y
vol A





 
  

   
  

 

                                                
                             1 1

0 0( ) ( ) | |g y f A y A 
   

 
But since this is an identity for all choices of 0y , we can now replace 0y  by y and write 

 
(A3.2.106) 1 1( ) ( ) | |g y f A y A 

  

 
This is the key result for constructing density, ( )g y , from ( )f x  under linear 
transformations, Y AX , as in (A3.2.88). Essentially it asserts that the desired density, 

( )g y , at y is obtained by evaluating  f  at 1A y  and rescaling to adjust for the volume 
changes created by A. 
 
But before applying this result to the multi-normal case, we first extend (A3.2.102) to 
include translations as in (A3.2.87). To do so, observe that if we now let Z Y    so 
that 
 
(A3.2.107)  Y AX Y AX Z AX         
 
then Z is seen to be related to X by a linear transformation. Hence if ( )h z  denotes the 
density of  Z, then it follows from (A3.2.106) that  
 
(A3.2.108) 1 1( ) ( ) | |h z f A z A 

  

 
But since Y is related to Z by a simple translation operator, T, defined by 
 
(A3.2.109) ( )Y T Z Z     
 
with associated inverse,  
 
(A3.2.110) 1( )Z T Y Y     
 
we can now use ( )h z  to obtain ( )g y  from these relations. Here the key point to note is 

that translations on n simply shift locations, and involve no rescaling of volumes.15 So 
in fact, the relation between h and g in this case reduces simply to: 
 
(A3.2.111) 1( ) ( ) ( )g y h T y h y     

                                                 
15 Here it is worth noting that the terms isometric transformations and rigid motions mentioned at the 
beginning of Section A3.1.2 formally include translations as well as rotations and reflections, since all such 
transformations preserve both distances and angles.  
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Finally, by combining (A3.2.108) and (A3.2.111), we obtain the desired general relation 
 
(A3.2.112) 1 1( ) [ ( )] | |g y f A y A 

   

 
between densities g and f for linear transformations plus translations in (A3.2.87). 
 
Before applying this to the multi-normal case, we can make one additional observation 
about covariances that is independent of normality. Recall from expression (3.2.21) in 
Part II of the NOTEBOOK that  
 
(A3.2.113) cov( ) cov( )Y AX Y A X A      
 
So if we let cov( )Y    and assume that cov( ) nX I , then as in the standard normal 

case of (A3.2.87) we obtain the formal identity: 
 
(A3.2.114) nAI A A A     

 
But by the determinantal identities in (A3.2.70) and (A3.2.71), this in turn implies that 
 
(A3.2.115) 2| | | || | | | 0A A A     
 
So (as we have already seen in Sylvester’s Condition leading to the Cholesky Theorem in 
Appendix A2) the determinant of every (nonsingular) covariance matrix is positive. This 
means that “plus” subscripts can be dropped for determinants of covariance matrices. In 
particular, by letting 1/ 2| |  denote the positive square root of | | , it follows that 
 
(A3.2.116) 1/ 2| | | |A     

 
and hence that (A3.2.112) can also be written as 
 
(A3.2.117) 1 1/ 2( ) [ ( )] | |g y f A y      
 
[with the understanding that cov( )Y  ]. 
 
Finally, to apply these results to the multi-normal case, we need only observe that if X is 
standard normal, ~ (0, )nX N I , with density in (A3.2.88), then ( )g y  in (A3.2.117) takes 

the form: 
 
(A3.2.118) 1 1/ 2( ) [ ( )] | |g y f A y        
 

                        1 11
2[ ( )] [ ( )]/ 2 1/ 2(2 ) | |A y A yn e  

       
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1 11
2 ( ) ( ) ( )( )/ 2 1/ 2(2 ) | | y A A yn e  

        
 

But by (A3.2.114) together with the matrix identities in (A3.1.18) and (A3.1.20) we see 
that 
 
(A3.2.119) 1 1 1 1 1 1( ) ( ) ( ) ( )A A A A A A            
 
so that (A3.2.118) becomes 
 

(A3.2.120) 
11

2 ( ) ( )/ 2 1/ 2( ) (2 ) | | y yng y e  
       

 
Thus the resulting probability density is precisely that in (A3.2.89), and the multi-normal 
case is established. In particular, the family of multi-normal random vectors, 

~ ( , )Y N   , is seen to be generated by transformations, Y AX   , of the standard 
normal random vector, X, satisfying AA  , with A nonsingular. As an immediate 
consequence of this, we have the following simple proof of the Linear Invariance 
Theorem of Section 3.2.2 of Part II, which we now restate for convenience as: 
 
 
Linear Invariance Theorem. For any multi-normal random vector, ~ ( , )X N    , 
and affine transformation, Y AX b  , of X with A of full row rank, Y is also  
multi-normally distributed as 
 
 (A3.2.121) ~ ( , )Y N A b A A      
 

 
Proof:   If C denotes the Cholesky decomposition of   so that CC  , and if 

we define the random vector, Z, by 
 
(A3.2.122) 1( )Z C X    
 
so that by construction, 
 
(A3.2.123) X CZ    
 
then the argument above shows that ~ (0, )nZ N I .  But since 

 
(A3.2.124) ( ) ( ) ( )Y A X b A C Z b AC Z A b          
 
shows that Y  is an affine transformation of Z, the same argument shows that Y is multi-
normally distributed. Moreover, from expressions (3.2.18) and (3.2.21) in Part II we see 
that the mean and covariance of Y are given respectively by 
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(A3.2.125) ( ) ( ) ( )E y AC E Z A b A b      ,  and 
 
(A3.2.126) cov( ) cov[ ( )] ( )cov( )( )Y AC Z A b AC Z AC      

 
                        ( ) ( )nAC I C A A CC A A A         

 
Thus we must have ~ ( , )Y N A b A A   , and the result is established.   
 
Finally it is important to clarify the above requirement that A be of full row rank. Note in 
particular that if A has fewer rows than columns, say m n , then the random vector, 
Y AX b  , must be of dimension m (where b must also be m-dimensional so that vector 
addition is well defined). So it is implicitly assumed that ( , )N A b A A    is a multi-

normal distribution on m  with density given by replacing   and   in (A3.2.120) with 
A b   and A A , respectively. With this in mind, it should be clear from (A3.2.120) 
that such a density is only defined if A A  is a nonsingular covariance matrix (i.e., with 
a well defined inverse). As shown in Corollary 3 of Section A3.4.3 below, the condition 
that A be of full row rank, insures that the m -square covariance matrix, A A , will 
indeed be nonsingular.  
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A3.3  Eigenvalues and Eigenvectors  
 
As stated earlier, the single most important application of the Singular Value 
Decomposition Theorem for our purposes is to provide a simple proof of the Spectral 
Decomposition Theorem for symmetric matrices.  Recall from (A3.2.2) that this theorem 
asserts that if matrix A is symmetric (i.e., A A  ) then there exists an orthonormal 
matrix, U, and diagonal matrix,  , such that 
 
(A3.3.1) A U U   
 
The elements of 1( ,.., )ndiag    are called the eigenvalues of A  and the columns of 

1( ,.., )nU u u  are the associated eigenvectors. However, these concepts are much more 

general, and indeed, provide additional geometric intuition about linear transformations  
in general. In particular, it is useful to consider eigenvalues and eigenvectors for 
nonnegative spatial weight matrices, W, which may possibly be non-symmetric (as for 
example in the case of nearest-neighbor matrices). So it is convenient to start with a 
broader consideration of these concepts, and then focus in on symmetric matrices.  
 
For any given n-square matrix, A, and nonzero vector, nx , if A maps x into a scalar 
multiple of itself, i.e., if 
 
(A3.3.2) Ax x  
 
for some scalar,  , then   is designated as a eigenvalue of A with associated 
eigenvector, x .1 In geometric terms, A simply “stretches” or “shrinks” each eigenvector, 
x, by a factor,  , with a reversal in direction if 0  .  
 
Before analyzing these concepts, it is important to reiterate that our present view of (real-
valued) matrices, n nA  , is as representations of linear transformations on n . So our 
focus is naturally on the geometric properties of such transformations on the real vector 
space, n . But such matrices can also be viewed as representing a class of linear 
transformations on the complex vector space, n . This distinction is important for the 
present discussion because the general theory of eigenvalues and eigenvectors treats such 
matrices as linear transformations on n . The reason for this can be seen by the 
following equivalent view of eigenvalues. If we rewrite (A3.3.2) as, 
 
(A3.3.3) 0 ( ) 0nAx x A I x       

 
then it becomes clear that the eigenvalues of A are precisely those values for which the 
matrix, nA I , is singular. So, as was observed following expression (A3.2.86) above, 

this is equivalent to the condition that 

                                                 
1 The word “eigen” is German for “own” as in belonging to. So the eigenvalues of A are also referred to as 
its “own” values or “characteristic” values. 
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(A3.3.4) | | 0nA I   

 
But by the definition of determinants, this is simply a polynomial equation in  , called 
the characteristic equation for A. For example, if 2n  , then by (A3.2.67) above 
expression (A3.3.4) takes the form, 
 

(A3.3.5) 11 12
11 22 12 21

21 22

0 ( )( )
a a

a a a a
a a


 


   

        
  

 

 
So the eigenvalues of 2 2  matrices are thus seen to be the roots of a quadratic equation. 
More generally they are the roots of an thn -degree polynomial called the characteristic 
polynomial for A. In this setting, the key result here is of course the Fundamental 
Theorem of Algebra, which tells us that there are always exactly n roots to this equation 
(counting repetitions) if we allow complex-valued roots. So if A is regarded as a linear 
transformation on n , where both   and x  in (A3.3.2) can be complex-valued, then one 
obtains a very elegant and powerful theory of eigenvalues and eigenvectors. But from a 
geometric viewpoint, there is a fundamental difference between the simple scaling of real 
vectors in n and the corresponding interpretation of expression (A3.3.2) in n . In 
particular, multiplication of complex numbers involves rotation as well as scaling. We 
shall return to these issues in Section A3.5.4 below, where the geometric meaning of such 
rotations will be interpreted in n . But for the present our attention is restricted to the 
case of real eigenvalues. Indeed, one major objective of these notes is to show that the 
eigenvalues of symmetric matrices are always real – without any appeal to complex 
numbers whatsoever. Hence, unless otherwise stated, we implicitly assume that the 
relevant eigenvalues and eigenvectors for matrices, A, in this section are real valued, i.e., 
are meaningful for A as a linear transformation on n .  
 
In this setting, we begin by noting from (A3.3.2) that each eigenvector, x, for   is 
inherently nonunique. In particular, every nonzero scalar multiple, x , of x  is also an 
eigenvector for  , since  
 
(A3.3.6) ( ) ( )A x Ax x x        
  
To remove such obvious redundancies, representative eigenvectors are by convention 
normalized to have unit length, || || 1x  .   
 
With this normalization, the next question concerns the relation between eigenvectors for 
distinct eigenvalues. Our objective is to show that such eigenvectors must always be 
linearly independent. Here some geometric intuition can be gained by considering several 
examples. We start with the simplest and most transparent example of eigenvalues and 
associated eigenvectors, namely those for diagonal matrices, 11( ,.., )nnA diag a a . Here is 

it obvious that  
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(A3.3.7) 
11

1 1( ,.., ) ( ,.., )n n n n

nn

a

AI I A A e e e e

a

 
     
 
 

  

 
   , 1,..,i ii iAe a e i n    

 
So if we now denote the set of eigenvalues for any matrix, A , by ( )Eig A , then for 

diagonal matrices in (A3.3.7) it is clear that ( ) { : 1,.., }iiEig A a i n   with associated 

eigenvectors, , 1,..,ie i n .  This example shows that n-square matrices can indeed have n 

distinct eigenvalues. Notice also that all eigenvectors in this case are in fact orthogonal, 
and hence are necessarily linearly independent even if their eigenvalues are not distinct. 
We shall see below that this property is shared by all symmetric matrices (of which 
diagonal matrices are the simplest example).  
 
Of course, the orthogonal basis in (A3.3.7) is a very special case. A more typical example 
with a full set of eigenvalues is given by the following simple matrix 
 

(A3.3.8) 
3 1

0 2
A

 
  
 

 

 
for which it can easily be verified that the eigenvalues of A are 1 2( ) { , } {3,2}Eig A     

with associated eigenvectors given respectively by 1 1 (1,0)x e    and 

 2 1/ 2, 1/ 2x
  , as shown in Figure A3.26 below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In both these examples, the eigenvectors associated with distinct eigenvalues are indeed 
linearly independent. But the question remains as to whether this is always true. To see 
that it is, we now consider a general matrix, A, and suppose that 1  and 2  are two 

1Ax  1x  

2x  

2Ax  

Figure A3.26.  Non-orthogonal Example 
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distinct eigenvalues of A with associated eigenvectors, 1x  and 2x . Clearly, 1x  and 2x  

cannot themselves be linearly dependent since this would mean that 1 2x x  for some 

0  . But the normalization condition, 1 2|| || || || 1x x  , would then imply that 1   

and hence that 1 2x x , which is not possible for distinct eigenvalues 1  and 2 . 

However, we can still ask whether there could possibly be another vector, 3x , in 

1 2( , )span x x  which is also an eigenvector of A with distinct eigenvalue, 3 , 1,2i i   .  

A representation of 1 2( , )span x x  is shown in Figure A3.27 below where it is assumed for 

sake of illustration that 1 20     and that 3x  (shown in blue) is a positive linear 

combination, 3 1 2x a x b x  , of 1x  and 2x .  

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
Now if 3x  were an eigenvector of A with eigenvalue, 3 , then by definition,  

 
(A3.3.9) 3 3 3 3 1 2 3 1 3 2( ) ( ) ( )Ax x ax bx a x b x         

 
So the coefficients 3 3( , )a b  of this new linear combination of 1x  and 2x  would 

necessarily be proportional to the original coefficients ( , )a b , as shown by all points on 
the blue line in the figure.  But by hypothesis, 
 
(A3.3.10) 3 1 2 1 2 1 1 2 2( ) ( ) ( ) ( ) ( )Ax A ax bx a Ax b Ax a x b x        

 
which together with 1 20    , shows that in fact more weight is now placed on the 

maximal eigenvector, 2x , and thus that proportionality cannot hold. More generally, the 

same argument shows that the image of any vector, 3 1 2( , )x span x x  [not  collinear with 

either 1x  or 2x ] is necessarily “pulled toward” this maximal eigenvector (shown by the 

arrow in the figure), and cannot itself be an eigenvector. So we may conclude that no 

Figure A3.27.  Linear Independence Example 

1x  

 2x  

3x  

2Ax  

1Ax  

3Ax  



  NOTEBOOK FOR SPATIAL DATA ANALYSIS                                         Part III. Areal Data Analysis 
______________________________________________________________________________________ 

_______________________________________________________________________ 
 ESE 502                                                     A3-57                                               Tony E. Smith 

eigenvector with eigenvalue distinct from 1  and 2  can be collinear with 1 2( , )x x , i.e., 

can lie in 1 2( , )span x x . 

 
While this illustration involves only triples of distinct eigenvalues, the argument is in fact 
quite general, and can in be used to show that eigenvectors for distinct eigenvalues must 
always be linearly independent.2  But since our main interest is in symmetric matrices, 
where the argument will seen to be even more transparent, the above example suffices for 
our purposes.  
 
A final property of eigenvalues relates to their possible repetitions, and can again be 
illustrated most easily by diagonal matrices, 11( ,.., )nnA diag a a . Notice in particular that 

this is the one case where the characteristic equation in (A3.3.4) is completely 
transparent, since 
 

(A3.3.11) 
11

110 | | ( ) ( )n nn

nn

a

A I a a

a


  



 
       
  

   

 

This implies at once that the diagonal elements of A are indeed the roots of its 
characteristic equation. If some of these diagonal elements are the same, then such 
repeated roots are designated as algebraic multiplicities. For example, the matrix 

(1,1,3)A diag  has only two distinct eigenvalues, ( ) {1,3}Eig A  , but since (1 ) , 
appears twice in (A3.3.11), this eigenvalue said to have an algebraic multiplicity of two. 
Notice also from (A3.3.7) that since there are two linearly independent eigenvectors for 
this eigenvalue, namely 1e  and 2e , its geometric multiplicity (i.e., the maximum number 

of its linearly independent eigenvectors) is also two. More generally, it follows at once 
from (A3.3.7) that algebraic and geometric multiplicities of eigenvalues are always 
identical for diagonal matrices.  
 
But for general matrices, even when eigenvalues do exist, these two multiplicities need 
not be the same. For example, while the algebraic and geometric multiplicities of 2   
in the diagonal matrix, (2,2)A diag , are both equal to two, consider the following 
(modest) variation of this matrix:  
 

(A3.3.12) 
2 1

0 2
A

 
  
 

 

 
This matrix is still nonsingular, and moreover, has the same characteristic equation, since 

20 | | (2 )(2 )A I       . So the algebraic multiplicity of 2   is two.  But observe 

that if 1 2( , )x x x   is any associated eigenvector, then 

                                                 
2 A simpler and more elegant proof of this fact is given in Lemma 1.3.8 of Horn and Johnson (1985). The 
advantage of the present argument is that it provides some geometric intuition as to why this is true. 
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(A3.3.13) 1 1 1 2 1
2

2 2 2 2

2 22 1
2 2 0

2 20 2

x x x x x
Ax x x

x x x x

     
                

 

 
Moreover, there is only one eigenvector (up to a choice of sign) with this property, 
namely, (1,0)x  . So the geometric multiplicity this eigenvalue is one. Such matrices are 
usually designated as defective matrices in the literature.  The reason for this “defective” 
property can be seen by plotting the transformation, as in Figure A3.28 below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here we have used the vector notation, ( , )v x y  , for points in the plane, and have 

displayed the unique eigenvector by 0 (1,0)v  , with associated image, 

0 02 (0,2)Av v   . To show where all other points are sent, we have fixed the y-

coordinate value at 1y  , and have plotted the four points, 1 ( 2,1)v   , 2 ( 1,1)v   , 

3 (0,1)v  , and 4 (1,1)v  , as shown in blue. Multiplying each of these four vectors by 

matrix A in (A3.3.12), we obtain the corresponding image vectors, 1 ( 3,2)Av   , 

2 ( 1,2)Av   , 3 (1,2)Av  , and 4 (3,2)Av  , shown in red. The key point to notice is 

that all these image vectors are to the right of the original vectors, indicating that (along 
with a certain amount of stretching) each vector has been rotated clockwise toward the 
eigenvector, 0v . Similarly, by extending all vector arrows in the opposite direction 

through the origin, it is clear that the vectors, 1 2 3 4, , ,v v v v    , are also rotated 

clockwise toward the negative eigenvector, 0v  .  This shows that all nonzero vectors 

other than these unique eigenvectors are rotated clockwise to some degree, and thus 
cannot be eigenvectors. So essentially, such matrices involve some form of non-rigid 

Figure A3.28.  A “Defective” Transformation 

 

    

   

     
-3 -2 -1 3 2 1 

1y 

2y 

 

1v  2v  3v  4v  

1Av 2Av 3Av 4Av

xx  

1y 

2y 

0v  
0Av

 
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rotations that can reduce the number of linearly independent eigenvectors associated with 
repeated eigenvalues.  
 
Given these general properties of real eigenvalues and eigenvectors, our objective is to 
apply these concepts to symmetric matrices in particular. But before doing so, it is 
important to reiterate that not all matrices have a full complement of real eigenvalues. 
The following simple orthonormal matrix will turn out to be a particularly important case 
in point: 
 

(A3.3.14) 
0 1

1 0
U

 
  
 

 

 
Geometrically, this matrix rotates the plane counterclockwise through an angle of 90 , as 
shown in Figure A3.29 below.  Clearly no vector can possibly be mapped by this 
transformation into a scalar times itself. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In algebraic terms, the characteristic equation of U takes the form, 
 
(A3.3.15) 2

20 | | 1U I      

 

which is seen to have only the “imaginary” solutions, 1    .  We shall return to to 
examples of this type in Section A3.5.4 below.  
 
A3.4   Spectral Decomposition Theorem 
 
We begin by recalling from the very beginning of Section A3.2 that there seems to be an 
obvious relation between the Spectral Decomposition (SPD) Theorem for symmetric 
matrices and the Singular Value Decomposition (SVD) Theorem for general matrices. 
Since the SVD Theorem shows that for every matrix, A, there exist orthonormal matrices, 
U, V, and a diagonal matrix of singular values, S , such that 

1Ae  

1e  

2e  

2Ae  

Figure A3.28.  Example with No Eigenvalues 

 
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(A3.4.1) A U S V   
 
it follows that once for symmetric matrices, A, we must have  
 
(A3.4.2) U SV A A V SU      
 
So at first glance, this identity would appear to suggest that U V , and thus that (A3.3.1) 
must hold with S  . To see that this intuition is wrong, recall that | | 1U   , which 
together with the nonnegativity of the singular values, S , must imply that  
 
(A3.4.3) 2| | | || || | | || || | | | | | | | 0A U S U U S U U S S      
 
and thus that the determinant of every symmetric matrix is nonnegative! But we have 
already seen from (A3.2.69) that the symmetric (orthonormal) matrix 
 

(A3.4.4) 
0 1

1 0
A


 
 

 

 
has a negative determinant, | | 1A   . More generally, the fact that singular values are by 
construction nonnegative, shows that the relation between singular values and 
eigenvalues for symmetric matrices is not immediately obvious.   
 
This is made even more clear by a closer examination of this particular counterexample. 
Here one can verify (by direct multiplication) that (A3.3.2) holds for this matrix A with  
 

(A3.4.5) 
0 1 1 1 0

, ,
1 0 1 0 1

U S V
      

             
 

 
Moreover, since U and V are easily seen to be orthonormal, this is indeed a singular value 
decomposition of A with U V . Here it can also be verified by direction computation 
that 
 

(A3.4.6) 
1 0 1 0

0 1 0 1
U S U A V S V

             
 

 
so that neither U nor V yield spectral decompositions of A with S  .  But it turns out 
that A does indeed have a unique spectral decomposition: 
 
(A3.4.7) A W W   
 
with orthonormal matrix, W, and diagonal matrix,  , given by 
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 (A3.4.8) 1
2

1 1 1
,

1 1 1
W 

    
        

 

 
So at first glance, there would seem to be little relation between the decompositions if A 
in (A3.4.5) and (A3.4.8).  But closer inspection show that the absolute value of   is 
precisely S. As we shall see below, this relationship is fundamental. 
 
A3.4.1  Eigenvalues and Eigenvectors of Symmetric Matrices 
 
To gain further insight, it is convenient for the moment to suppose that the SPD Theorem 
is true, and to examine its geometric consequences. To do so, note first that if (A3.3.1) 
holds for a symmetric matrix, A, then since 1U U  , it follow at once that 
 
(A3.4.9) ( )A U U AU U UU U        
 

                                           
1

1 1( ,.., ) ( ,.., )n n

n

A u u u u





 
    
 
 

  

 
                                           , 1,..,i i iAu u i n    

 
Thus, as an extension of the diagonal-matrix case in (A3.3.7), we see that the diagonal 
elements 1( ,.., )n   of   must indeed be the eigenvalues of A  with associated 

orthonormal eigenvectors 1( ,.., )nu u , as asserted at the beginning of Section A3.3. Note 

also that by definition this decomposition implies that all eigenvalues must be real.  
 
Moreover, these eigenvalues and eigenvectors together imply that such matrices (like 
diagonal matrices) are in fact representations of scale transformations with respect to 
some appropriate coordinate system. This can be illustrated in two dimensions by the 
symmetric matrix, 
 

(A3.4.10) 
3 1

1 3
A

 
  
 

 

 
Here A does indeed have a spectral decomposition as in (A3.3.1) with (2,4)diag   and 
orthonormal matrix, 
 

(A3.4.11) 1 2

1 1
2 21

2 1 1
2 2

1 1
( , )

1 1
U u u

                        
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[which is precisely W in (A3.4.8) above]. So the eigenvectors for this matrix are the two 
diagonal vectors, 1u  and 2u , with corresponding eigenvalues, 1 2( 2 , 4)   , as shown 

in Figure A3.29 below:  
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
So if 1 2( , )u u  are regarded as the coordinate axes, then A is seen to be a pure scale 

transformation with respect to this coordinate system. More generally, if the spectral 
decomposition of A is regarded as a composition of the respective transformations, ,U   
and U , then we obtain a diagram very reminiscent of that in Figure A3.16, with V  in the 
last step replaced by U . In particular, the eigenvectors (i.e., columns of U ) correspond 
precisely to the principle axes of the ellipsoidal image, ( )nA  , of the unit circle, n , as 

seen for 2n   in the figure. So this shows geometrically that there must be an intimate 
connection between the singular value decomposition (SVD) and spectral decomposition 
(SPD) of symmetric matrices.  
 
In fact for the present matrix, A, in (A3.4.10), these two decompositions are identical. 
The special feature of this symmetric matrix that leads to this identity is that its 
eigenvalues are all positive. What this implies is that these eigenvalues play exactly the 
same role as singular values, i.e., they measure the lengths of these axes from the origin. 
More generally, this suggests that the lengths of such axes for symmetric matrices, A. 
should be precisely the absolute values of their eigenvalues. In other words, the 
eigenvalues of A should differ only in sign from the associated singular values of A. 
 
All these conjectures will be shown to be true in the following sections. But for the 
moment, we continue with our illustrations by reconsidering the counterexample in 
expression (A3.4.4) above. As mentioned already, the eigenvectors here are precisely the 

1Au  

2Au  

1u  
2u  

2  

2( )A   

Figure A3.29.  Positive Eigenvalue Case 
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same as in (A3.4.11) above. So only the eigenvalues are different, as shown in Figure 
A3.30 below.   
 
 
 
 
 
 
 
 
 
 
 
 
The key point to notice [as was evident in the SVD of this matrix in expression (A3.4.5) 
above] is that the unit circle is mapped onto itself, i.e., 2 2( )A   . So any set of 

orthonormal axes can be used for an SVD. However, this is not true for the SPD. In fact 
there is exactly one eigenvector, 1u , associated with eigenvalue, 1 1   , and exactly one 

eigenvector, 2u , associated with eigenvalue, 2 1  .3  So in contrast to the SVD, this SPD 

is essentially unique. But it will be shown below that in spite of its nonuniqueness, the 
SVD for A still contains enough information to allow the SPD to be constructed 
explicitly. The essential reason for this is that relations between U  and V  implicit in the 
identity (A3.4.2) will yield additional analytical information. 
 
Before proceeding to these analytical results, it should be noted that there is one 
additional complication that cannot be illustrated in two dimensions. Consider the 
following 4-dimensional version of the matrix in (A3.4.4) above: 
 
 

(A3.4.12) 

1

1

1

1

A

 
 
 
 
 
 

 

 
 
which can be seen (by direct multiplication) to have eigenvalues, ( 1, 1, 1 , 1)diag     
with associated eigenvectors: 

                                                 
3 Again, remember that if 

i
u is an eigenvector for 

i
 , then so is 

i
u . So we are implicitly ignoring this 

trivial form of nonuniqueness. 

1Au  

2 2u Au  1u  

2 2( )A    

Figure A3.29.  Mixed Signs Case 
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(A3.4.13) 1 2 3 4
1
2

0 1 1 0

1 0 0 1
( , , , )

1 0 0 1

0 1 1 0

U u u u u

 
   
 
 

 

 

 
Note in particular that the unit sphere is again mapped onto itself, i.e., 4 4( )A   , so that 

any set of four mutually orthonormal axes can again be used to define an SVD. But now, 
the two distinct eigenvalues, 1 and -1, both have two-dimensional spaces of eigenvectors, 
namely 1 2( , )span u u  and 3 4( , )span u u , respectively. So even the SPD is nonunique in this 

example. Such cases require more effort to construct an admissible SPD from any given 
SVD. So this general case will be treated by itself. 
 
With these examples in mind, we now proceed to establish the Spectral Decomposition 
(SPD) Theorem in stages. The first task is to establish some general consequences of 
singular value decompositions (SVD) for symmetric matrices. This will provide a general 
foundation for the SPD results to follow.  
 
A3.4.2  Some Consequences of SVD for Symmetric Matrices 
 
Here we focus on the additional information contained in the identity (A3.4.2) for 
symmetric matrices. These equalities can be rewritten in the following way: 
 
(A3.4.14)         A U SV A V U S    
 
(A3.4.15) A A V SU A U V S      
 
By adding the right hand sides we obtain 
 
(A3.4.16) ( ) ( ) ( )A V U U V S V U S      
 
and similarly by subtracting the right hand sides we have 
 
(A3.4.17) ( ) ( ) ( ) ( )A V U U V S V U S       
 
But if we now let 
 
(A3.4.18) X U V   
 
(A3.4.19) Y V U   
 
then (A3.4.16) and (A3.4.17) yield the associated sets of eigenvalue equations: 
 
(A3.4.20) A X X S  
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(A3.4.21) ( )AY Y S   
 
Note that neither matrix, 1( ,.., )nX x x  or 1( ,.., )nY y y , is orthonormal, or even 

orthogonal. But nonetheless, the respective rows of each relation (A3.4.20) and (A3.4.21) 
yield well defined eigenvalue relations: 
 
(A3.4.22) , 1,..,i i iA x s x i n   

 
(A3.4.23) ( ) , 1,..,i i iA y s y i n    

 
This shows us that each nonzero column of X and Y, namely each 0i i ix u v    and 

0i i iy u v    , respectively, must yield corresponding real eigenvalues, is  or is  for 

symmetric matrix, A. As we shall see below, many columns of  X and/or Y must be zero. 
But the key point to notice is that for all 1,..,i n , the column pair ( , )i ix y cannot both be 

zero. For if so then 
 
(A3.4.24) 0i i i i i iu v x y u v       

 
                                  0i i iv v v       

 
which contradicts the normalization condition, || || 1iv  .  So conditions (A3.4.22) and 

(A3.4.23) together will provide us with a full complement of real eigenvalues for A in 
every case.  
 
Thus the first major consequence of these observations is that without loss of generality 
we can focus our attention on real eigenvalues for symmetric matrices. This is of 
sufficient important to be stated formally. If the set of distinct eigenvalues for any matrix, 
A, is denoted by ( )Eig A , and if we define symmetric matrices by the condition that 
A A , then this first consequence of SVD can be stated as follows:4 
 
(A3.4.25) ( )A A Eig A     
 
A second consequence (as suggested by the examples above) is that all eigenvalues in 
(A3.4.22) and (A3.4.23) are either the singular values of A or their negatives. So the 
absolute magnitudes of all eigenvalues can be determined by the SVD of A. To state this 
more formally, let the set of distinct singular values of any matrix, A, be denoted by 

( )Sing A , and let the negatives of these values be denoted by ( )Sing A . Then, in a 
manner paralleling (A3.4.25), this second consequence of SVD can be stated as follows: 
 

                                                 
4 The standard proof of this fact is to show that eigenvalues of symmetric matrices must always be equal to 
their complex conjugates, and hence must be real (see for example Theorem 4.1.3 in Horn and Johnson, 
1985). 
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(A3.4.26) ( ) ( ) [ ( )]A A Eig A Sing A Sing A      
 
There is a third important consequence that relates to the eigenvectors associated with  
distinct eigenvalues of symmetric matrices. Recall that in Figure A3.27 above a 
geometric argument was sketched showing that eigenvectors for distinct (real) 
eigenvalues are always linearly independent. For symmetric matrices we have the 
stronger property that such eigenvectors must actually be orthogonal. This can be 
demonstrated as follows:5 
 
Orthogonality of Distinct Eigenvectors. For any symmetric matrix, A, and  
eigenvectors, ,i jx x , associated with distinct eigenvalues, , ( )i j Eig A   ,  

 
(A3.4.27) 0i j i jx x      

 
Proof:  By definition we must have, 
 
(A3.4.28) i i iA x x     ,  and 

 
(A3.4.29) j j jA x x  

 
But premultiplying (A3.4.28) by jx  and employing the symmetry of A, we see that,  

 
(A3.4.30) ( ) ( )i j i j i i j i j i j j i i j i j ix x x Ax Ax x x Ax x x x x x x                

 
                      ( )( ) 0j i i jx x      

 
So if i j   then we may conclude that 0j i i jx x x x   .   

 
Given these properties of eigenvalues and eigenvectors for symmetric matrices, the key 
questions remaining are ( )i  how to identify which of the values on the right hand side of 
(A3.4.26) are relevant in any particular case, and ( )ii how to construct their associated 
eigenvectors in terms of the SVD of A. To answer these questions, we shall proceed on a 
case-by-case basis from the simplest to the most general cases.  
 
 
 

                                                 
5 It should be noted that both the statement and proof of this result make constant use of property (A3.4.25), 

since eigenvectors for real eigenvalues can always be restricted to n . This allows orthogonality (and 

indeed all inner products) to be defined solely on n .  While this same analysis can of course be carried on 
n using complex inner products, property  (A3.4.25)  shows that this is not necessary for real symmetric 

matrices.  
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A3.4.3  Spectral Decomposition for Symmetric Definite and Semidefinite Matrices 
 
The simplest and by far the most important cases for our purposes all involve symmetric 
definite or semidefinite matrices. So this is the best place to begin. Recall from 
expressions (A2.7.36) and (A2.7.67) in Appendix A2 that an n-square matrix, A, is 
positive semidefinite iff for all nx , 
 
(A3.4.31)  0 0x x Ax    
 
and is positive definite iff this inequality is strict, i.e., iff 
 
(A3.4.32)  0 0x x Ax    
 
Moreover, A  is negative definite (semidefinite) iff A  is positive definite (semidefinite). 
Since all results for symmetric positive definite and semidefinite matrices are 
immediately extendable to their negative counterparts by just reversing signs, we focus 
only on (A3.4.31) and (A3.4.32). Hence our first result is to show that for symmetric 
positive semidefinite matrices, A, the SVD and SPD of A are essentially identical. In 
particular, the eigenvalues of A are precisely its singular values, and their associated 
eigenvectors can be taken directly from the SVD of A. Moreover, if A is positive definite 
then all eigenvalues of A are positive, and each SVD for A is precisely an SPD for A. 
These results can be stated more formally as follows:6   
 
 
Spectral Decomposition of Symmetric Positive Semidefinite Matrices  
 
( )i  If A is a symmetric positive semidefinite matrix with  SVD, 
 
(A3.4.33) A U SV   , 
 
then it must be true that 
 
(A3.4.34)  A U SU V SV    
 
( )ii  If in addition A is positive definite, then ( ) 0diag S   and U V . 
 
 
 
Proof:  ( )i  To establish the first equality, it must be shown that  
 
(A3.4.35) i i iAu s u  

                                                 
6 It is of interest to note that a direct proof for this case follows from the standard construction of principle 
components in multivariate analysis, which in fact closely parallels the above proof of the Singular 
Decomposition Theorem. See for example the classic treatment in Anderson (1958, pp.273-275). 
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for all 1,..,i n . But by applying the same column decomposition in (A3.2.28) to 
(A3.4.15) for the SVD in (A3.4.33), it follows that 
 
(A3.4.36) , 1,..,i i iAu s v i n   

 
Given this representation, there are two cases to consider. First if 0is  , then it follows at 

once from (A3.4.36) that, 
 
(A3.4.37) 0i i i i iAu s v s u    

 
On the other hand if 0is  , then observe from (A3.4.23) that we must have 0iy  . For if 

not, then since 0iy    0i iy y  , it would follow from (A3.4.23) that  

 
(A3.4.38) 0i i i i i i i iAy s y y Ay s y y        

 
which contradicts the positive semidefiniteness of A.  Thus we must have  
 
(A3.4.39) 0 i i i i iy u v u v      

 
and may conclude again from (A3.4.36) that 
 
(A3.4.40) i i i i iAu s v s u   

 
So (A3.4.35) must hold in all cases, and the first equality (A3.4.34) is established. The 
second equality follows in exactly the same way by replacing (A3.4.15) with (A3.4.14) 
and thus switching the roles of iu  and iv  in (A3.4.36). 

 
( )ii  Finally, if A is positive definite, then since 2|| || 1i i iu u u    for each 1,..,i n , it 

follows from (A3.4.35) that 
 
(A3.4.41) i i i i i i i i iAu s u u Au s u u s      

 
and hence from positive definiteness that 0is  . Thus 1( ) ( ,.., ) 0ndiag S diag s s  . 

Moreover since the argument in (A3.4.38) and (A3.4.39) now holds for all 1,..,i n , it 
also follows that U V .   
 
For symmetric positive definite matrices, A, the above theorem (now referred to as SPD 
Theorem 1), shows that the two decompositions, SVD and SPD, of A exhibit a one-to-one 
correspondence.  As a direct consequence of this correspondence, we now have the 
following additional characterizations of positive definiteness:  
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Corollary 1. For any symmetric positive semidefinite matrix, A, the following three 
properties are equivalent: 
 
(A3.4.42)  A is positive definite. 
(A3.4.43) A has all positive eigenvalues. 
(A3.4.44) A is nonsingular. 
 
Proof: To establish this equivalence it suffices to show that (A3.4.42)  (A3.4.43) 
 (A3.4.44)  (A3.4.42).  But if A is positive definite and   is any eigenvalue of A 
with eigenvector, x , then by (A3.4.32) together with 0x x   it follows that, 
 

(A3.4.45) 0
x Ax

Ax x x Ax x x
x x

  


      


 

 
and thus that all eigenvalues must be positive. Next, to show that positive eigenvalues 
imply nonsingularity, observe since the symmetric positive semidefiniteness of A implies 
from part ( )i  of SPD Theorem 1 that A has a spectral decomposition,  
 
(A3.4.46) A U SU    
 
[given by the first equality in (A3.4.34)], it follows that if all eigenvalues are positive, 
then the positive diagonal matrix, S , in (A3.4.46) must have a well defined inverse, 1S  . 
But this together with the orthonormality of matrix, U, implies that 
 
(A3.4.47) 1 1 1( )U S U U SU A       
 
and thus that A is nonsingular. Finally, to show that nonsingularity implies positive 
definiteness, note first from the nonnegativity of the diagonal matrix, S, in (A3.4.46) that 
S  has a well defined  square root,  
 
(A3.4.48) 1/2 1/2 1/2

1( ,.., )nS diag s s  

 
satisfying 1/2 1/2S S S . So for any nx  it follows that,  
 
(A3.4.49) 1/2 1/2 1/2 1/2 1/2 2( ) ( ) || ||x Ax x U SU x x U S S U x S U x S U x S U x             
 
But since for any vector z ,  2|| || 0 || || 0 0z z z     , we see from (A3.4.49) that 
 
(A3.4.50) 1/2 1/2 1/20 0 ( ) 0 0x Ax S U x US S U x Ax          
 
So if 0x Ax   for any 0x  , then it would also be true that 0Ax  , which contradicts 
the nonsingularity of A. Thus, nonsingularity together with the positive semidefiniteness 
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of A imply that 0x Ax   must hold whenever 0x  , and it follows that A is positive 
definite.   
 
For our present purposes, the single most important application of these results is to 
characterize the spectral properties of covariance matrices. To begin with, we can now 
give a more complete statement of the Positive Definiteness Property for nonsingular 
covariance matrices stated in Appendix A2 (page A2-27):   
 
Corollary 2. Every nonsingular covariance matrix,  , is positive definite with spectral 
decomposition: 
 
(A3.4.51)  , ( ) 0U U diag    
 
Proof: For convenience we start by repeating the argument in Appendix A2. First recall 
that if the covariance matrix of a random vector, 1( ,.., )nX X X  , is denoted by 

cov( )X  , then the symmetry of covariances, cov( , ) cov( , )ij i j j i jiX X X X      

implies that   is symmetric. Moreover, since for any coefficient vector, 0a  , we must 
have 
 
(A3.4.52)   var( ) 0a a a X      
 
it follows that   is positive semidefinite. Hence by SPD Theorem 1 together with 
Corollary 1 above, it follows at once nonsingularity of   implies both positive 
definiteness and (A3.4.51).   
 
In addition, recall from the discussion following the Linear Invariance Theorem in 
Section A.2.3 that reduced covariance matrices of the form, A A , were asserted to be 
nonsingular whenever A  is of full row rank. We are now in a position to establish this 
result: 
 
Corollary 3.  For any nonsingular n-square covariance matrix,  , and any m n  
matrix, A, with 1 m n  , if A is of full row rank then A A  is also a nonsingular (m-
square) covariance matrix. 
 
Proof:  The matrix, A A , has already been shown to be an m-square covariance matrix 
in expression (3.2.21) of Part II of these notes. So it remains to be shown that A A  is 
nonsingular. To do so, recall first (from the end of Section A3.1.1) that A is if full row 
rank iff its rows are linearly independent. But since these rows are precisely the columns 
of 1( ,.., )mA a a  , it follows from the definition of linear independence [expression 

(A3.1.24)], that for any 1( ,.., ) m
mx x x  , 

 

(A3.4.53) 
1

0 0 0, 1,.., 0
m

i i ii
A x x a x i m x


          
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Moreover, if   is a nonsingular covariance matrix, then by (A3.4.51), 
 
(A3.4.54)  1/2 1/2U U U U      
 
where again 1/2 1/2 1/2

1( ,.., )ndiag   . So by essentially the same argument as in (A3.4.49) 

and (A3.4.50) it follows that for any mx , 
 
(A3.4.55) 0x A A x    1/2 1/2 0x AU U A x      
 

                                              1/2 1/2( ) 0U A x U A x        
 

          1/2 2|| || 0U A x     
 

          1/2 0U A x     
 

          1/2 1/2( ) 0U U A x      
 

          0A x    
 

But this together with (A3.4.53) and the nonsingularity of   then shows that 
 
(A3.4.56) 0 ( ) 0 0 0x A A x A x A x x             
 
Finally, since the covariance matrix, A A , is symmetric and positive semidefinite by 
(A3.4.51) , it must then be true that  
 
(A3.4.57) 0 ( ) 0x x A A x       
 
for all mx . Thus A A  is positive definite, and we may conclude from (A3.4.44) that   
A A is also nonsingular.   
 
A3.4.4 Spectral Decompositions with Distinct Eigenvalues 
 
There is a second class of symmetric matrices for which each SVD directly yields a 
unique SPD, namely those symmetric matrices for which all eigenvalues are distinct. 
Here it is of interest to recall the example given in expression (A3.4.4) above, i.e., 
 

(A3.4.58) 
0 1

1 0
A

 
  
 

 

 
with distinct eigenvalues, ( ) { 1 , 1}Eig A   , but with (necessarily) repeating singular 
values given by the absolute values if ( )Eig A , so that A has only one distinct singular 
value, namely ( ) { 1}Sing A  .  Here the SVD in (A3.4.5) appeared to exhibit little direct 
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relation to the SPD in (A3.4.8). Indeed, the situation is even worse for this matrix. In 
particular, since the unit circle is mapped onto itself by A, it follows that every pair of 
orthogonal unit vectors can serve as principle axes for this “ellipse”. This nonuniqueness 
can be seen algebraically by observing that since A is itself orthonormal, it follows that 
for any other orthonormal matrix, V, the product, U AV , must also be orthonormal. But 

since the singular values of A are given by the identity matrix, 2S I ,  we may then use 

V to construct a distinct SVD for A by the product: 
 
(A3.4.59) 2( )( )A AVV AV I V U SV      

 
Thus there are seen to be infinitely many SVDs for A.  One the other hand, since the 
eigenvalues of A are distinct, we have already seen from (A3.4.27) that their 
corresponding eigenvectors must be orthogonal, and thus must form a basis for 2 . So 
these eigenvectors [in (A3.4.8)] must in fact be unique (up to a choice of signs). Given 
this stark contrast, it would appear that there is little hope of constructing the unique SPD 
for A from its highly nonunique SVDs. But as we now show, this can indeed be done so 
long as eigenvalues are distinct in the sense that each has a geometric multiplicity of one 
[as in the case of (A3.4.58)]. Note also from the orthogonality of eigenvectors for distinct 
eigenvalues in (A3.4.27) that this in turn implies that the SPD for such symmetric 
matrices must be unique. With these observations, we now show that: 
 
 
Spectral Decomposition of Symmetric Matrices with Distinct Eigenvalues  
 
If A is a symmetric matrix with distinct eigenvalues, then each SVD, 
 

(A3.4.60) 
1 1

1( ,.., )n

n n

s v

A USV u u

s v

  
      
    

  , 

 
of A yields exactly the same SPD, 
 

(A3.4.61) 
1 1

1( ,.., )n

n n

w

A W W w w

w






  
      
    

     

 
in terms of the relations in (A3.4.22) and (A3.4.23). 
 
 
Proof:  Our objective is to give an explicit construction of (A3.4.61) in terms of  
(A3.4.60). To do so, we note first from the assumed distinctness of eigenvalues that there 
can be at most one zero eigenvalue for A, say 0i   with eigenvector satisfying, 
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0iAw  . But since this implies that A is singular there must at least one zero singular 

value [for otherwise, we would have | | 0A   by (A3.2.78), which contradicts the 

singularity of  A].  Moreover, if there were more than one, the argument in (A3.4.27) 
shows that there would be more than one zero eigenvalue for A, which contradicts the 
distinctness assumption. So there is exactly one iu  with 0iAu   as in (A3.4.37). Thus we 

may then set i iw u , and conclude from (A3.4.27) that this will always form and 

admissible entry in the orthonormal matrix, W, of (A3.4.61). For the positive singular 
values, ( )is diag S , we now consider the possible distinct eigenvalues they can generate 

by (A3.4.22) and (A3.4.23). In view of the distinctness assumption, either exactly one of 
the values ( , )i is s  belongs to ( )Eig A  or both do. The first case is the simplest, and is 

equivalent to the condition derived from (A3.4.60) that is only appear in one equation of 

the equation systems (A3.4.22) and (A3.4.23) with a nonzero eigenvector. If for 
notational simplicity we let ( , )i iw  denote the associated eigenvalue-eigenvector pair to 

be constructed in (A3.4.61)7 then by using the definitions of i i ix u v   and i i iy u v   in 

(A3.4.22) and (A3.4.23), respectively, (and recalling that at least one of these vectors 
must be nonzero) we may set 
 

(A3.4.62) 

, 0
|| ||

, 0
|| ||

i i
i i

i i
i

i i
i i

i i

u v
if u v

u v
w

u v
if u v

u v

       
 

 

 
and similarly, set 
 

(A3.4.63) 
, 0

, 0
i i i

i
i i i

s if u v

s if u v


 
    

 

 
Again the orthogonality of eigenvectors for distinct eigenvalues in (A3.4.27) guarantees 
that these normalized vectors are automatically admissible components of W.  
 
Turning to the second case, where both ( , )i is s  appear in equation systems (A3.4.22) 

and (A3.4.23) with nonzero eigenvectors, observe that is  must appear twice in ( )diag S , 

say in positions i  and j . If we consider the values of x  and y  in columns i  and j  of 
both (A3.4.22) and (A3.4.23), namely, 
 

                                                 
7 More formally, the rows and columns of A can always be permuted to satisfy this relation. The standard 

convention in the literature is thus to say that “by relabeling if necessary” we can use i  for both 
i

s  and its 

associated eigenvalue, 
i
 .  
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(A3.4.64) i i i i i i

j j j j j j

x u v y u v

x u v y u v

   
   

 

 
then it must be true that either ix  or jx  is nonzero, and similarly that either iy  or jy  are 

nonzero. But if both ix  and jx  are nonzero, then they must be scalar multiples of one 

another. For otherwise, columns i  and j  of equation system (A3.4.22) would yield two 

linearly independent solutions, ( , )i i i j j jAx s x Ax s x   with i js s , and it would follow 

that eigenvalue, is , has a multiplicity of two. But since this contradicts the assumption of 

distinct eigenvalues, ix  and jx  must be linearly dependent, i.e., scalar multiples of one 

another. This in turn implies that they must have the same normalizations, which can be 
written terms of u  and v  by:  
 

(A3.4.65) 
|| || || ||

j ji i

i i j j

u vu v

u v u v




 
 

 
Moreover, since exactly the same argument for iy  and jy  shows that if both are nonzero 

then 
 

(A3.4.66) 
|| || || ||

j ji i

i i j j

u vu v

u v u v




 
 

 
With these observations, if we now denote the eigenvalues for is  and ( )j is s   in 

(A3.4.59) by i  and j  (again using the convention in footnote 6), then by definition, 

0i is    and 0j is    , with associated eigenvectors given respectively by 

 

(A3.4.67) 

, 0
|| ||

, 0
|| ||

i i
i i

i i

i
j j

i i
j j

u v
if u v

u v
w

u v
if u v

u v

       
 

    

 

 (A3.4.68) 

, 0
|| ||

, 0
|| ||

j j
j j

j j
j

i i
j j

i i

u v
if u v

u v
w

u v
if u v

u v


   

   

 

 
Again, it follows from (A3.4.65) and (A3.4.66) that these choices of iw  and jw  are 

insensitive to whether the thi  or thj  quantities are used first on the right hand sides of 
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(A3.4.65) and (A3.4.66). Note also from the orthogonality of eigenvectors for distinct 
eigenvalues that these normalized vectors will always yield admissible components of W.  
 
Finally, since the multiplicity of each singular value, ( )s diag S  determines exactly the 
number of eigenvalues generated by s  (including the 0s   case), it follows that this 
procedure must generate precisely n  eigenvalues 1( ,.., )n   with corresponding 

orthonormal eigenvectors 1( ,.., )nw w  generating a basis for n . So by construction, this 

procedure must yield a complete representation of A as in (A3.4.61).   
 
So for the case of distinct eigenvalues, we see that the unique SPD for symmetric matrix 
A can be explicitly constructed from any of its possible SVDs. Here it is instructive to see 
how this procedure works for the example in (A3.4.58). In this case, the SVD produced 
in (A3.4.5) yields 
 

(A3.4.69) 1 1 2 2

1 1
( , )

1 1
X U V u v u v

      
               

 

 

(A3.4.70) 1 1 2 2

1 1
( , )

1 1
Y U V u v u v

    
               

 

 

So this is case where all four elements of (A3.4.64) are nonzero, and thus where the 
identities in  (A3.4.65) and (A3.4.66) are seen to hold. Moreover, since the norms of all 

these vectors are seen to be 2 , it follows that they yield precisely the pair of normalized 
eigenvectors in  (A3.4.8). Moreover, one can verify by direct computation that any choice 
of an orthonormal matrix, V, in (A3.4.59) will always produce vectors that are scalar 
multiples of those in (A3.4.69) and (A3.4.70), and thus will yield the same eigenvectors 
for W. 
 
Finally it is important to note that the case of distinct eigenvalues is overwhelmingly the 
most common case observed in practice. Indeed, it is a simple matter to show that within 
the space of all n -square symmetric matrices, the subset possessing two or more common 
eigenvalues must have zero volume. So if one were to choose a symmetric matrix at 
random, then with probability one, this matrix will have all distinct eigenvalues.   
 
A3.4.5  General Spectral Decomposition Theorem 
 
Nonetheless, it is clear that in numerous modeling contexts, theoretical considerations 
can often lead to symmetric matrices with additional structure yielding repeated 
eigenvalues. In particular, for singular matrices it is clear that zero eigenvalue may be 
repeated many times. So it is of practical interest to show that the information contained 
in SVDs for such matrices can still be used to construct their SPDs. The major difference 
in this general case with repeated eigenvalues is that the SPD itself is not unique. So there 
will necessarily be some degree of nonuniqueness in the SVD construction of SPDs.  
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Here we begin with one preliminary result that will enable us to verify dimensional 
consistency for all subspaces of repeated eigenvalues. In particular, note that for any pair 
of  n k  matrices, A  and B, the matrix sum, A B , is well defined. In addition, A  and 
B  are said to be mutually orthogonal iff their columns are orthogonal, i.e., kA B O  .8 

Hence, recalling that the rank of a matrix is by definition the dimension of its span 
[ ( ) dim( ( ))rank A span A ], we have the following useful rank equality:9 
 
Rank Lemma. For any mutually orthogonal n k  matrices, A and B,  
 
(A3.4.71) ( ) ( ) ( )rank A B rank A rank B      
 
Proof:  By definition it suffices to show that 
 
(A3.4.72) dim( ( ) ) dim( ( )) dim( ( ))span A B span A span B     
 
But if we choose any bases 1[ ,.., ]kx x  and 1[ ,.., ]hy y  for ( )span A  and ( )span B , 

respectively, then by mutual orthogonality it follows that 1 1[ ,.., , ,.., ]k hx x y y  must 

constitute a linearly independent set. To see this, note that since ( )i ix span A x Az    

for some kz , and similarly that ( )j jy span B y Bw    for some kw , this 

together with the mutual orthogonality condition, kA B O  , implies that 

 
(A3.4.73) ( ) ( ) ( ) 0i jx y Az Bw z A B w       

 
and hence that 1[ ,.., ]kx x  and 1[ ,.., ]hy y  are mutually orthogonal sets of vectors. This 

together with the linear independence of basis vectors implied that the full set of vectors, 

1 1[ ,.., , ,.., ]k hx x y y , is linearly independent. Finally since for any vector, nv , 

 
(A3.4.74) ( ) ( )v span A B v A B u     for some ku  
 
       ( ) ( )v Au Bu span A span B      
 

   
1 1

k h

i i j ji j
v x y 

 
     

 
for some coefficients 1( ,.., )k   and 1( ,.., )k  ,  it then follows that 1 1[ ,.., , ,.., ]k hx x y y  

must be a basis for ( )span A B . Thus we may have  
 
(A3.4.75) dim( ( )) dim( ( )) dim( ( ))span A B k h span A span B      

                                                 
8 As with the n-square identity matrix, nI , we here denote the n-square zero matrix by nO . 
9 A detailed development of other rank properties can be found in Chapter 6 of Searle (1982). 
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and may conclude that condition (A3.4.72) holds.   
  
With this preliminary result, we are now ready to establish the following general form of 
the Spectral Decomposition Theorem: 
 
 
Spectral Decomposition Theorem:  For any symmetric matrix, A, there exists a 
diagonal matrix,  , and an orthonormal matrix, W , such that 
 
(A3.4.76) A W W   
 
 
Proof:  Our approach is again to start with any SVD,  
 
(A3.4.77) A U SV   
 
for the n-square symmetric matrix, A, and to construct and SPD for A as in (A3.4.76). To 
do so, we first note that by relabeling the rows and columns of A if necessary, we may 
assume that the sets of common singular values (including singleton sets) are grouped 
into blocks , 1( ,.., ) , 1,.., ( )

ii i inS diag s s i m n   , along the diagonal of matrix, S , where 

each block has common value, , 1,.., ( 1)i ij is s j n   , and has associated orthonormal 

sets of column vectors, 1( ,.., )
ii i inU u u  and 1( ,.., )

ii i inV v v . With this grouping, 

expression (A3.4.77) can be written as 
 

(A3.4.78) 
1 1

1( ,.., ) , 1,..,m i i i

m m

S V

A U U AV U S i m

S V

  
       
    

     

 
Our objective is then to construct an SPD of A with corresponding block form: 
 

(A3.4.78)      
1 1

1( ,.., ) , 1,..,m i i i

m m

W

A W W W W AW W i m

W


 



  
        
    

   

 
As with U and V above, the key conditions to be satisfied by W are that each block, iW , 

have orthonormal columns, and that the columns in different blocks be mutually 
orthogonal. To construct (A3.4.79), we start by observing there is one special case that 
can be handled without further analysis. In particular, if matrix A is singular, then exactly 
one block, iS , in (A3.4.78), will have 0is  . But since the vectors in this block must 

satisfy, 
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(A3.4.80) 0 0 , 1,..,
ii n ij ij iAV O Av v j n      

 
it follows [as in (A3.4.37) above] that these are automatically eigenvectors for 0is  , and 

in addition, must be orthonormal by the properties of SVDs. Moreover, since all other 
eigenvalues of A must be nonzero, it also follows from (A3.4.27) that the columns of iV  

will automatically be orthogonal to all other eigenvectors of A.  Thus by setting  
 
(A3.4.81) 

ii i n i iS O and W V      , 

 
we are guaranteed to obtain an admissible “zero” block in (A3.4.76). So we may 
henceforth assume (from the nonnegativity of singular values) that 0is  . For these 

cases, recall from (A3.4.18) through (A3.4.21) that if we set 
 
(A3.4.82) , 1,..,i i iX U V i m    

 
(A3.4.83) , 1,..,i i iY U V i m    

 
that by construction, 
 
(A3.4.84) , 1,..,i i iA X s X i m   

 
(A3.4.85) , 1,..,i i iAY s Y i m    

 
So all columns in iX  and iY  are potential eigenvectors for A. Here there three possible  

cases to be considered, namely (i) i i iU V Y O   , (ii) i i iU V X O    , or (iii) 

iX O  and iY O .10 In case (i), all eigenvalues in block i  are positive, and governed by 

(A3.4.83). But since (A3.4.82) and (A3.4.83) together imply that 2i i iX Y U  , it follows 

that 
 
(A3.4.86) 2i i i i iX X O X Y U       

 
Thus, except for a factor of 2, the columns of iX  automatically form a set of in  

admissible eigenvectors for block i . So here we may set  
 
(A3.4.87) 1

2ii i i n i i iS s I and W X U      

 
to obtain the desired block i  in (A3.4.79). The construction for case (ii) is essentially 
identical except that now 
                                                 
10 For notational simplicity, we here take the common dimension of these zero matrices (namely in n ) to 

be understood. 
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(A3.4.88) 2i i i i iY O Y X Y U      

 
with all eigenvalues given by is . So in this case, we can construct the desired block i   

by setting 
 
(A3.4.89) 1

2( )
ii i i n i i iS s I and W Y U        

 
This leaves case (iii), in which both is  and is  are eigenvalues for A.  

 
This is by far the most complex case, and requires additional analysis. Here we start by 
observing from the distinctness of the eigenvalues, is  and is , together with (A3.4.84), 

(A3.4.85) and the orthogonality condition (A3.4.27), that the matrices iX  and iY  must 

now be mutually orthogonal (i.e., 
ii i nX Y O  ). So by the Rank Lemma above, we must 

have 
 
(A3.4.90) ( ) ( ) ( )i i i irank X Y rank X rank Y     

 
Moreover, since it continues to be true that 2i i iX Y U  , it then follows that 

 
(A3.4.91) dim( ( )) dim( ( )) ( ) ( )i i i ispan X span Y rank X rank Y    

 
                                                                           ( ) (2 )i i i irank X Y rank U n     

 
So if we now use the Gram-Schmidt orthogonalization procedure [summarized by 
expression (A3.1.60) above] to construct orthogonal bases 1[ ,.., ]

ikb b  and 1[ ,.., ]
ihc c  for 

( )ispan X  and ( )ispan Y , respectively, then these basis vectors will constitute the desired 

eigenvectors for this case. To verify this, observe first from (A3.4.91) that 
 
(A3.4.92) i i ik h n   

 
and hence that there are again exactly in  of these basis vectors. Moreover, since 

( )j i j i jb span X b X z   for some  in
jz  , it follows from (A3.4.84) that 

 
(A3.4.93) , 1,..,i i i i j i i j j i j iA X s X A X z s X z Ab s b j k       

 
and thus that the basis vectors 1[ ,.., ]

ikb b  form and orthogonal set of eigenvectors for 

eigenvalue, is . Similarly, since ( )j i j i jc span Y c X u   for some  in
ju  , it 

follows from (A3.4.85) that 



  NOTEBOOK FOR SPATIAL DATA ANALYSIS                                         Part III. Areal Data Analysis 
______________________________________________________________________________________ 

_______________________________________________________________________ 
 ESE 502                                                     A3-80                                               Tony E. Smith 

 
(A3.4.94) ( ) ( ) ( ) , 1,..,i i i i j i i j j i j iAY s Y AY u s X u Ac s c j h          

 
and thus that the basis vectors 1[ ,.., ]

ihc c  form and orthogonal set of eigenvectors for 

eigenvalue, is .  Finally, since the distinctness of is  and is  again implies that 1[ ,.., ]
ikb b  

and 1[ ,.., ]
ihc c  are mutually orthogonal, and also orthogonal to the eigenvectors for all 

other distinct eigenvalues of A, we may conclude that the normalizations of these 
eigenvectors yield an admissible choice for iW .  Hence, if we let 1 (1,..,1)m   denote the 

unit vector of length m, then an admissible choice for block i  in (A3.4.79) is now given 
by: 
 

(A3.4.95)  1 1

1 1|| || || || || || || ||,,.., ,..,i i

i i
i

k h

k h

b cb c
b b c cW    and  ( 1 , 1 )

i ii i k i hdiag s s     

 
By way of summary, the blocks defined respectively by (A3.4.81), (A3.4.87), (A3.4.89) 
and (A3.4.95)  yield a full specification of expression (A3.4.79), and thus the desired 
SPD for A is established.  
 
As one final comment, we begin by reiterating that our main objective in this section has 
been to show that the spectral decomposition (SPD) of any symmetric matrix, A, can be 
constructed from its singular value decomposition (SVD). However, this appears to leave 
open the converse question of how to construct SVDs of symmetric matrices from their 
SPDs. But since the singular values of A are simply the absolute values of its eigenvalues, 
it turns out to be a simple matter to transform each SPD into a corresponding SVD. To do 
so, recall from (A3.1.10) that the SPD in (A3.4.76) can be rewritten as: 
 

(A3.4.96)  
1 1

1 1
,..,

n

n i i ii

n n

w

A W W w w w w

w







  
        

    

   

 
To convert these eigenvalues to absolute form, observe that if sgn( )  denotes the sign of 
any number,  , then by definition, | |sgn( )   , so that (A3.4.96) can be written as,  
 

(A3.4.97) 
1
| |sgn( )

n

i i i ii
A w w 


   

 
But if we define, 1( ,.., )nU u u , 1( ,.., )nS diag s s , and 1( ,.., )nV v v  by 

 
  sgn( ) , 1,..,i i iu w i n   

(A3.4.98) | | , 1,..,i is i n   

  , 1,..,i iv w i n   
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then by definition, 
 

(A3.4.99)  
1 1

11
,..,

n

i i i ni

n n

s v

A s u v u u USV

s v


  
       

    

    

 
where S is nonnegative diagonal matrix and where ( )V W  is orthonormal.  Moreover, 
since  
 

(A3.4.100)  
2sgn( ) 1 , 1,..,

sgn( )sgn( ) 0 , 1,..,
i i i i i

i j i j i j

u u w w i n

u u w w i n


 

   
   

 

 
it also follows that U  is orthonormal, and thus that (A3.4.99) is automatically an SVD 
for A. However, the SPDs of symmetric matrices clearly contain more information, and 
turn out to be far more useful than their corresponding SVDs. So this final result only 
serves to complete the full correspondence between the two. 
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A3.5  Nonnegative Matrices  
 
Recall that every spatial weights matrix, ( : , 1,.. )ijW w i j n  , is by definition a 

nonnegative matrix. In this section we develop some of the key properties of such 
matrices that will prove to be useful in our subsequent analyses. To do so, we begin with 
a consideration of additional matrix properties which are particularly appropriate for 
spatial weights matrices. 
 
A3.5.1 Strongly Connected Matrices 
 
Consider the following spatial weights matrix,  
 

(A3.5.1) 

0 0 1 0 0
0 0 0 0 1
1 0 0 1 0
0 0 1 0 0
0 1 0 0 0

W



 


 
 

 

 
that represents (queen) contiguity relations among the five regions depicted in Figure 
A3.30 below, where 1ijw   if and only if regions i  and j  share a common boundary: 

 
 
 
 
 
 
 
 
 
 
 
 
 
It is not obvious from matrix, W, that these regions actually form two disconnected 
regional subsystems, {R1 , R3 , R4} and {R2 , R5}, which share no common boundaries. 
However, this relation can be seen more clearly by relabeling these regions as shown in 
Figure A3.31, so that W now takes the form: 
 

(A3.5.2) 1

2

0 1 0 0 0
1 0 1 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0

W
W

W



      

 
 

 

Figure A3.30. Disconnected Regions Figure A3.31. Relabeling of Regions 

R1 

R3 R4 

R2 

R5 

R1 

R2 R3 

R5 

R4 
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With this relabeling, W is seen to be a block-diagonal matrix, where each block, 

, 1,2iW i  , corresponds to a single connected subsystem of regions. Note that for each 
0k   we must also have, 

 

(A3.5.3) 1

2

k
k

k

W
W

W


 
 

 

 
Moreover, recall from Section 3.3.3 that these thk powers of W effectively count the 
influence paths of length k between each pair of regions. So the block-diagonal form of 
(A3.5.3) inherited from (A3.5.2) implies that there can be no influence paths (of any 
length) between these two subsystems of regions. In other words, these subsystems are 
completely disconnected from one another in terms of possible spatial influences. More 
specifically, with respect to the types of “ripple effects” described in Section 3.3.3, this 
block-diagonal property implies that no effects originating in one subsystem can ever 
influence regions of the other subsystem. Thus in terms of spatial dependencies, these 
subsystems can effectively be analyzed separately from one another.   
 
While this seems obvious for such physically disjoint subsystems, there are in fact more 
subtle types of spatial disconnectedness that must also be considered. As one example, 
suppose we consider centroid distances between members of the 5-region system in 
Figure A3.5.4 below: 
 
 
 
 
 
 
 
 
 
 
 
As an instance of multiple nearest-neighbor relations, we now consider only the first two 
nearest neighbors for each region within this small system of regions. Such two-neighbor 
relations are represented by the spatial weights matrix in expression (A3.5.4) below, 
where for example, the first two nearest neighbors of R1 are seen from Figure A3.32 to be 
R2  and R3 . 
 

(A3.5.4) 11 3 2

21 22

0 1 1 0 0
1 0 1 0 0
1 1 0 0 0
0 1 0 0 1
0 0 1 1 0

W O
W

W W




      

 
 

 

Figure A3.32.  Centroid Distance 

• 
• 

• 

• 

• 
R1 

R2 
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Here it is clear that the subsystem of regions {R1, R2, R3} (represented by submatrix, 11W ) is 
self-contained in the sense that all nearest neighbors are in the same subsystem. But while 
the complementary subsystem, {R4, R5} (represented by 22W )  also contains all of its first 
nearest neighbors, this is not true of  second nearest neighbors, which are seen to be R2  
and R3 . Thus there is an asymmetry between these two subsystems, with 12W  containing 

all zeros while 21W  is nonzero. Moreover, this (lower) block triangularity property of W 

is again seen to be preserved by all powers of W, as illustrated by 2W ,  
 

(A3.5.5) 
2 2

11 3 2 11 3 22
2

21 22 21 11 22 21 22

W O W O
W

W W W W W W W
         

 

 
which continues to be (lower) block triangular. So in terms of spatial influence paths, this 
block triangular structure implies that there are no influence paths from subsystem {R4, R5} 
to {R1, R2, R3}. In other words, no spatial effects originating in {R4, R5} can ever influence 
{R1, R2, R3}. Thus while these two subsystems are not fully disconnected with respect to 
such (second-nearest-neighbor) influences, there is clearly some lack of connectivity 
here.   
 
With these observations, we now focus on spatial weights matrices, ( : , 1,.., )ijW w i j n  ,  

that are strongly connected in the sense that for every pair of distinct regions, i  and j , 
there exists at least one influence path from j  to i , i.e., at least one sequence coefficients 

1 1 2 1, , , ,( , ,.., , )
k k ki m m m m m m jw w w w


 of positive coefficients in W . For our later purposes, it is 

important to note that it is enough to focus on influence paths of length 1k n  . For since 
each longer path must repeat some index, im , at least once, we can always remove the path 
cycles created by such repetitions. Under this condition, the underlying system of regions, 

1,..,i n , is then said to be strongly connected with respect to W . Some consequences of 
failures of this condition will be discussed further in Section ?? below. But for the moment 
we consider the analytical of strong connectivity. 
 
 

A3.5.2 Perron-Frobenius Theorem 
 
The single most important properties of such strongly connected weights matrices relate 
to their eigenstructure. In particular, their maximum eigenvalue is always a positive real 
number with a unique positive eigenvector of unit length. To establish this fundamental 
result, known as the Perron-Frobenius (P-F) Theorem it is convenient to focus on general 
n-square matrices, A, and to state all results in this context.  
 
To do so, we begin with some instructive examples. First recall from expression (3.3.13) 
in Section 3 that the matrix 
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(A3.5.6) 
0 1
1 0

A
   

 
 

 
is a pure (90 ) rotation of the plane, and thus has no real eigenvalues. Thus one 
consequence of the P-F Theorem is that nonnegative matrices, A, are guaranteed to have 
at least one real eigenvalue. To illustrate this in the context of spatial weights matrices, 
recall from expression (3.3.12) that one of the simplest possible examples is provided by 
the contiguity matrix for two (connected) regions 
 

(A3.5.7) 
0 1
1 0

W
  

 
 

 
Here the Perron-Frobenius properties above are almost immediate from the row 
normalized  structure of W , which by definition ensures that 2 21 1W  , and thus that W 

has a real positive eigenvalue, 1 1  , with positive eigenvector, 1 21x  . The full 
eigenstructure of W is given in Figure 3.4, and shows that the normalization, 

1 2(1/ 2)1x  , yields the unique positive eigenvector with unit length. A somewhat more 
interesting example is provided by the contiguity matrix,  
 

(A3.5.8) 
0 1 0
1 0 1
0 1 0

W




 

    

 
for the regional subsystem {R1 , R2 , R3} in Figure A3.31 above. Here it can be verified by 
direct multiplication that [as in expression (3.3.14)] the eigenstructure, 
 
(A3.5.9) WX X   
 
of W is given by 
 

(A3.5.10)  
2

0

2


  

  

       

1 1 1
2 22
1 1
2 2

1 1 1
2 22

0X

 


  


 

 

 

So here the maximum positive eigenvalue is 1 2   with unique positive eigenvector, 
1 1 1

1 2 22
( , , )x  , of unit length. Note also that while this matrix is strongly connected, it is 

also a singular matrix (which can be seen directly from the fact that the first and last 
columns of W are the same). So strongly connectivity says nothing about nonsingularity 
of matrices.  
 
Finally, just to illustrate that these properties have nothing to do with the zero-one nature 
of contiguity matrices, it is of interest to consider centroid distance between these three 
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regions, as shown in Figure A3.32 below (where by construction these centroids form a 
“3-4-5” triangle”): 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here the corresponding spatial weights matrix is given by: 
 

(A3.5.11) 
0 3 5
3 0 4
5 4 0

W




 

 

 
with eigenstructure, WX XD ,  that can be calculated numerically in MATLAB as  
 

(A3.5.12)     
8.0558

2.8755
5.1803

D

 
  

 , 
0.58133 0.55396 0.59598
0.52511 0.81493 0.24527
0.62155 0.17037 0.76463

X
 

  
  

 

 
by using the command: 
 
>> [X,D] = eig(W); 
 
Here we see again that there is exactly one real positive eigenvalue, 8.0558, with 
corresponding positive eigenvector, [0.58133, 0.52511. 0.52511]ꞌ. 
 
With these examples of nonnegative strongly connected matrices, our objective is to 
establish the Perron-Frobenius Theorem for such matrices, which for our purposes can be 
stated as follows: 
 
 
 Perron-Frobenius Theorem. For any strongly connected nonnegative matrix, A, 

the eigenvalue of A with maximum absolute value is positive and has a unique 
positive eigenvector of unit length. 

 
 

Figure A3.32. Centroid Distance 
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The only technicality here is that the absolute value, | | , of an eigenvalue, ( )Eig A , 
is taken to include complex eigenvalues as well, where | |  is usually called the modulus 
of   and is always a real positive number. Since the arguments below will only require 
the use of such absolute values, there is little harm in assuming for the present that all 
eigenvalues, ( )Eig A , are real. The interpretation of complex eigenvalues is deferred 
to Section A3.5.4 below. 
 
There are several approaches to proving this theorem. We start with the two-dimensional 
case, where a simple “angle” approach can be applied that offers some intuition as to why 
the P-F theorem is true.  We then develop a proof for the general case. 
 
Proof Sketch for Two Dimensions  
 
Consider the linear transformation in Figure A3.33 below, with strongly connected 
nonnegative matrix representation, A.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
By nonnegativity, the images, 1Ae  and 2Ae , of the basis vectors, 1e  and 2e , must be in 

the nonnegative quadrant. Moreover, by strong connectivity, neither 1e  and 2e  can be an 

eigenvector. For example, if 2e  were an eigenvector, then we would have 
 

(A3.5.13) 11 12 11
2 2

21 22 21

0 0 0
1

a a a
Ae e A

a a a


 
                

      
 

 
which in turn implies that there can be no path from node 2j   to node 1i  . A similar 

argument holds for 1e . So in Figure A3.33 it follows that 2Ae  must be to the right of 2e , 

yielding a positive (clockwise) angle, 2 2 2( , )e Ae  , between these vectors. Similarly, 

1Ae  must be above 1e , yielding a negative (counter-clockwise) angle, 1 1 1( , )e Ae  , as 

in the figure. So one can see already that there “should” be some vector, 0x ,  between 1e  

and 2e  for which this angle is zero, and thus for which 0x  is a scalar multiple of 0Ax , i.e., 

Figure A3.33. Angle Approach  

0  1  

1  

2  

0  

  

  • • • 

Figure A3.34. Zero Point 

1e  
1  

1Ae  
2e  

2Ae  

2  

0x  

0Ax  
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an eigenvector of A (as shown in the figure). To verify this, we first connect 1e  and 2e  by 

the line segment shown in blue (usually called the unit simplex in 2 ), and express all 
points on this line as linear (convex) combinations of 1e  and 2e : 
 
(A3.5.14) 2 1( ) (1 ) , [0,1]x e e        
 
Next, we define the corresponding angles for all these points as follows: 
 
(A3.5.15) ( ) [ ( ), ( )] , [0,1]x Ax         
 
where in particular, 1 1 1(0) ( , ) 0e Ae     , and 2 2 2(1) ( , ) 0e Ae     . Then it is 
easy to see that (A3.5.15) must yield a continuous function, ( )  , on the unit interval, as 
shown schematically in Figure A3.34. But since (0) 0   and (1) 0  , it then follows 

from the Intermediate Value Theorem1 that there must be some 0 (0,1)   for which 

0( ) 0   . Thus if we now let 0 0( )x x  , and set 0 0 0|| || || || 0Ax x   , then by 
definition this implies that: 
 

(A3.5.16) 0 0
0 0 0 0 0

0 0

0 ( , )
|| || || ||

Ax x
x Ax Ax x

Ax x
       

 

and thus that 0x  is a positive eigenvector of A with positive eigenvalue, 0 .  So all that 

remains to be shown is that 0  is the largest eigenvalue for A. Again, this can be seen 

intuitively for 2  by simply observing that the image, ( ) { : }A C Az z C   of the unit 
circle, { :|| || 1}C z z  , under any transformation such as A in Figure A3.33 must be 
“elongated” in the direction of this eignenvector, as seen schematically in Figure A3.35 
below (where 0x  has been rescaled to 0 0 0/ || ||z x x C  ), 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
1 See for example Theorem 16.4 in Bartle (1975). 

1e  

1Ae  

2e  

2Ae  

0z  

0Az  

( )A C  
C  

Figure A3.35. Direction of Elongation 
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Since this two-dimensional argument is meant only to provide some intuition for the P-F 
Theorem, we shall not attempt a more detailed proof of this “elongation” property. 
Rather, we turn now to a general proof, based on the version given in Chapter 9 of 
Sternberg (2010)2. Before doing so however, it should be mentioned that the argument 
above for 2 can be directly generalized by replacing the simple “angle” argument with a 
more general fixed-point argument on the unit simplex in n [as shown by Debreu and 
Herstein (1953)].3 However, the proof below requires only the existence of maxima, as 
we have already seen in the discussion of Figure A3.19 above. In addition, it provides 
some degree of geometric intuition that can be displayed graphically. 
 

This proof makes extensive use of the follow characterization of strong connectivity 
which is useful in its own right. In particular, a nonnegative n-square matrix, A , is 
strongly connected if and only if the associated matrix, 
 
(A3.5.17)  1( )n

nP I A    
 
is positive (i.e., has all positive elements). First recall from the Binomial Theorem that for 
any number, a,  
 

(A3.5.18)    2

1
(1 ) 1 1

1 2
mm m k

k

m m m m
a a a a a

m k

                    
      

  

 

Exactly the same result applies to matrices, and shows in particular that 
 

(A3.5.19)    
11

1

1
( )

nn k
n n k

n
P I A I A

k



      
 

  

 

Since A is nonnegative and since both the diagonal elements of nI  and combinatorial 
coefficients on the right hand side are positive, it follows that P is positive if and only if 
for each distinct ij-pair, at least one of the matrices, , 1,.., 1kA k n  , has a positive 

component,  k

ij
A . But since  k

ij
A  is the number of influence paths of length k  from j  

to i , this says that P is positive if and only if there is at least one influence path of length 
1k n   for every distinct ij-pair – which is precisely strong connectedness. 

 
This result also provides a simple method for verifying strong connectedness. In fact, by 
simply taking recursive (geometric) powers  
 

(A3.5.20)    22 2 4( ), ( ) , ( ) ( ) ,n n n nI A I A I A I A       
 

one will typically reach a positive matrix rather quickly when A is strongly connected, 
and will otherwise identify persistent zeros indicating which nodes fail to be connected. 

                                                 
2 This proof is also available online at http://www.math.harvard.edu/library/sternberg/slides/1180912pf.pdf. 
3 Another more sophisticated (and powerful) geometric approach is Birkhoff’s contraction-mapping 
argument, which is developed and discussed in detail by Kohlberg and Pratt (1982). 
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A final property of matrix, P, which is crucial for the analysis to follow is that it 
commutes with A, i.e., 
 
(A3.5.21) 1 1( ) ( )n n n

n nPA I A A A A A I A AP         
 
With these preliminaries we now proceed to the proof. 
 
Proof for the General Case: 
 
If the nonnegative orthant in n  is denoted by { : 0}nQ x x   , then our analysis 

focuses on the positive orthant in n , 
 
(A3.5.22) { : 0}Q x Q x     
 
consisting of all nonnegative vectors with at least one positive component. We also 
denote the strictly positive orthant in n by 
 
(A3.5.23) { : 0}nQ x x     
 
In this setting, if ( : . 1,.., )ijA a i j n   denotes a given strongly connected nonnegative n-

square matrix, with associated positive matrix P in (A3.5.17), then these two matrices 
exhibit the following mapping properties. First, observe from the positivity of  P that  for 
each x Q  it must be true that 0Px  , since any positive component of x is enough to 
make all components of Px  positive. So we must have 
 
(A3.5.24) ( )P Q Q   
 
In particular, this implies that for any , nx y , 
 
(A3.5.25) ( )x y Q P x y Q Px Py         
 
Turning next to A, observe first for any x Q we must have Ax Q . For if not, then 

0Ax   would imply 0 0PAx P  , which together with (A3.5.21) yields ( ) 0A Px  . 

But since Px  is strictly positive by (A3.5.24), this would in turn require that n nA O   
and thus would violate strong connectivity. So we must have 
 

(A3.5.26) ( )A Q Q   
 
It is this property of strong connectedness underscores our interest in Q . For our later 
purposes, we note also that 
 
(A3.5.27) ( )A Q Q   
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For if 0x   and for any i  it is true that 0ij jj
a x  , then 0ija   must hold for all j , 

and there can be no influence path from any j  to i . Thus again by strong connectedness 
we must have 0Ax  .  
 
Given these general mapping properties, the following proof consists of three parts. First 
we establish the existence of a positive eigenvalue,  , for A  with associated positive 
eigenvector, x , with unit length. We then show that  has maximum absolute value 
among all eigenvalues of A. Finally it is shown that the eigenvector, x , is unique.  
 
(i) Existence. The proof of existence focuses on a scaling relation between vectors, 
x Q , and their images, Ax Q , that can be used to characterize eigenvectors in a 
useful way. In particular, if the scale function, ( )s x , for A is defined for all 

1( ,.., )nx x x Q   by: 
 
(A3.5.28) ( ) max{ : }s x x Ax     
 
then the nature of this function can be seen graphically for 2n   as in Figure A3.36 
below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here the scaled version, ( )s x x , of x  is seen to lie  on the boundary of the box,  
 
(A3.5.29) { : 0 }n

xB y y Ax     
 
which for 2n   is represented by the dashed lines in Figure A3.36, In this case, x  is 
shown to be inside xB , so that ( ) 1s x  . But if x  is outside xB , then ( )s x x is still on the 

boundary of xB  with 0 ( ) 1s x  . For our later purposes, it is useful to write ( )s x  more 
explicitly as follows. Note first by definition that for each component of 

( : 1,.., )ix x i n   we must have,  
 

(A3.5.30) ( ) ( ) , 1,..,i i ij jj
s x x Ax a x i n      

Figure A3.36. Scale Function 

Ax  

x

( )s x x  

1x  

2x  

xB  
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But the nonnegativity condition, ( ) 0iAx  , implies that (A3.5.30) must hold 

automatically when 0ix  , and thus that we need only consider positive components, 

0ix  . Moreover, since the largest scalar,  , satisfying 
 

(A3.5.31) 
( )i

i

Ax

x
    for all i  with 0ix   

 
is simply the minimum of these ratios, it then follows from (A3.5.28) that ( )s x  must be 
given explicitly by,4  
 

(A3.5.32) { : 0}

( )
( ) min

i

i
i x

i

Ax
s x

x
   

 
Note in particular that while Figure A3.36 illustrates only the strictly positive case, 
x Q , we now see from (A3.5.32) that this scale function, ( )s x  is indeed well defined 

for all x Q .  
 
But our interest in this scale function is seen most clearly by noting first from definition 
(A3.5.28) that ( )s x x  never exceeds Ax  in any component, i.e., that  
  
(A3.5.33) ( ) ,s x x Ax x Q   
 
Moreover, in the extreme case, where ( )s x x Ax , it also follows by definition that ( )s x  
must be an eigenvalue of A with eigenvector, x. So our object is to find conditions under 
which this extreme will be achieved.  
 
To do so, we now focus on the relation between this scale function and the positive 
matrix, P. In particular, starting with any nonnegative scalar, ( )s x  , observe from 
(A3.5.33) together with the positivity of P and the commutativity property, PA AP , in 
(A3.5.21) that 
 
(A3.5.34) ( ) ( ) 0 ( ) 0s x x s x x Ax Ax x P Ax x              
 
                            ( ) ( )P Ax P x Px PAx APx       
 
 
So by applying the scale function, s , to Px , we now see that 
 
(A3.5.35) ( ) ( ) ( ) ( )s x Px A Px s Px        
 

                                                 
4 This is known as the Collatz-Wielandt Formula, as discussed for example in Chapter 8 of Meyer (2001) 
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and may conclude [by setting ( )s x  ] that for all x Q  
 
(A3.5.36) ( ) ( )s x s Px  
 
Moreover if ( )s x x Ax , then by almost the same argument, we see from (A3.5.24) that  
 
(A3.5.37) ( ) ( ) ( )s x x Ax s x x Ax s x x Q      
 
                                                            ( ( ) ) ( )P Ax s x x Q s x Px PAx APx       
 
and thus, by again applying the scale function, s, to Px, that 
 
(A3.5.38) ( ) ( ) ( )s x x Ax s x s Px    
 
But this last result shows that if this scale function achieves a maximum in Q , say at 

z Q  , then it must be true that 
 
(A3.5.39) ( )Az s z z  
 
For if not, then by (A3.5.38) we would have ( ) ( )s z s Pz . But since z Q Pz Q    , 
this would contradict the maximality of ( )s z . Thus to establish the existence of an 

eigenvector for A in Q , it suffices to show that s  does achieve a maximum on Q . 
 
To do so, we start by observing that this scale function is itself invariant under positive 
scalar transformations of x . In particular, for any positive scalar, r , it must be true for 
any   that 
 
(A3.5.40)  ( ) ( ) ( ) ( )rx A rx r x r Ax x Ax        
 
and thus from (A3.5.28) that for all x Q  
 
(A3.5.41) 0 ( ) ( )r s rx s x    
 
In particular, since every x Q  has positive length, || || 0x  , it suffices to set 

1/ || ||r x , an consider the normalization, / || ||xu x x , of each x Q , i.e., the subset,  
 
(A3.5.42) { : }xU u x Q Q      
 
which in geometric terms is simply the intersection of Q  with the unit sphere, 

{ : || || 1}nU u u    in n , as shown for 2n   by the quarter circle in Figure A3.37 
below: 
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The key point here is that  U  is a compact (closed and bounded) subset of Q , and all 

values of s  are necessarily achieved in U . So s achieves a maximum in Q  if and only 

if it achieves a maximum in U . But we can do even better than this by considering the 
image  
 
(A3.5.43) ( ) { : }P U Pu u U Q      
 
of U  under P, as shown for 2n   in Figure A3.37 above.  For the dominance property 

in (A3.5.36) then shows that the maximum value of s in Q  (and thus in U ) must also 

be achieved on ( )P U . But here it is quite simple to show that maximum values of s 
must always exist. To do so, observe first that since all linear mappings are continuous, 

( )P U  must be the image of a compact set, U , under a continuous mapping, P , and 
thus must itself by compact.5 But as we have already seen in Section A3.2, the Extreme 
Value Theorem6 ensures the existence of maxima for every continuous function on 

( )P U . In particular, the scale function, s, is easily seen to be continuous on ( )P U . This 
is particularly evident from expression (A3.5.32), which reduces to the following simple 
form for positive vectors, 
 

(A3.5.44) 1,..,

( )
( ) min i

i n
i

Ax
s x

x
  

 
Since the continuity of A  implies that each ratio, ( ) /i iAx x , must be continuous on all of 

Q  [and thus on ( )P U ], and since the minimum of a finite set of continuous functions 

                                                 
5 See for example Theorem 16.5  in Bartle (1964). 
6 Again this is demonstrated in Theorem 16.6 of Bartle (1964). 

( )P U  

1Pe  

1e  

2e  

2Pe  

x  

z• 

• 
• 

• 

U  

Figure A3.37. Construction for Existence Proof 
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is continuous, it then follows from (A3.5.44) that s is continuous on ( )P U . Thus by the 

Extreme Value Theorem there must be some positive vector, ( )z P U Q
   , satisfying 

 
(A3.5.45) ( ) ( )s z s x   for all x Q  
 
(as again illustrated for 2n   in Figure A3.37). But we have already seen from (A3.5.35) 
that this implies ( )Az s z z   . Moreover, since 0Az   by (A3.5.27) it follows that 

( ) 0s z  . Finally, by setting  
 
(A3.5.46) ( )s z   
 
and taking x  to be the normalization of z , i.e.,  
 

(A3.5.47) 0
|| ||

z

z
x u

z
      

 
(as in Figure A3.37), it then follows that 
 

(A3.5.48) 
1 ( )

( ) ( )
|| || || || || || || ||

s z z z
Az s z z A z z A s z

z z z z

  
      

  
 

 
                                  Ax x     
 
and thus that the desired existence result is established. 
 
(ii) Maximality. One added bonus of the argument above is that can also be used to show 
that no eigenvalue, ( )Eig A ,  has greater absolute value than  , i.e., that 
 
(A3.5.49) | |   for all ( )Eig A  
 
 Here we start by observing that for any ( )Eig A  and any associated  eigenvector, 

( : 1,.., )iy y i n   , it follows by definition that, 
 

(A3.5.50) 
1

, 1,..,
n

i ij jj
Ay y y a y i n 


     

 
It is important to note that both   and y  in (A3.5.50) may be complex valued. But in any 

case, their absolute values, | |  and | | (| |: 1,.., )iy y i n  , are real, and behave in the 
same way as for real valued   and y .7  In particular, for any (possibly complex) 

                                                 
7 The absolute value (modulus) of a complex number, x a bi  , is defined by 2 2| |x a b  . 
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numbers, x  and z , it is always true that | | | || |xz x z  and that | | | | | |x z x z   , so that 
by (A3.5.50) together with the nonnegativity of A, 
 

(A3.5.51) 
1 1 1

| || | | | | | | | , 1,..,
n n n

i i ij j ij j ij jj j j
y y a y a y a y i n 

  
        

 
               | || | | |y A y   
 
But since 0 | |y y Q   , it then follows from the definition of the scale function, s, in 

(A3.5.28) together with z in (A3.5.45) and (A3.5.46) that 
 
(A3.5.52) | | (| |) ( )s y s z       
 
and thus that (A3.5.49) must hold. 
 
(iii) Uniqueness. To establish uniqueness of the eigenvector, x , it suffices to show that 
that the equality,  
 
(A3.5.53) Ay y  
 
cannot hold for any nonzero vector, ny , which is not a scalar multiple of x .8  To 
formulate this more precisely, we start by observing that every pair of distinct points, 

, nx z , define a unique line in n , denoted by 
 
(A3.5.54) ( , ) { (1 ) : }L x z x z       
 

In these terms, all linear multiples of x  are precisely those points on the line, (0, )L x , 
shown for 2n   in Figure A3.38 below (as a thin red line). So our objective is to show 
that all vectors, y , satisfying (A3.5.53)  must lie on this line, i.e., that for all ny , 
 
(A3.5.55) (0, )Ay y y L x     
 
However, the argument is made simpler by observing that all eigenvectors of A are 
shared by the positive matrix, P. In particular, if (A3.3.53) holds for y then, 
 
(A3.5.56)      ( ) (1 )Ay y I A y y Ay y y y              
 
 

                                                 
8 Because  is real, we may focus on real eigenvectors. Here it is worth noting that if Ay y  then it is 

trivially true that ( ) ( )A y iy Ay iAy y i y y iy           . But as we shall see in Section A3.5.3 

below, complex eigenvectors are only of interest when their associated eigenvalues are complex. 
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                                       2 2( ) ( )[(1 ) ] (1 )( ) (1 )I A y I A y I A y y               
 
                                          
 
                                       1 1( ) (1 )n nI A y y       
 
                                       Py y    
 
where  1(1 ) 0n      . So each eigenvector of A for eigenvalue,  , is necessarily an 

eigenvector of P with associated positive eigenvalue,   . So in particular,  
 
(A3.5.57) Px x    
 
Moreover, if Ay y  for any (0, )y L x , then it must also be true that Py y  . Thus 

to establish uniqueness of x  for eigenvalue, ( )Eig A  , it is enough to establish 

uniqueness of x  for eigenvalue, ( )Eig P   . So our objective in (A3.5.55) will be 
achieved if it can be shown that 
 
(A3.5.58) (0, )Py y y L x      
 
The advantage of this reformulation is that the positivity of P makes it simpler to show 
that violations of (A3.5.58) lead to a contradiction. In this context, the remaining 
argument is essentially a (more geometric) version of the uniqueness proof for the case of 
positive matrices in Lemma 2.2 of Cheng et al. (2012). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(0, )L x

(0, )L x

( , )L y x  

x  

y( , )L y x  
• 

0y  

Figure A3.38. Boundary Eigenvectors 
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To begin with, suppose to the contrary that Py y   for some (0, )y L x . Then 

y x  implies that the line, ( , )L y x , passing through these two points is well defined. 

Such a line is shown (in blue) for 2n   in Figure A3.38. Moreover, if both x  and y  are 

eigenvectors for   , then it follows that every point on the line, ( , )L y x , must also be an 

eigenvector for   . To see this, observe that each point on this line can be written as a 
linear (affine) combination of x  and y  as follows, 
 
(A3.5.59) (1 )y y x       
 
But by simple linearity, we see that 
 
(A3.5.60) [ (1 ) ] (1 )Py P y x Py Px            
 
                               ( ) (1 )( ) [ (1 ) ]y x y x y                    
 
and thus that y  is also an eigenvector   . The next key point to observe is that since 

x Q
 , it follows that (regardless of where y is located) the line, ( , )L y x , must 

intersect the boundary of  Q , which is precisely the set of nonnegative y  with at least 

one zero component (as shown for 2n   by the point 0y  in Figure A3.38). To verify this 

observation, note first from the representation in (A3.5.59) that for each component, iy  , 

of  y  with i iy x , there is a unique   value, say i , at which 0iy  , as can be seen as 
follows: 
 

(A3.5.61) 0 (1 ) i
i i i i

i i

x
y y x

x y
   





     


 

 
If among these  values, we choose m  to be one with smallest absolute value, i.e.,  
 
(A3.5.62) | | min{| |: }m i i iy x     
 
then the desired point, 0 ( , )y L y x , is given by 
 
(A3.5.63) 0 (1 )m

m my y y x        
 
To see this intuitively, note that since points, y , with smaller values of | |  are by 

construction closer to x Q
  , it then follows that 0y  must be the closest point to x  

on the line ( , )L y x  which has at least one zero component. Thus it is natural to expect 

this point to be in the boundary of Q . To verify this, recall first that by construction, 
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0 0my  . To show that 0 0y  , suppose to the contrary that 0 0iy   for some i .  Then this 

must in turn imply that i iy x . For if i iy x , then the positivity of x  would imply 
 
(A3.5.64) 0 (1 ) ( ) 0m

i i m i m i i m i i iy y y x x x y x                  
 
which contradicts 0 0iy  .  So by employing (A3.5.62) we see on the one hand that  
 
(A3.5.65) 0 0 | | | |i i i m iy y x         
 
But on the other hand, since 
 
(A3.5.66) 00 (1 ) ( )m

i i m i m i i m i iy y y x x x y              
 
                          ( ) 0m i i ix y x       
 
and since every positive product can be rewritten as,  
 
(A3.5.67) ( ) | ( ) | | | | ( ) |m i i m i i m i ix y x y x y         , 
 
we see from (A3.5.66) that, 
 

 (A3.5.68)  0 0 | || | | | | |
| |

i
i m i i i m i

i i

x
y x y x

x y
  


 


      


  

 
which contradicts (A3.5.65). Thus we may conclude that 0 0y   with at least one zero 

component, 0 0my  , and thus that 0y  is indeed in the boundary of Q . In addition, 0y  

must have at least one positive component. For if not then 0 0 (0, )y L x   would 

contradict our hypothesis that 0 (0, )y L x . Thus it also follows that 0y Q . Finally, to 

show that no such 0y  can exist, recall from (A3.5.24) that ( )P Q Q  , and thus that 
0 0Py  . But if 0y  were an eigenvector for   , then the positivity of    would imply 

that 
 
(A3.5.69) 0 0 0 01 0Py y y Py 

     

 
which contradicts our choice of 0y  with 0 0my  . Thus no such 0y  exists, and we may 

conclude that all eigenvectors of    lie in (0, )L x , i.e., that (A3.5.62) must hold.   
  
For our analyses below, we shall employ the notational conventions of Section 3.3.1 in 
the text by making the matrix dependencies of maximum eigenvalues and eigenvectors 
explicit.  For each strongly connected nonnegative matrix, A, let the maximum eigenvalue  
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of A be denoted by 0A  , with associated unique positive eigenvector, Ax , of unit length, 
so that (A3.5.48) now becomes 
 
(A3.5.70) A A AAx x  
 
Similarly, if we denote the maximum absolute value of all eigenvalues of A by9 
 
(A3.5.71) ( )| | max | |A Eig A   

 
then the maximality result in (A3.5.49) can now be restated as 
 
(A3.5.72) | |A A   
 
 
A3.5.3 Application to Spatial Autoregressive Kernels 
 
The objective of this section is to apply the above results to the power expansion of 
spatial autoregressive kernels, as developed in Section 3.3 of the text. To do so, we start 
by establishing expression (3.3.7), which asserts that for any n-square matrix, A,  
 

(A3.5.73) 1

0
( ) limk k

n k nk
I A A A O




     

 
[The infinite sum on the left is known as the Neumann series, and has a long history in 
mathematics, as developed for example in Meyer (2000, Section 7.10).] Because this 
series can only converge if kA  shrinks to zero, necessity of the limit condition on the 
right hand side of (A3.5.73) should be obvious. To prove sufficiency of this condition, 
note simply that for any positive integer, k, we must have10 
 
(A3.5.74)    2 1( )( )k

n nI A I A A A       
 
                               2 1 2( ) ( )k k

nI A A A A A A           
 
                               k

nI A   
 
and thus may conclude that 
 
(A3.5.75)     lim lim ( )k k

k n k n nA O I A I      
 

                                                 
9  This maximum absolute value is almost always referred to as the spectral radius, ( )A , of A. However, 

we choose the present notation and terminology both to avoid confusion with the spatial dependence 
parameter,  , and more importantly, to emphasize its relation to eigenvalues explicitly. 
10 The cancelation of almost all terms here is known as a “telescoping sum”. 
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                                              2 1lim ( )( )k
k n n nI A I A A A I
        

                                                                               

                                              
0

( ) k
n nk

I A A I



    

 

                                              1

0
( )k

nk
A I A

 


    

 
Given these general results, it should be clear that the instance of (A3.5.73) which is of 
most importance for out purposes is the assertion that for any spatial weights matrix, W, 
and spatial dependency parameter,  , the “ripple” expansion, 
 

(A3.5.76) 1

0 0
( ) ( )k k k

n k k
I W W W   

 
     

 
holds if and only if it is true that 
 
(A3.5.77) lim k k

k nW O   
 
In this context, our main objective is to show that 
 
(A3.5.78) lim | | 1/k k

k n WW O       

 
For this, together with (A3.5.73), will yield the main result of this section, namely that 
 

(A3.5.79)  1

0
( ) | | 1/k k

n Wk
I W W   


      

 
As suggested in Section 3.3.1, the intuition behind (A3.5.78) is rather simple. In fact, 
powers ( kA ) of any matrix, A, should shrink to zero whenever all vectors are “shrunk” by 
A. This in turn should require that all eigenvalues be less than one in absolute value, i.e., 
that | | 1A  . But since | | | |W W   , it follows that the right hand side of (A3.5.78) 

simply asserts that | | 1W   . To see that this intuition is basically correct, we first 
establish necessity of this condition by observing that for all k, 
 
(A3.5.80) k k

W W W W W WWx x W x x     
 
                                             | | | | (| | )k k k k k

W W W W WW x x x        
 
and thus from the positivity of both W  and Wx  that 
 
(A3.5.81) | | | | 0k k k k k k

n n WW O W O W x        
 
                                                                        (| | ) 0k

W Wx    
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                                                                      (| | ) 0k

W    
 
                                                                      | | 1 | | 1/W W        
 
However, sufficiency of this condition is somewhat more subtle, and requires an 
additional result that is useful in its own right. To see the difficulty here, consider the 
follows weight matrix, W, that has been partitioned to show that it is not strongly 
connected: 
 

(A3.5.82) 

0 1 0 0
1 0 0 0
1 1 0 1
1 1 1 0

W




 
 

 

 

 

Here it can be verified by direct calculation that all eigenvalues of W are real with unit 
absolute value (i.e., 1 and -1). In particular, there is still a positive maximum eigenvalue, 

1W  , with unique nonnegative eigenvector, 1/2 1/2(0,0,2 ,2 )Wx    of unit length. The 
surprising feature of this matrix is that even though its maximum eigenvalue is unity, the 
powers of this matrix diverge without bound. In particular it may be verified by direct 
calculation that for each power, 1,2,..k   
 

(A3.5.83) 

1 0 0 0
0 1 0 0

1 0
0 1

kW
k k
k k




 
 

 

 

 

So in such cases it clear that having a maximum absolute eigenvalue of one ( | | 1W  ) 
need not bound the growth of W powers. However, if W is strongly connected, then such 
powers are indeed bounded. In particular [by using the argument of Corollary 8.1.33 in 
Horn and Johnson (1985)], we now show that for any strongly connected weight matrix, 
A, with maximum eigenvalue, A , the scaled matrix powers, ( / )k

AA  , are uniformly 

bounded, i.e., that there exists a constant matrix, AC , such that for all positive powers, k , 
 
(A3.5.84) 1 k

n Ak
A

O A C   

 

To construct AC , we first observe that if the components of kA  are denoted by 
( )[ : , 1,.., ]k k
ijA a i j n  , then [as in (A3.5.80) above], 

 
(A3.5.85) 1

k
A

k k k
A A A A A A A AAx x A x x A x x       

 

                                             ( )1
, , , 1,..k

A

k
ij A j A ij

a x x i n


    
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So if the maximum and minimum components of eigenvector, 0Ax  , are denoted by 
min
Ax  and max

Ax , respectively, then it follows at once that for all components, ( )k
ija , 

 
(A3.5.86) ( ) min ( ) ( ) max1 1 1

, , ,k k k
A A A

k k k
ij A ij A j ij A j A i Aj

a x a x a x x x
  

     

 

                                
max

min
( )1 A

k
A A

xk
ij x

a   

 
But since the right hand side is independent of k , this in fact yields the desired uniform 
bound. In particular, if the bounding matrix, AC , is defined simply to have constant 

component values, max min/A Ax x , i.e.,   
 

(A3.5.87)  max

min 1 1A

A

x
A n nx

C    

 
then it follows at once from (A3.5.86) that (A3.5.84) must hold for this choice of AC .  
 
With this result, the desired sufficiency argument for (A3.5.78) is almost immediate. By 
letting A W  in (A3.5.84), it is enough to observe that 
 
(A3.5.88) | | 1/ | | (0,1) (| | ) 0k

W W W           
 

                                            1(| | ) (| | )k k k
W W n W nk

W
C O W O                                                  

                                            1| | | |k k k k k
W n nk

W
W O W O       

 

                                           k k
nW O   

 
So (A3.5.78) is established, and it follows that the key convergence condition in 
(A3.5.79) must hold.  
 
Having established necessary and sufficient condition for the existence of this power 
expansion for spatial autoregressive kernels, it is important to consider some of the 
general implications and possible generalizations of this result. We do so in the following 
two subsections. 
 
The Importance of Power Representations 
 
Recall from the closing discussion of Section 3.3.3 that spatial autoregressive kernels, 

1( )nI W  , can exist even when the power representation 
 

(A3.5.89) 1

0
( ) k k

n k
I W W 


    
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does not. However, it was also asserted that for the most important case of positive 
spatial dependencies, 0  , such kernels must necessarily have negative elements when 

  exceeds 1/ W . In particular, we now establish the following result: 
 
 

For any strongly connected spatial weights matrix, W, and nonnegative 
spatial dependency  parameter, 0  , if 1( )nI W   exists then, 

 
(A3.5.90) 1( ) 1/n n WI W O       
 
 
 
To establish (A3.5.90), note first that since this assertion is trivially true when 0   (i.e., 

since n nI O  and 0 1/ w  by the positivity of W ), we need only consider the case of 
positive spatial dependence, 0  . For the sufficiency part ( ) of assertion (A3.5.90), 
we then obtain the following sharper result. Here strong connectedness together with the 
argument in (A3.5.19) above shows that for each ij  pair, we must have ( ) 0k

ijW   for 

some 1k n  . Thus if 0   then it follows from (A3.5.79) that, 
 

(A3.5.91)  
11

0 0
1/ ( )

nk k k k
W n nk k

I W W W O     
 

        

 
and thus that 1( )nI W   is strictly positive in this case. To establish necessity ( ), 

note first that if 1/ W  that since, 
 

(A3.5.92)    1 1( ) ( ) 0
W Wn W w W w W W W WI W x x Wx x x x x           

 
it follows from the positivity of Wx  that ( )nI W  must be singular, and thus that  

1( )nI W   cannot exist. So it is enough to show that 1( )nI W   has negative elements 

whenever 1/ W  . To do so, note first that Wx  is also an eigenvector of 1( )nI W   

with eigenvalue, 1(1 )Wx  , since 
 
(A3.5.93) ( ) ( ) (1 )n W W W W W W W WI W x x Wx x x x            
 
                                 1( ) (1 )W n W Wx I W x      
 

                                  1 1
1( )n W W

W
I W x x 

    

 
But if 1/ W  , then this eigenvalue is negative,  
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(A3.5.94) 1/ 1 1 0W W W          
 
 which together with the positivity of Wx  that 
 
(A3.5.95) 1/ W   1( ) 0n WI W x    
 
So whenever 1/ W  , we see that 1( )nI W   maps the positive vector, Wx , into a 
negative vector, and must therefore have negative elements. Thus the assertion in 
(A3.5.90) is established.  
 
 
It should also be noted from (A3.5.93) that for 1/ W  , the autoregressive kernel, 

1( )nI W  , must in fact have negative elements in every row. So we see from the form 
of the spatial autoregressive model itself, 
 
(A3.5.96) 1( )nu Wu u I W         
 
that each component of u  must be a decreasing function of at least one element of  [as 
in the example of expression (3.3.37) in the text]. Thus for strongly connected weight 
matrices, W, with spatial dependency parameters, 1/ W  , there must always be wide-
spread negative dependencies between u and   in spite of the positivity of  . So while 
this spatial autoregressive model is formally well defined for a broader range of  values, 
the behavioral meaning of this model loses much of its appeal. Similar observations can 
be made for the strong connectivity condition, as we now show. 
 
Possible Relaxations of Strong Connectedness 
 
Given the above results for strongly connected weight matrices, it must be emphasized 
that many of these results are in fact far more general. Here we simply summarize such 
generalizations, and then reexamine strong connectedness from this perspective. 
 

First, certain parts of the Perron-Frobenius Theorem itself are extendable to all 
nonnegative matrices, A. Of most importance for our purposes is the fact that the 
eigenvalue, A , with maximum absolute value, | |A , is always nonnegative, so that  
 
(A3.5.97) | |A A   
 
holds identically for all nonnegative matrices, as demonstrated, for example, in 
expression (8.3.1) of Meyer (2000).11 [It is worth noting however, that this extension is 
only made possible by first establishing the Perron Theorem (i.e., the original case of 

                                                 
11 In Meyer (see footnote 9 above) the maximum absolute value | |A  is designated as the spectral radius, 

( )A . 
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positive matrices) and then using the fact that all nonnegative matrices are appropriate 
limits of positive matrices.]  
 
In addition, it can be shown by using this more general result that our main convergence 
condition (A3.5.79) for spatial autoregressive kernels continues to hold for  
all spatial weights matrices, W. In fact, since the maximum absolute value (spectral 
radius), | |A , is perfectly well defined for arbitrary matrices, A, (even when no real 
eigenvalues exist), this convergence condition turns out to be meaningful in all cases. 
More specifically, it can be shown [as for example in expressions (7.10.8) through 
(7.1011) of Meyers (2000)] that for every n-square matrix, A,  
 

(A3.5.98)  1

0
( ) | | 1k

n Ak
I A A 


     

 
In this light, expression (A3.5.79) is simply the special case with A W  and 

| | | | | |W W W     .  

 
In light of these more general results, it is appropriate to ask why strong connectivity of 
spatial weights matrices, W,  is if so much interest. Here the argument parallels that for 
positive spatial dependency parameters, where values of   were restricted to ensure 
meaningful (nonnegative) spatial influences. For the case of strong connectivity, the 
present argument is most transparent for the important case of symmetric weight 
matrices, W, such as the (queen) contiguity in expression (A3.5.2) above. This example 
was used to motivate strong connectivity precisely because the underlying spatial system 
in Figure A3.31 consisted of physically separated subsystems that shared no boundaries 
whatsoever. More generally, it is easily shown that failures of strong connectivity for 
symmetric weight matrices, W, are always of this type, namely that W must have a block 
diagonal form reflecting subsystems that share no linkages whatsoever.  
 
When analyzing spatial autocorrelation effects in particular, there are strong statistical 
grounds for treating such blocks separately. For example, suppose we consider a Spatial 
Errors Model, 
 

(A3.5.99) 2, , ~ (0, )nY X u u Wu N I         
 

for the two subsystems in Figure A3.31, where Y is some relevant regional variable, say 
per capita income. Then by partitioning vectors in terms of these two subsystems, we see 
that all spatial autoregressive dependencies can be written as: 
 

(A3.5.100)  1 1 1 1

2 2 2 2

u W u
u W u




             
      

 

 

                                 , 1,2i i i iu W u i      
 

                                 1 1( ) , 1,2
ii n i i i iu I W B i         
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But since 1  and 2  are independent by hypothesis, it then follows that 
 

(A3.5.101) 1 1
1 2 1 1 2 2cov( , ) cov( , )u u B B    

 

                                           
1 2

11 1 1
1 1 2 2 1 2cov( , ) ( )n nB B B O B    

    
 

                                
1 21 2cov( , ) n nu u O    

 

and thus (by multi-normality) that 1u  and 2u  are also independent . So we see that in 
terms of unobserved spatial errors, these regional subsystems are statistically 
independent. In other words, all “ripple effects” generated in a given subsystem (as in 
Section 3.3.3) must stay in that subsystem, and never influence other subsystems.  
 
When W is not symmetric then some linkages are possible, and the argument becomes 
more complex. But again the most important ideas are best illustrated by examples. A 
particularly dramatic example was given in Figure 7.6 of the text, where (asymmetric) 
first nearest neighbors were plotted. Here it was shown that the spatial linkages provided 
by this weight matrix were so sparse that no spatial autocorrelation was detectable by 
standard tests. Even if this neighbor relation is symmetrized, as in Figure A3.39 below, 
such relations are still so sparse that Eire is seen to be partitioned into six disjoint 
subsystems. So unless there is some reason to believe that spatial correlation effects are 
only possible within these six subregions, such sparse linkage structures are seen to 
impose strong prior restrictions on possible correlation effects. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A3.39. Symmetric Nearest-Neighbor Relations in Eire 
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More generally, unless there are compelling prior reasons to believe that certain 
subregions cannot be influenced by others in terms of spatial autocorrelation, it is most 
reasonable to consider spatial weight structures, W, that at least allow the possibility of 
such influences. The most direct way to ensure this is to require that W be strongly 
connected. In the case of Eire, for example, the two matrices (W and W_shares) 
exhibiting by far the most significant spatial autocorrelation in Table 7.2 are both 
strongly connected.12  
 
A3.5.4 Geometry of Complex Eigenvalues 
 
Before leaving the topic of nonnegative matrices it is important to note that while their 
maximum eigenvalues are always nonnegative – and hence real – their other eigenvalues 
need not be real. For spatial weights matrices in particular, recall from the Spectral 
Decomposition Theorem in Section A3.4.5 above, that this can never happen for 
symmetric spatial relations. But if such relations are asymmetric, then this is quite 
possible, as illustrated by the following simple example. Suppose that distances within a 
given city are measured by shortest driving distances, and that asymmetries are here 
created by the presence of one-way streets.  In particular, suppose we consider nearest 
neighbors among the three street-corner locations (a, b, c) shown in Figure A3.40 below: 
 
 
 
  
 
 
 
 
 
 
 
 
While location b is the nearest neighbor of a, and c is the nearest neighbor of b, the street 
configuration shows that the nearest neighbor of c is location a. So the relevant nearest-
neighbor weights matrix for these three locations is given by 
 

(A3.5.102) 
0 1 0
0 0 1
1 0 0

W




 

    

 
(where the top row is “a”, etc.) This spatial weights matrix is strongly connected, so that 
its maximum eigenvalue must be positive, with a unique positive eigenvector of unit 
length. But this is the only real eigenvalue of W. It particular, it can be verified by simple 
                                                 
12 Here the queen contiguity matrix, W_queen, is also strongly connected, while W_nn5 is not. So the fact 
that spatial autocorrelation is slightly “more significant” for the latter shows that strong connectivity by 
itself is certainly not the only consideration in constructing relevant weight matrices. 

Figure A3.40. Asymmetric Urban Neighbors 
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multiplication (using the rules for complex numbers)13 that the full eigenstructure, 
1W V V   , is given by 

 

(A3.5.103) 31
2 2

31
2 2

1

i

i


       

  ,    
3 31 1

2 2 2 2

3 31 1 1
2 2 2 23

1

1
1 1 1

i i

V i i

    
 

     
 
 

                                           

 
So while 1 0W    with (1, 1, 1)Wx  , the other two eigenvalues are seen to be complex 
valued with associated complex eigenvectors.14 To understand the geometric meaning of 
this eigenstructure, it is convenient to ignore the specific numerical values in (A3.5.95) 
for the moment and suppose that 1W V V    with 
 

(A3.5.104) i
i


 

 


  
  

  ,   ( , , )V v x iy x iy    

 
where , ,v x y  are vectors in 3 . Then by definition, 

(A3.5.105) ( , , ) ( , , )W V V W v x iy x iy v x iy x iy i
i


 

 


        
  

 

 

                                          ( ) ( )( )
( ) ( )( )

Wv v
W x iy i x iy
W x iy i x iy


 
 

 
     
     

 

 
The first line simply shows that   is a real eigenvalue with eigenvector, v . Moreover,  
(by using vector versions of the rules in footnote 13), it follows that the second line can 
be expanded as follows: 
 
(A3.5.106) ( ) ( )( ) ( )W x iy i x iy x i y ibx by            
 
                             ( ) ( )Wx iWy ax by i x y        
 
                             [ ( )] [ ( )] 0Wx x y i Wy x y           
 

                                                 
13 The only rules required here are complex addition, ( ) ( ) ( ) ( )a ib c id a c i b d       , and 

multiplication, ( )( ) ( ) ( )a ib c id ac bd i ad bc      . 
14 Here it should be noted that complex eigenvalues of real-valued matrices must necessarily have complex 
eigenvectors (so that all imaginary parts can cancel out in multiplications). 
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But since the complex vector in the last line of (A3.5.106) can be zero if and only if both 
its real part and imaginary parts are zero, it follows that both vectors ( )Wx ax by   and 

( )Wy x y    must be zero.  We thus obtain the following pair of real-valued 
equalities: 
 

 (A3.5.107)                          
Wx x y

Wy x y

 

 

 

 
 

 
that allow us to interpret this (A3.5.106) in more familiar terms. Before doing so, it is 
important to note that an expansion of the third line of (A3.5.106) yields exactly the same 
pairs of real-valued equality. In particular, this shows that the complex-valued relations in 
the second and third lines are strongly coupled, and we shall return to this coupling 
below. But for the present we focus the two equations in (A3.5.107), and observe that 
they can be combined as follows: 
 
(A3.5.108) ( , ) [ , ] [ , ]W x y Wx Wy x y x y        
 

                                     ( , ) , ( , ) ( , )x y x y x y
   
   

                  
 

 
Note moreover that the 2 2 matrix on the right hand side has very special properties. In 
particular, its columns are orthogonal with the same (squared) length, 2 2  , as can be 
seen from the matrix product:  
 

(A3.5.109) 
2 2

2 2
22 2

0
( )

0
I

       
     

                 
 

 
In geometric terms, this matrix involves both rotation and dilation, which can be made 
more explicit by rewriting the matrix as follows, 
  

(A3.5.110) 
2 2 2 2

2 2 2 2

2 2
,|| ( , ) || R


   

  
   

     
 

 

 

         
 

 
In this form, the matrix, ,R  , on the right hand side is now seen to be an orthonormal 

matrix (with columns of unit length), and thus is a pure rotation (as discussed in Section 

A3.1.2 above). By plotting this transformation for typical values (say 3   and 1  ), 

we can see that the basis vectors, 1 2( , )e e , are both rotated by the same angle, ( 30 )   , 

in 2 , where 2 2cos( ) /      and 2 2sin( ) /      (see also Figure A3.9 

above): 
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In these terms, the rotation matrix, ,R   can be expressed entirely in terms of angle,  , 

so that (A3.5.110) becomes 
 

(A3.5.111) 
cos( ) sin( )

|| ( , ) ||
sin( ) cos( )

    
   

        
 

 
This serves to emphasize the geometric properties of this matrix in terms of rotation by 
angle,  , and dilation by scaling factor, || ( , ) ||  .  
 
Given this geometric interpretation, we now put all of these results together in the 
following way. If the three vectors, , ,v x y , in (A3.5.105) are now designated as basis 

vectors, 1 2 3, ,b b b , then by (A3.5.105) together with (A3.5.108), we can express W 
equivalently as follows: 
 
(A3.5.112) 1 2 3 1 2 3 1 2 3 2 3( , , ) [ , , ] [ , , ]W b b b Wb Wb Wb b b b b b         
 

                                1 2 3

0 0
( , , ) 0

0
b b b


 
 



  

 

 
Note that this looks “almost” like the first line of (A3.5.105) – except that there are no 
longer any complex numbers! In fact, by writing these vectors in matrix form as 

1 2 3[ , , ]B b b b , we obtain the following equivalent real-valued decomposition of W:   
 

 

(A3.5.113) 1

0 0 0 0
0 0
0 0

WB B W B B
 

   
   


  
    
     

 

Figure A3.41.  Rotation Operator 

1e  

, 2R e   2e  

, 1R e   
  

  
•
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From an algebraic viewpoint, we have thus re-expressed linear transformation, W, in 
terms of a new set of basis vectors, B, which best reveal the intrinsic structure this 
transformation. If all eigenvalues of W were real (and distinct), then this new version 
would of course be precisely the eigenstructure of W (i.e., 1W V V   ). So in all cases, 
(A3.5.113) yields a new representation of W that is expressible entirely in real terms 
(known as the real Jordan form of W)15. But even more important for our present 
purposes is the geometric intuition that this representation provides about the linear 
transformation itself. In the present case of (A3.5.102) and (A3.5.103), where 

31
2 2, ,     and 

 

(A3.5.114) 

31
22

31
1 2 32 2

1
1 , ,
1 1 0

b b b

                     

 

 
this transformation, W, can be depicted as in Figure A3.42 below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here the unit vector, 1 31b  , is fixed under W, and serves as the axis of rotation for a 

rotation in the plain defined by vectors 2b  and 3b .16 In this case, W is seen from 
(A3.5.102) to be orthonormal, so that there is no dilation associated with this rotation 

2 2
2 3( 1/ 4 3 / 4 1)b b    . But in all cases, complex eigenvalues indicate that there is 

some degree of rotation in the plane defined by the corresponding pairs of basis vectors 
(such as 2b  and 3b ).  

                                                 
15 A particularly lucid treatment of real Jordan forms can be found in the lecture notes by K.R. Matthews, 
available online at http://www.numbertheory.org/courses/MP274/realjord.pdf. 
16 For ease of visual representation, the angle of rotation (120 ) for these vectors has been shortened. 

Figure A3.42.  Geometry of the W Transformation 
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Here it is worth noting that even in n , rotations are fundamentally two dimensional in 
nature. This classic result (known as Euler’s Theorem)17, shows for example in that in the 
present case of 3 , every possible way of turning the unit sphere about the origin (no 
matter how complex) is always equivalent to a simple rotation about some fixed axis, as 
in Figure A3.42.  This in fact is why complex eigenvalues must always appear in pairs 
( , )i i     [called “complex conjugates”]. The vectors for their real and imaginary 
parts then define the plane in which this rotation occurs. As a consequence, every matrix 
of odd dimension ( 3,5,...n  ) must have at least one real eigenvalue. For the case of 
even dimensions ( 2,4,...n  ), matrices can have all complex eigenvalues. An example 
matrix, A, was given for 2n   in (3.3.13) of the text [and can be extended to all higher 
(even) dimensions by block-diagonal repetitions of A].  
 
This geometric interpretation of complex eigenvalues is no accident. In fact, it is a simple 
matter to show that the 2 2  orthogonal matrix in (A3.5.111) yields a completely general 
representation of complex numbers, i  . In these terms, complex addition becomes 
matrix addition, and complex multiplication, 
 
(A3.5.115)   ( )( ) ( ) ( )a ib c id ac bd i ad cb       
 
becomes matrix multiplication 
 

(A3.5.116)   
( )

a b c d ac bd ad cb
b a d c ad cb ac bd

                 
 

 
Real numbers, a, are then simply the special case of diagonal matrices, 2a I . Of 
fundamental importance is the fact that the real number, 1  , in this matrix representation 
now has a “square root” since  
 

(A3.5.117)   
2

0 1 0 1 0 1 1 0
1 0 1 0 1 0 0 1

                      
  

  
So if “negation” is interpreted as “reversing direction” on the real line, then by extending 
this idea to two dimensions, the identity in (A3.5.117) shows that reversing directions 
(i.e., turning 180 ) can be achieved by two successive 90  rotations in the plane.  The 
key point here is that by introducing planar rotations together with dilations, one 
produces an extension of the real numbers in which negative roots are now well defined. 
Of course, such matrices are far more cumbersome to manipulate than the powerful 
notation of complex numbers. Thus, their main advantage (as seen in the present case of 
complex eigenvalues) is to provide some intuition as to the geometry underlying these 
mathematical constructs. 
 
 
                                                 
17 A nice discussion and analysis of Euler’s Theorem can be found in Palais, et al. (2009). 
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A3.6 Geometry of Correlation in Regression 
 
Recall that the geometry of squared correlation was developed as a goodness-of-fit 
measure for spatial regression in Section 9.3.3 of the text. Here we take an in-depth look 
at this geometry. To do so, we begin by noting from the development of the Regression 
Dual in Section 9.1.1 that data vectors can readily be depicted in variable space, as 
shown in Figure 9.4. Moreover, since correlation is interpretable as angle cosines, it 
should in principle be a simple matter to display such angles in variable space. The 
difficulty here is that standard sample correlation is in fact the angle cosine between data 
vectors in deviation form. What this means geometrically is that for any vectors, 

, nx y , the sample correlation in (9.3.20), 
 
(A3.6.1) ( , ) cos[ ( , )]r x y Dx Dy  
 
is the angle cosine between the images, Dx  and Dy , of these vectors under the linear 
transformation defined by the  deviation matrix, 
 
(A3.6.2) 1 (1 1 )n n nnD I     

 
in (9.1.17). Recall also from (9.1.9) that 1 0nD   and thus that for any vector, x , which is 

orthogonal to 1n , 
 
(A3.6.3) 11 0 1 (1 ) 0n n nnx Dx x x x x         

 
 
A3.6.1 Deviation Space 
 

In geometric terms, this implies that D in fact projects n  onto the ( 1n  )-dimensional 
subspace of all vectors orthogonal to the unit vector, 1n , here denoted by 
 
(A3.6.4) { :1 0} { : } ( )n n n

nx x Dx x D         
 
and designated as the deviation space for n .1 For the case of 3n  , the associated 2-
dimensional deviation space,  , is depicted in Figure A3.43 below (where the projected 
images, Dx  and Dy , of two vectors, x and y, in 3  are also shown).   
 
However, it is difficult to analyze this space directly in terms of the standard coordinate 
system in n . So it is necessary to construct a new orthonormal basis for n  which 

yields explicit coordinates for  . To do so, we start by letting 0 (1/ )1nb n  denote the 

                                                 
1 In more standard terminology, this subspace constitutes the orthogonal complement to the unit vector in 

n .  
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normalization of  1n  with unit length ( 0||1 || 1 1 || || 1n n n n b    ). Our objective is 

to extend 0b  to an orthonormal basis, 

(A3.6.5) 0 1 1 0[ , ,.., ] [ , ]nM b b b b B   

for all of n .  To motivate this extension, notice first that since the deviation space,   , 
consists of all vectors orthogonal to 1n  (and hence 0b  ) it then must follow that all 

columns of B  will lie in  . Moreover, since the number of these columns ( 1)n   is 
precisely the dimension of  , it then follows that must automatically constitute an 
orthonormal basis for  . This is shown in Figure A3.43 by the pair of red vectors, 1b  

and 2b  . 

 
 
 
 
 
 
 
 
 

 

 

 

 

To construct such a basis, we note first that there are in principle infinitely many choices. 
Moreover, the Gram-Schmidt orthogonalization procedure outlined in expressions 
(A3.1.55) through (A3.1.57) above provides an operational method for constructing such 
a basis explicitly for any given dimension, n. However, for the case of 4n   that will be 
used in our illustrations below, it is instructive to give a simple concrete example, as 
shown below: 

(A3.6.6) 0

1 2 1

1 2 1
[ , ] (1/ 2)

1 2 1

1 2 1

M b B

 
 

    
    

 

(where in this case, 2n  ). Here it can be seen by inspection that all columns are 
orthogonal with unit norms.  

Turning now to the more general properties of such matrices in (A3.6.5), note first from 
the orthonormality of M that, 

01 ( )n b  

x  

y  

Dx  

Dy  


1n

x  

y

x  

y  ŷ  

ŷ  


• 

1b  

2b  

Figure A3.43 Deviation Space in 3 Figure A3.44  Regression in   
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(A3.6.7) nM M MM I    

so that in particular, 

(A3.6.8) 0 0 0 0
0 1

0 1

1
( ) n

n

b b b b B
b B B B I

B B b B B I 


                     
      

This shows that B is indeed an orthonormal basis for the deviation space,  . 

 

A3.6.2 Regression in Deviation Space 
 
Given such a basis, our main objective is to show that OLS continues to be an orthogonal 
projection inside this subspace. Here we start by recalling the following definitions and 
relations developed in Section 9.1 of the text. For any given any data ( , )y X  with 

1(1 , ,.., ) (1 , )n k n vX x x X  , let the OLS beta estimates, ̂  , and predictions, ŷ   be 
defined by 

(A3.6.9)  01
ˆ

ˆ ( )
ˆ

v

X X X y






 

     
 

  

(A3.6.10) 0
ˆ ˆ ˆˆ 1n v vy X X      

 
If the corresponding OLS residuals, ê ,  are defined by 
 
(A3.6.11) ˆ ˆe y y   

then by construction, these residuals satisfy 

(A3.6.12) ˆ ˆDe e  

(A3.6.13) ˆ ˆ 0y e   

where the last condition describes the key orthogonality relation between OLS 
predictions and residuals. Our objective is to show that the same relation holds for their 
images in deviation space. In particular, if for any nz  with projected image, Dz , 
we denote the coordinate representation of this image in terms of basis, B  , for   by 

(A3.6.14) 
1

1n

b Dz
z B Dz

b Dz

 
  

 
 

  

then our objective is to show that  

(A3.6.15) ˆ ˆ 0y e   

To do so, observe from (A3.6.7), (A3.6.12) and (A3.6.13) that  
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(A3.5.16) ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) 0nM Dy M De y D MM De y D I De y De y e             

But since 0 (1/ )1 0nb Dz n Dz     for all z , it then follows from (A3.6.7), (A3.6.12) and 

(A3.6.16) that 

(A3.6.17) 0 0ˆ ˆ 0 0
ˆ ˆ ˆ ˆ0 0 ( ) ( )

ˆ ˆ ˆ ˆ
b Dy b De

B Dy B De y e
B Dy B De B Dy B De

                               
 

and thus that (A3.6.15) must hold. 

Finally, we show that this implies that all slope estimates, ˆ
v , in (A3.6.9) can be 

obtained by orthogonal projection in the deviation space. To do so, observe simply that 
by multiplying both sides of (A3.6.10) by B D  and applying (A3.6.14), we obtain 
 

(A3.6.18)   0 01 1 1
ˆ ˆ ˆ ˆ ˆˆ ˆ1 1

k k k

n j j n j j j jj j j
y x B Dy B D B Dx B Dx    

  
             

                                                      
1 1

ˆ ˆˆ 0
k k

j j j jj j
B Dy B Dx B Dx 

 
         

                                                     
1

ˆˆ
k

j jj
y x


    

             

as depicted for the 3n   case in Figure A3.44 above. Moreover, by applying the same 
procedure to (A3.6.11) we also have, 
 
(A3.6.19) ˆ ˆ ˆ ˆ ˆ ˆy y e B Dy B Dy B De y y e           

So by (A3.6.18) and (A3.6.19) together with (A3.6.15), we see that ŷ  must necessarily 

be the orthogonal projection of y  into the span of  : 1,..,jx j k  -- with  exactly the 

same beta estimates (see also Figure A3.45 below). 
 
A3.6.3 Application to Squared Correlation for OLS and GLS 
 

Given these regression results for deviation space,  , we now return to our study of 
squared correlation, which in the present setting is directly expressible in terms of 
(squared) angle cosines in  . In particular, for OLS regressions in 4 , the relevant 
angles between deviation images in 3  can be illustrated graphically, as in Figure 
A3.45 below. To do so, it is instructive to consider a regression with 2k   explanatory 
variables, 1 2( , )x x , and with 4n   samples, so that (A3.6.18) takes the specific form: 
  
(A3.6.20) 4 3

0 4 1 1 2 2 1 1 2 2
ˆ ˆ ˆ ˆ ˆˆ ˆ1y x x y x x                

These two explanatory variables yield a well-defined regression plane in   that allows 
regression in this space to be depicted in a manner paralleling regression dual 
representation in Figure 9.6 of the text [where the unit (intercept) vector, 31 , and 
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explanatory-variable vector, x, in variable space, 3 , are now replaced by the projected 
images, 1x  and 2x , of these two explanatory variables in deviation space,  ].    

 

 

 

 

 

 

 

 

 

 

Here the angle,  , between y  and its projection, ŷ  , into this regression plane 

provides some indication of how “close” ŷ  is to y . As mentioned in Section 9.1, the 

advantage of using angles to measure closeness (rather that direct Euclidean distance) is 
that angles are independent of the particular units of y  and ŷ , and thus allow direct 

comparisons between different regressions. This is perhaps the single most fundamental 
reason why squared angle cosines, 

(A3.6.21)  
2

2 2 2 ˆ( )
ˆ ˆ ˆ( , ) cos , cos [ ( , )]

ˆ ˆ( )( )

y Dy
r y y y y Dy Dy

y Dy y Dy
 

      
  

are used as general goodness-of-fit measure.   

Finally, the graphic representations of these angles in Figures A3.45 and A3.46 allow one 
additional property of this measure to be illustrated. First observe from Figure A3.45 that 
the OLS projection, ŷ  , of y  into regression plane constitutes an orthogonal 

projection [by (A3.6.15)]. This in turn implies that among all points on this regression 
plane, the angle,   , between y  and ŷ  is as small as possible. But this is not true of 

the broader class of GLS regressions. In particular, we have already seen from the 
argument Section 7.2.2 that for any GLS model, 
 
(A3.6.22)  , ~ (0, )Y X u u N V    
 
where V  may possibly involve additional unknown parameters [such as SEM with 

2V V  in (7.3.1)], the predicted value of ( | )E Y X  for data ( , )y X  is of the form 

Figure A3.45. OLS in Deviation Space Figure A3.46. GLS in Deviation Space 

3b

1b

1x

y  

ŷ  

ê  

2x  

2b



3b

1b

1x  

y

ŷ  

ê

2x  

2b


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(A3.6.23) 1 1 1ˆ ˆ ˆˆ [( ) ]y X X X V X X V y        
 

                                    
1

ˆ ˆˆ
k

j jj
B Dy B DX B Dx 


        

 

                                    
1

ˆˆ
k

j jj
y x


     

 
    
So in terms of the ( 2, 4)k n   example in Figure A3.46, we see that while ŷ  is still 

lies in the span of 1x  and 2x , it may no longer be the orthogonal projection of y  (or 

any scalar multiple of this projection). So as shown, the angle between y  and ŷ  is 

almost always larger than for the OLS case. What this means is that for GLS models like 
the SEM model, the “goodness of fit” in terms of squared correlations can almost never 
be as large as for OLS. So there is an implicit bias toward OLS with respect to this 
measure.  
 
However, it should also be added that for the SLM model, this bias no longer holds. For 
as was seen in expression (9.3.19) of the text, the explanatory variables (including the 
intercept) are in fact transformed by this model. So the span of these transformed 
variables in deviation space is almost never the same as that for OLS. In fact, as was seen 
in the Eire example, ŷ  for SLM was much closer to y  than was ŷ  for OLS.  
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A3.7 Large Sample Properties of Maximum Likelihood Estimators 
 
Here we develop the two most important large sample properties of Maximum 
Likelihood Estimators (discussed in Section 8 of the text), namely consistency and 
asymptotic normality.  To simplify the development as much as possible, we focus on 
random variables with continuous densities governed by only a single scalar parameter. 
This approach, which allows the use of many graphical explanations, is largely inspired 
by the lecture notes of Dmitry Panchenko (2006).1 For a more rigorous treatment of the 
vector case, see for example the lecture notes of Constantine E. Frangakis (2006).2  
 
Here it must also be stressed that, like the development in Section 8, we consider only the 
classic case of independent random samples. Note in particular that this restriction 
appears to exclude the types of spatial autocorrelation effects that are of central interest 
for our purposes. However, the large-sample results that have been obtained for spatially 
autocorrelated samples are almost always based on an underlying assumption of 
“asymptotic independence”. In particular, it is assumed that larger sample sizes are 
obtained by considering larger spatial domains in which samples sufficiently far apart are 
approximately independent (in an appropriate sense). This approach, typically referred to 
as expansion asymptotics, is technically demanding and is well beyond the scope of this 
appendix.3  
 

 
A3.7.1 Some Useful Preliminary Results 
 
Here we gather together a number of results that will be used in subsequent sections. The 
first is the Mean Value Theorem for differentiable functions, which asserts that 
 
 

Mean Value Theorem. For any scalars, a b , and continuous function, 
: [ , ]f a b  , which is  differentiable on ( , )a b , there exists at least one interior 

point, ( , )c a b  , with derivative, ( )f c  , given by 
 

(A3.7.1) 
( ) ( )

( )
f b f a

f c
b a

 


  

 
 

While the proof of this result is not difficult, its validity is seen most easily in graphical 
terms by Figure A3.47 below:   
 
 

                                                 
1 These notes can be found online at http://ocw.mit.edu/courses/mathematics/18-443-statistics-for-
applications-fall-2006/lecture-notes/lecture3.pdf. 
2  These notes can be found online at www.biostat.jhsph.edu/bstcourse/bio771. 
3   For a detailed development of these ideas, see Lee (2002, 2004), and especially the online appendix to 
the latter reference. For spatial autoregressive models in particular, see also the development in Kelejian 
and Prucha (2010). 
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Since the right hand side of (A3.7.1) is seen to be the slope of the line from point 
[ , ( )]a f a  to [ , ( )]b f b  in the figure, we can find such an interior point by simply shifting 
this line up or down until a point of tangency is reached, like the point c shown.  The 
slope, ( )f c   at this point must then satisfy (A3.7.1). Note that such tangencies are 
guaranteed by the smoothness of function f . Note also that there are two points of 
tangency in this example, illustrating that c is not always unique. 
 
We now record (without proofs) some useful results for sequences of random variables. 
Because our later applications will only involve continuous random variables (i.e., with 
continuous density functions), we focus only on this simple case. First, a sequence of 
continuous random variables, nX  , is said to converge in distribution to a (continuous) 

random variable, X, and written as n dX X , if and only if their cumulative distribution 

functions (cdf ’s), ( ) Pr( )n nF x X x  , converge pointwise to the cdf of X, i.e., if and only 

if for all x , 
 
(A3.7.2) lim Pr( ) Pr( ) ( )n nX x X x F x       

 
Notice that unlike convergence in probability, this says nothing about nX  getting “close” 

to any particular random variable, X. Indeed, if Y  has the same distribution as X , then 
by definition it must also be true that  n dX Y . For this reason, it is often more 

convenient to say that nX  converges in distribution to F, i.e., n dX F . This is was 

already apparent in our statement of the Central Limit Theorem, where the even more 
general notation, (0,1)n dX N , was used (rather than the normal cdf, n dX   ). 

While all these definitions are equivalent, each is useful in certain contexts. As we shall 
see, the random variable definition, n dX X , is most useful for stating the following 

properties of convergence in distribution. The first property, known as the Continuous 
Mapping Theorem, says essentially that the property of “convergence in distribution” is 
preserved under continuous transformations of random variables. In particular, this 

xb  a  
  

( )f c  

c

( )f b  

( )f a  

Figure A3.47. Mean Value Theorem 
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theorem asserts that for any sequence of (continuous) random variables, ( )nX , 

converging in distribution to X, and any continuous function, ( )g x ,   
 
(A3.7.3)  ( ) ( )n d n dX X g X g X      

 
For example, if 2( )g x x , then the theorem asserts that whenever n dX X , it must 

also be true that 2 2
n dX X . Again, this is a very compact way of saying that if the cdf’s 

of nX  converge to that of X , then the cdf’s of 2
nX  must converge to the cdf associated 

with the square of X  (or any random variable with the same distribution). 
 
The second useful result for our purposes is Slutsky’s Theorem, which establishes 
convergence in distribution for certain functions of pairs of random variables. In addition, 
it establishes certain relations between convergence in distribution and convergence in 
probability. Here we state only that part of the theorem which we shall use. In particular, 
for any random variables, ( ) ,( ) ,n nX Y X and nonzero constant, 0c   , 

 

(A3.7.4) ( ) ( ) n
n d n d

prob
n

X X
X X and Y c

Y c
      

 
The key to this result is the fact that the denominator nY  converges in probability to a 

(nonzero) constant value. Indeed, the result is false if c is a random variable. Intuitively 
the constancy of c implies that for large n the denominator contributes little to the overall 
fluctuations in the ratio. [For a fuller statement of both the Continuous Mapping Theorem 
and Slutsky’s Theorem, together with the applications of most interest for our purposes, 
see for example the lecture notes by James L. Powell at Berkeley,(pp.9-11) available 
online at http://eml.berkeley.edu/~powell/e240b_sp10/asynotes.pdf]. 4 
 
As one application of these results, we now develop an equivalent version of the Central 
Limit Theorem (CLT) that will be more useful for our present purposes. Recall from 
Section 3.1.3 that for any independent samples, 1,.., nX X  of a random variable, X  , with 

mean,  , and variance, 2  , the classical version of the CLT asserts that the standardized 
sample mean,  
 

(A3.7.5) 
/
n

n

X
Z

n





   

 
converges in distribution to the standard normal distribution, i.e.,  
 
(A3.7.6) (0,1)n dZ N   

                                                 
4 Another good discussion is given in the online lecture notes by Charles J. Geyer at the University of 
Minnesota (http://www.stat.umn.edu/geyer/5101/notes/). 
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So if we now consider the (continuous) linear transformation, n nZ Z , then by the 

Continuous Mapping Theorem it follows that n dZ Z  . But recall from the Linear 

Invariance Theorem [expression (3.2.22)] that for any standard normal random variable, 
~ (0,1)Z N  , the transformed variable, a Z , [with variance, 2 2var( )a Z a ] must be 

distributed as 2(0, )N a . So by transforming each standardized mean, nZ ,  in (A2.7.6) to 

nZ  , it then follows that 
 
(A3.7.7) 2(0, )n dZ N    

 
Moreover, since (A3.7.5) implies that 
 

(A3.7.8)  
/
n

n n

X
Z n X

n

  


 
   

 
  

 
we may now dispense with standardized means altogether and write (A3.7.7) as 
 

(A3.7.9)    2(0, )n dn X N     

 
This equivalent version of the CLT is useful in cases where the variance of the original 
samples needs to be preserved. Recall finally from the discussion in Section 3.1.3 that 
from a practical viewpoint, this implies that for “sufficiently large” sample sizes, n, the 
left hand side of (A3.7.9) is approximately distributed ( )d  as 2(0, )N   , i.e., 

 

(A3.7.10)    2(0, )n dn X N     

 
 

A final result is Jensen’s Inequality for convex or concave functions of random variables. 
Since we only require this inequality for differentiable strictly concave functions of 
continuous random variables, it suffices to establish the result for this case.  Here we start 
by observing that if ( )g x  is a strictly concave differentiable function, then by definition 
all tangents are above the function as shown in Figure A3.48 below. In particular, since 
the slope of the tangent at x is simply the derivative, ( )g x , it follows that for every other 
point, y  , on the line, we must have 
 
(A3.7.11) ( ) ( ) ( )( )g y g x g x y x     
 
as seen in the figure. But since this strict inequality holds for all y x , if we now 
consider these values as the realizations of a continuous random variable, X  , with mean 

( )E X = , and set x   in (A3.7.11) ,  then it follows at once that 
 
(A3.7.12) ( ) ( ) ( ) ( )g X g g X      ,   X    
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But since ( ) 0prob X    implies that this single point has no effect on expectations, it 
follows by taking expectations of both sides [and using the linearity property, 

( ) ( )E a bY a bE Y   ] that, 
 
(A3.7.13) [ ( )] [ ( ) ( )( )]E g X E g g X       
 
                                            ( ) ( )[ ( ) ] ( ) (0)g g E X g          
 
                                [ ( )]g E X   
 
Thus we obtain the most common form of Jensen’s Inequality, which asserts that for 
differentiable strictly concave functions, g  , of continuous random variables, X, it must 
always be true that                                       
 
(A3.7.14)           [ ( )] [ ( )]E g X g E X   
 
 
A3.7.2 Consistency of Maximum Likelihood Estimators 
 
The objective of this section is to sharpen the informal consistency argument for the 
sample-mean case in Section 8.1.2. To do so, let 1,.., nY Y  be independent samples of a 

random variable, Y  , with continuous probability density, ( | )f y  , governed by an 
(unknown) scalar parameter,  . We also assume for simplicity that ( | )f y   is positive 
on all of   (like the normal density), and that   uniquely identifies this density in the 
sense that distinct values of   always yield distinct densities [such as the normal density, 

( | )x   , in the example of Section 8.1]. For any realized sample values, 1( ,.., )ny y , 

recall (from Section 7.1) that the log likelihood if   given 1( ,.., )ny y  is defined by 

( )g x

( )g y

( ) ( )( )g x g x x y 

x

• 
• 

• 

y

Figure A3.48 A Smooth Concave Function 
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(A3.7.15) 1 1( ) ( | ,.., ) log[ ( ,.., | )]n n n n nL L y y f y y      
 

                                        
11

log ( | ) log[ ( | )]
n n

i iii
f y f y 


       

 
So if the standardized likelihood function, ( )nL  , is given by 

 

(A3.7.16) 1 1 1
1 1( ) ( | ,.., ) ( | ,.., ) log[ ( | )]

n

n n n n n iin nL L y y L y y f y   


      

 
and if the expected value of log[ ( | )]f Y   under the true value, 0 , of parameter   is 

denoted by 5 
 

(A3.7.17)  
0

( ) log[ ( | )]L E f Y    
 

then (as a generalization of Section 8.1.2) it follows from the Law of Large Numbers 
(together the independence of samples 1,.., nY Y ) that ( )nL   must converge in probability 

to ( )L  , i.e., that for each value of  , 
 

(A3.7.18) ( ) ( )n
prob

L L    

 

If the maximum likelihood estimator, n̂ , of   given 1( ,.., )ny y  is now defined 

(equivalently) in terms of the standardized likelihood in (A3.7.16) by  
 

(A3.7.19) ˆ( ) max ( )n n nL L    
 

then by (A3.7.18) it is not surprising that one can infer many large sample properties of 

n̂  from comparable properties of the limit function, ( )L  . Perhaps the single most 

important property of this limit function is that it virtually always achieves a unique 
maximum at the true value, 0  , of   i.e., 

 
Lemma (Limit-Function Maximum). If 0  is the true value of  , then for all 

other values, 0  , 
 

(A3.7.20) 0( ) ( )L L    
 

  
 

                                                 
5 The subscript, 0 , denotes that expectation is taken with respect to the true density,  

0
( | )f y  . Note also 

that since log[ ( | )]f y     as ( | ) 0f y   , it is possible that for positive densities,  ( | )f y   , with 

“sufficiently thin tails”,  the expected value of log[ ( | )]f Y   may not be finite. So (as in the normal density 

case of Section 8.1) we shall always assume that  
0

| log[ ( | )] |E f Y    . 



  NOTEBOOK FOR SPATIAL DATA ANALYSIS                                         Part III. Areal Data Analysis 
______________________________________________________________________________________ 

________________________________________________________________________ 
 ESE 502                                                     A3-126                                              Tony E. Smith 

Proof: Observe that by definition 
 

(A3.7.21)    
0 00 0( ) ( ) log[ ( | )] log[ ( | )]L L E f Y E f Y         

 

                
0 0log[ ( | )] log[ ( | )]E f Y f Y      

 

                                                
0

0

( | )
log

( | )

f Y
E

f Y



  
      

  

 

But since log( )x  is a differentiable strictly concave function, and since the positivity and 

continuity of ( | )f y   for all   implies that the ratio, 0( | ) / ( | )f Y f Y  , yields a well-

defined random variable with continuous density, it follows from Jensen’s Inequality in 
(A3.7.14) above that 
 

(A3.7.22) 
0 0

0 0

( | ) ( | )
log log

( | ) ( | )

f Y f Y
E E

f Y f Y 
 
 

      
            

  

 
Moreover, by writing the expectation on the right hand side in integral form, we see that 
 

(A3.7.23) 
0 0

0 0

( | ) ( | )
( | ) ( | ) 1

( | ) ( | )y y

f Y f y
E f y dy f y dy

f Y f y
   
 

  
    

  
    

 

and thus may rewrite (A3.7.22) as 
 

(A3.7.24)  
0

0

( | )
log log(1) 0

( | )

f Y
E

f Y



  
      

  

 
Finally, by combining (A3.7.21) and (A3.7.24), we may conclude that 
 

(A3.7.25) 
00

0

( | )
( ) ( ) log 0

( | )

f Y
L L E

f Y
 


  
       

  

 

and thus that (A3.7.20) must hold.   
 

 
Given this maximum result, the key idea of the consistency proof to follow can be 

illustrated graphically as follows. First recall from (A3.7.19) that n̂  maximizes the 

(continuous) standardized likelihood function, 1( ) ( | ,.., )n n nL L y y  , in (A3.7.13). For 

simplicity, we now assume that this maximum is always unique, as illustrated by the two 
representative standardized likelihood functions, 1L  and nL , in Figure A3.49 below. The 

corresponding limit function, L  , is shown in red. 
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But since ( )nL   converges in probability to ( )L   for each  , it seems reasonable to 

suppose that the maxima of these functions should also converge in probability to the 
maximum of the limit function, as depicted in Figure A3.49. This is of course precisely 

the desired consistency result, namely, that n̂  converge in probability to 0 . 

 
Unfortunately, such convergence fails to hold without further assumptions. More 
generally, even for bounded continuous functions { ( )}nf x  converging pointwise to a limit 

function, ( )f x , with all maxima unique, it need not be true that the maxima of nf  

converge to the maximum of f . This is well illustrated by the example shown in Figure 
A3.50 below.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Here the (piecewise linear) functions, ( )nf x , [illustrated for 4,8,16n  ] are seen to be 

bounded and continuous, and are defined for each [0,1]x  by: 
 

Figure A3.49 Convergence of Estimators 

•
•

•

n̂1̂ 0

1L
nL

L



Figure A3.50 Failure of Maxima Convergence 
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(A3.7.26) 

, 0 1/

( ) 2 , 1/ 2 /

( / 2) 1/ , 2 / 1
n

nx x n

f x nx n x n

x n n x

 
   
   

  

 
By construction, the maximum of ( )nf x  is uniquely achieved at 1/nx n  with value, 

( ) 1n nf x   for all n . In particular, these maximum points clearly converge to 0x  , as 

shown in the figure. But, it is also clear [from the bottom line of (A3.7.26)] that these 
functions converge pointwise to the linear function (shown in red), 
 
(A3.7.27) ( ) / 2 , [0,1]f x x x    
 
with unique maximum (1) 1/ 2f   at 1x  . So even though nf  converges pointwise to 

f , neither the maxima of these functions nor their associated maximum values converge 
to those of f . 
 

If one looks more closely at Figure A3.50, it can be seen that while ( )nf x  does converge 

to ( )f x  at every point, x , there are always points where nf  is far away from f . In this 

particular case, one need look no further than the maximum points, nx  , of these 

functions, where ( ) ( ) (1) (1/ 2 ) 1/ 2n n nf x f x n     for all n . More formally, while the 

functions nf   converge pointwise to f , they fail to converge uniformly to f . In other 

words, the overall “shape” of nf  never gets close to that of the limit function, f . It is 

precisely this this failure that creates the problem.   
 
So it is necessary to impose a stronger “uniform convergence” condition here. Moreover, 
unlike the deterministic functions in the example above, standardized likelihood 
functions, 1( ) ( | ,.., )n n nL L Y Y  , are in fact random functions depending on the 

underlying random sample 1( ,.., )nY Y . Thus it is necessary to impose a “uniform 

probabilistic convergence” condition on such functions. This simplest way to state this 
condition is to require that the “biggest” difference, 1| ( | ,.., ) ( ) |n nL Y Y L  , between 

these random functions and L   converges in probability to zero as n becomes large. But 
since an infinite collection of differences may fail to have a distinct largest value, we 
focus on the supremum (least upper bound) of this collection. More formally, if we now 
denote the set of feasible values for parameter   by    (where in particular, 0  ),  

then this supremum can be written as   
 
(A3.7.28) 1sup | ( ) ( ) | sup | ( | ,.., ) ( ) |n n nL L L Y Y L          

 
For example, if   can be any value between 0 and 1 [i.e., (0,1)  ], and if for a given 

sample 1( ,.., )ny y  it were true for each    that 1| ( | ,.., ) ( ) | / 2n nL y y L    , then 
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while there is no maximum value of / 2  in the open interval,  , it is clear that 

1sup | ( | ,.., ) ( ) | 1/ 2n nL y y L     . 

 
With this notation, we now require that sequence of standardized likelihood functions, nL  

converge uniformly in probability to L on  , written as 
 
(A3.7.29)  sup | ( ) ( ) | 0n

prob
L L       

 
Finally, even when functions converge uniformly to a limit function, there is one 
additional problem with convergence of maxima that must be dealt with. This can again 
be illustrated most easily with deterministic functions, as in Figure A3.51 below.  Here 
there is little need to formalize these functions explicitly. The key point is that when the 
function domain is unbounded (such as the nonnegative real line shown), the sequence of 
function maxima need not converge at all. In the present case, each function, nf  (shown 

for 1 2, , nf f f ) can be thought of as a positive constant plus a scaled version of a standard 

normal density centered at n, say ( )n n x n    , with centers, nx n , and with both 

0n   and 0n  .  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
As seen in the figure, these functions converge uniformly to the limit function, ( ) 0f x  , 
(shown in red), while their maxima diverge toward infinity. So it should be clear we must 
require some boundedness conditions to ensure that convergence of maxima is 
guaranteed in an appropriate sense.  For the present scalar case, we simply require that   
be a compact (closed and bounded) interval. 
 

Given these conditions, we can now establish the desired consistency result, where all 
conditions above are summarized as follows: 
 
  
 
 

Figure A3.51 Divergence of Maxima 

1f   

2f   

nf   

f
1x   2x  

nx  
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Consistency Theorem. Given continuous standardized likelihood functions, 
( )nL  , together with limiting likelihood, ( )L  , defined on   , if  

 

(i)   is compact,  
 

(ii)  L  is continuous on  ,  
 

(iii)  n̂  uniquely maximizes nL  on  , 
 

(iv)   0  uniquely maximizes L  on  , and  
 

(v)   nL  converges uniformly in probability to L  on  ,  
 

then n̂  converges in probability to 0 , i.e., 
 

(A3.7.30) 0n̂
prob

   

 
 
Comments on the Consistency Theorem. The present proof follows the 
treatment in Frangakis (2006, Theorem 8.2), and is easily seen to be extendable to 
parameter vectors, 1( ,.., )k   . Before proceeding with the proof, it should be 

noted that condition (iv) is simply a restatement of the above lemma on limit 
function maxima. But for completeness we include it as one of the key conditions.   
 
Proof: First choose any small 0   and let the   -neighborhood of 0  in   be 

denoted by 
 

(A3.7.31) 0 0 0{ : | | } ( , )                  
 

as shown in Figure A3.52 below.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A3.52. Limit Function Figure A3.53. Value Dominance 

0( ) / 2L    

( )L   
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• 

• 
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• •  

•  
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•  
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• 
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0   0    0    

 (   )  

   

•  

•  

0( )L    
•  

( )L    
   
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Our objective is to show that ˆPr( ) 1n     for all 0   , which by definition will 

imply that (A3.7.30) must hold. To do so, we start by considering the values of   not in 

 , i.e., in the complement of  in  , as denoted by 

 
(A3.7.32) 0{ : | | }c

               

 
Note from the compactness of   [condition (i)] together with the weak inequality in 
(A3.7.32) that c

 is a closed bounded set, and thus is also compact. Moreover, since L  is 

continuous on all of  , it must be continuous on c
 . Thus by the Extreme Value 

Theorem (recall Figure A3.19), it follows that L  must achieve a maximum in c
  at some 

point, c
   . For the example shown in Figure A3.53, the point,  , happens to lie in 

the boundary between c
  and  . However this need not be the case, and more 

generally,   may not even be unique. But by the uniqueness of the global maximum of 

L  at 0 , it must always be true that 

 
(A3.7.33)  0( ) ( ) cL L L for all         

 
If we now denote the positive difference between 0( )L   and ( )L   by 

 
(A3.7.34) 0( ) ( ) 0L L        

 
 (as shown in Figure A3.52), and define a band (or “sleeve”) of width, / 2  , about the 
L  (as shown by the dotted lines in Figure A3.53), then it follows from the uniform 
probabilistic convergence of the standardized likelihood functions, nL  , to L  [condition 

(v)] that for sufficiently large n these functions will lie entirely inside this band (with 

probability approaching one). This already suggests that the maxima, n̂  , of these  

functions cannot be very far from 0 . To make this more precise, we now restate 

definition (A3.7.29) in terms of probability events as follows. If for each n we let nA  

denote the event that the random likelihood function nL  is within distance / 2  of L , 

i.e., 
 

(A3.7.35) sup | ( ) ( ) | / 2n nA L L        
 

        ( ) ( ) / 2, ( ) / 2nL L L for all            

 
then by (A3.7.29), nL  converges uniformly in probability to L  on  if and only if 

 
(A3.7.36) lim Pr( ) 1n nA    
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But if we now consider the sub-event 
 
(A3.7.37) 1 ( ) ( ) / 2 c

n nA L L for all          

 
then by definition, event nA  implies 1

nA . Moreover, if we consider a second sub-event 

 
(A3.7.38) 2

0 0( ) ( ) / 2n nA L L       

 
then since nA  also implies 2

nA , it follows that 

 
(A3.7.39) 1 2

n n nA A A     
 

But by (A3.7.31) together with (A3.7.33) we also see that, 
 
(A3.7.40)   0( ) ( ) ( )L L L         

 

            0 0( ) / 2 ( ) / 2 ( ) / 2L L L               

 
which together with the definition of 1

nA  yields the implication, 

 
(A3.7.41) 1

0( ) ( ) / 2 c
n nA L L for all          

 
In other words, event 1

nA  implies that all ( )nL  values for c
   must be less than 

0( ) / 2L   .  This is illustrated for the point   shown in blue in Figure A3.53, with 

value, ( )nL  , below the red horizontal line denoting value, 0( ) / 2L   . But since 

event 2
nA  implies that 0( )nL   is above this line, and since by construction, 

0
c

    , it follows that if both events 1
nA  and 2

nA  occur, then nL  cannot achieve 

its maximum in c
 . Moreover, since nL  does achieve a unique maximum on   at n̂  

[condition (iii)], it must be true that  n̂  lies in  . Thus we see that 

 

(A3.7.42) 1 2 ˆ
n n nA A     , 

 
which together with (A3.7.42) shows that 
 

(A3.7.43)        ˆ
n nA    . 

 
But since the probability inequality, Pr( ) Pr( )A B , holds whenever A B , it then 
follows that for all n we must have 
 



  NOTEBOOK FOR SPATIAL DATA ANALYSIS                                         Part III. Areal Data Analysis 
______________________________________________________________________________________ 

________________________________________________________________________ 
 ESE 502                                                     A3-133                                              Tony E. Smith 

(A3.7.44) ˆPr( ) Pr( ) 1n nA      
 

Finally, since this in turn implies from (A3.7.36) that 
 

(A3.7.45) ˆlim Pr( ) 1n n      
 

we see that (A3.7.31) must hold.    
 
 
A3.7.3 Asymptotic Normality of Maximum Likelihood Estimators 
 
The purpose of this final section is to sharpen the asymptotic normality argument given 
for ˆn  in Section 8.1.2. So here again we replace ˆn  with a general (scalar) estimator, 

n̂ . To start with, recall from the argument for ˆn  that the asymptotic variance was 
related to the second derivative of the standardized likelihood [as in expressions (8.1.14) 
through (8.1.16)].  So for this to even be meaningful, the basic likelihood function, 
 
(A3.7.46) ( | ) log ( | )L y f y    
 
must itself be at least twice differentiable. More generally, we will now require that this 
likelihood function be continuously twice differentiable, i.e., that for all realizations, y  , 
both functions, 
 
(A3.7.47) ( | ) ( | )d

dL y L y     
 

(A3.7.48) 
2

2( | ) ( | ) ( | )d d
d dL y L y L y        

 
are well defined and continuous on  .6  
 
In terms of this notation, Fisher Information about the true value, 0 , of   in distribution 

( | )f y    is defined to be  
 

(A3.7.49)     2

2
0 0 0

0 0( ) ( | ) log ( | )d
dE L Y E f Y     


      

 
For our present purposes, Fisher information is most simply expressed as the second 
derivative of the limiting standardized likelihood function, L , in (A3.7.17). This can be 
seen by noting from the continuity of the second derivative that order of differentiation 
and expectation (integration) in (A3.7.49) can be reversed to yield:7  
 

                                                 
6 Technically assertions like this need only hold for “almost all” realizations, y . But for simplicity we shall 

ignore such measure-theoretic considerations whenever possible. 
7 This important result (which we shall use several times below) is known as Leibniz rule for integrals. 
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(A3.7.50)     2

2
0 0

0( ) log ( | )d
dE f Y   


    

 

         2

2
0

0

log ( | )d
d E f Y   


    

 

                  
2

2
0

0( ) ( )d
d L L

   


        

                   
For purposes of maximum likelihood estimation, this version shows that Fisher 
information is precisely the negative curvature of L  at its maximum value, 0( )L   (as 

illustrated for 0  in Figures 8.2 through 8.5).  
 

Before analyzing this quantity further, it should be emphasized that the version,  0n   , 

used in the text [expression (8.1.21)] describes the Fisher information about parameter 0  

in sampling distributions of size n generated by density f . The sampling version is more 

convenient for estimating large-sample variance, and is related to  0  in the following 

simple way. First, by noting from the additivity of log products and linearity of 
differentiation operations that 
 

(A3.7.51)  2

2

0

0 1 1
( | ,.., ) log ( | )

n

n n ii
d

dL y y f y
 

 




        

 

                            
2

2

0
1
log ( | )

n

ii
d

d f y
  

 

      

 

                            
2

2
01

[log ( | )]
n

ii
d

d f y
  

 
    

 
we see from (A3.7.49) together with (8.1.21) that (again by interchanging differentiation 
and expectation): 
 
(A3.7.52)   

00 0 1( ) ( | ,.., )n n nE L Y Y     

 

                2

2
0 01

[log ( | )]
n

ii
d

dE f Y   
 

     

 

                                      2

2
0

0
1

[log ( | )]
n

ii
d

d E f Y   
 

   

 

               
2

2
01

( )
n

i
d

d L
  

 
       

 

               0 01 1
[ ( )] ( )

n n

i i
L  

 
       
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                                    0 0( ) ( )n n      

 
 
This makes it clear that the most fundamental form of Fisher information for our 
purposes is given by 0( ) . 

 
With these observations, our next objective is to show that 0( )  can also be expressed 

in terms of the first derivative of likelihood, L , in (A3.7.47).  To do so, we start by 
expanding the derivatives in (A3.7.47) and (A3.7.48), respectively, as 
 

(A3.7.53)   ( | )
( | ) log ( | )

( | )
d

d
f y

L y f y
f y

 



     

and, 

(A3.7.54) 
2

( | ) ( | ) ( | )
( | )

( | ) ( | ) ( | )
d

d
f y f y f y

L y
f y f y f y

  
  

           
   

  

 

                 2( | )
( | )

( | )

f y
L y

f y

 



    

 
Next we observe from the simple probability identity 
 

(A3.7.55) ( | ) 1 ,
y

f y dy     

 
(and in particular from the constancy of the right hand side) that 
 

(A3.7.56) 0 ( | ) [ ( | )] ( | ) ,
y y y

d d
d df y dy f y dy f y dy            

 
and similarly, that 
 

(A3.7.57) 
2 2

2 20 ( | ) [ ( | )] ( | ) ,
y y y

d d
d df y dy f y dy f y dy            

 
By using these results [and in particular, (A3.7.54)], we may rewrite Fisher information 
in (A3.7.49) as follows: 
 

(A3.7.58)  
00 0 0 0( ) ( | ) ( | ) ( | )

y
E L Y L y f y dy         

 

                       20
0 0

0

( | )
( | ) ( | )

( | )y

f y
L y f y dy

f y

  


 
   

 
   



  NOTEBOOK FOR SPATIAL DATA ANALYSIS                                         Part III. Areal Data Analysis 
______________________________________________________________________________________ 

________________________________________________________________________ 
 ESE 502                                                     A3-136                                              Tony E. Smith 

 

                       20
0 0 0

0

( | )
( | ) ( | ) ( | )

( | )y y

f y
f y dy L y f y dy

f y

   



      

 

            
0

2
0 0( | ) ( | )

y
f y dy E L Y          

 
But since the first term on the right is zero by (A3.7.57), it then follows that  
 

(A3.7.59) 
0

2
0 0( ) ( | )E L Y       

 
and thus that Fisher information is also given by the second moment of the first 
derivative of L  evaluated at 0 . It will turn out that this random variable, 0( | )L Y , 

exhibits a close asymptotic relation to the maximum likelihood estimator, n̂ , itself .  

 

To gain some feeling for this relationship, note that since n̂  is by definition the 

maximum value of the differentiable function, 1( | ,.., )n nL y y , it follows that if this 

maximum is achieved anywhere interior to  , then n̂  must be uniquely identified by 

the first-order condition: 
 

(A3.7.60) 1 1
ˆ ˆ0 ( | ,.., ) ( | )

n

n n n n ii
L y y L y 


      

 

But since consistency of the estimator, n̂ , implies that 0n̂   for large n (with 

probability approaching one), this first-order condition is itself characterized by the 
behavior of the random variable, ( | )L Y , near the true value 0   . In view of this 

relation, ( | )L Y , is usually designated as the score function for the maximum-
likelihood problem.  
 
As a first key property of this score function, note from (A3.7.56) that 
 

(A3.7.61)  
0 0 0( | ) ( | ) 0

y
E L Y f y dy       

 

Thus 0( | )L Y  has mean zero, and it follows from (A3.7.59) that Fisher information is 

precisely the variance of the score function at 0  . This yields a direct variance 

interpretation of  0( ) -- which we shall return to in the proof below. 

 
With these preliminaries, we are now ready to state the main result of this section, where 
we again summarize the key assumptions required for asymptotic normality: 
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Asymptotic Normality Theorem. If all conditions of the above Consistency 
Theorem are met, and if in addition, 
 

(i)   The underlying density function, ( | )f y  , is continuously twice differentiable   
on   for each value of y , 
 

(ii)   The unique maximum likelihood estimator, n̂ , is interior to  , and 
 

(iii)  Fisher information, 0( )  , at the true value, 0 , is positive and finite, 
 

then n̂  is asymptotically normally distributed, and in particular, 

 

(A3.7.62)    1
0 0

ˆ 0, ( )n dn N        

 
    
 Proof: We begin by recalling from (3.7.62) together with conditions (i) and (ii) 

above that the maximum likelihood estimator, 1
ˆ ˆ ( ,.., )n n ny y  , for any given sample 

1( ,.., )ny y  is obtained by evaluating the derivative, 

 

(A3.7.63)  1 1
( ) ( | ,.., ) ( | )

n

n n n ii
L L y y L y  


       

 
of the likelihood function at zero. But since this function is itself continuous and 

differentiable on all of   (and thus on the interval between n̂  and 0  ) , it follows from 

the Mean Value Theorem [expression (A3.7.1)] that there must be some intermediate 

point, n , between n̂  and 0  such that 8 

 

(A3.7.64) 0

0

ˆ( ) ( )
( )

ˆ
n n n

n c

n

L L
L

 
 

  


  

 

But since ˆ( ) 0n nL    by definition, it then follows that 

 

(A3.7.65) 0 0 0
0

0

( ) ( ) ( ) /ˆ( )
ˆ ( ) ( ) /

n n n
n n n

n n n nn

L L L n
L

L L n

    
  

         
 

 

 

                                                           
 

0
0

( ) /ˆ
( ) /
n

n
n n

n L n
n

L n


 




  


 

 

                                                 
8 Here we ignore the (zero probability) case, 

0
ˆ

n
  , and for simplicity assume that the open interval 

between  these values is entirely contained in   (at least for n sufficiently large) .  
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So it is immediate from (A3.7.62) that the asymptotic distribution we seek must be the 
asymptotic distribution of the ratio on the right hand side. At first glance this would seem 
to be an even more difficult task. But fortunately the denominator has a simple 
probability limit that enables us to employ Slutzky’s Theorem. To see this, note that for 
any choice of     
 

(A3.7.66)  1 1
1 1( ) / ( | ,.., ) ( | )

n

n n n iin nL n L Y Y L Y  


       

 
But since the random variables, ( | ) , 1,..,iL Y i n   , are independent and identically 

distributed, it follows at once from the Law of Large numbers that 
 

(A3.7.67)  
01

1 ( | ) ( | )
n

ii prob
n L Y E L Y 


   

 

Moreover by the consistency of n̂  we also see that  

 

(A3.7.68) 0 0 0
ˆ| | | | 0n n n

prob prob
             

 
So by combining these results, we obtain the probability limit, 
 

(A3.7.69)  
0 01

1 ( | ) ( | )
n

n ii prob
n L Y E L Y 


    

 
and may conclude from (A3.7.66) and (A3.7.69) together with (A3.7.49) that 
 

(A3.7.70)  
0 0 01

1( ) / ( | ) ( | ) ( )
n

n n n ii prob
nL n L Y E L Y   


           

 
Since this limit is constant, it then follows from Slutsky’s Theorem [expression (A3.7.4) 
above] that the limiting distribution of the ratio in (A3.7.65) can be obtained by simply 
determining the limiting distribution of its numerator. But the numerator is again of the 
form 
 

(A3.7.71) 0 0 1 01
1 1( ) / ( | ,.., ) ( | )

n

n n n iin nL n L Y Y L Y  


      

 
where the random variables, 0( | ) , 1,..,iL Y i n  , are independently and identically 

distributed. So this expression is simply a sample mean of the random variable, 

0( | )L Y , i.e., for the score function evaluated at 0 . Thus (as promised) the limiting 

distribution of n̂  is seen to determined entirely by its associated score function. To make 

this relation precise, we first recall from (A3.7.61) that the mean of 0( | )L Y  is zero, so 

that the full numerator is seen to be of the form 
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(A3.7.72)     00 0 01
1( ) / ( | ) [ ( | )]

n

n iinn L n n L Y E L Y  


      

 

                           1
1 ( )

n

iinn X E X


    

 

                           n X     

 
where 0( | )i iX L Y   and 

0 0( ) [ ( | )] ( 0)E X E L Y    . So it follows at once from 

the form of the Central Limit Theorem in (A3.7.9) that 
 

(A3.7.73)    
00 0( ) / 0, var [ ( | )]n dn L n N L Y     

 

But as we have already seen, the zero-mean property of 0( | )L Y  implies that its 

variance, 
0 0var [ ( | )]L Y  , is precisely Fisher information in (A3.7.59):  

 
(A3.7.74) 

0 0

2
0 0 0var [ ( | )] [ ( | ) ] ( )L Y E L Y          

 
So (A3.7.73) takes the more explicit form: 
 

(A3.7.75)    0 0( ) / 0, ( )n dn L n N      

 
and it follows from Slutsky’s Theorem together with (A3.7.65), (A3.7.70) and (A3.7.73) 
that  

(A3.7.76)  0 0
0

ˆ ~ [0, ( )]
( )n d

Z
n where Z N  


  


  

 

Finally, by recalling from the Invariance Theorem for normal random variables that 
 

(A3.7.77)          10
0 02

0 0

( )
~ 0, ( ) 0, 0, ( )

( ) ( )

Z
Z N N N

 
 

 
  

 


 

 
  

 

we may conclude from (A3.7.76) that 
 

(A3.7.78)  0n̂ dn      1
00, ( )N    

 
and thus that the desired result in (A3.7.62) is established.    
 


