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Abstract 
 

A spatio-temporal model of housing price trends is developed that focuses on 
individual housing sales over time. The model allows for both the spatio-temporal lag 
effects of previous sales in the vicinity of each housing sale, and for general 
autocorrelation effects over time. A key feature of this model is the recognition of the 
unequal spacing between individual housing sales over time. Hence the residuals are 
modeled as a first-order autoregressive process with unequally spaced events. The 
maximum-likelihood estimation of this model is developed in detail, and tested in 
terms of simulations based on selected data. In addition, the model is applied to a 
small data set in the Philadelphia area. 
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1. Introduction 
 
The present model grew out of an effort to identify the impacts of certain Community 
Development Corporation (CDC) housing projects on their local housing markets in 
Philadelphia. While no single measure can effectively capture neighborhood 
revitalization, it is becoming common practice to use changes in housing prices as a 
summary measure.1 Hence this model focuses on the specific problem of identifying 
trends in housing prices within a given region based on a time series of individual 
housing sales transactions. Because our approach to this time-series problem appears to 
be new to the housing literature, the objective of the present paper is to present a self-
contained development of this approach.2 The resulting model is illustrated by a small 
example from the Philadelphia study. A presentation of the full study will be given in a 
subsequent paper [see Wu and Smith (2009)].  
 
Since housing prices are well known to be influenced by the prices of recent house sales 
nearby, one must allow for possible spatio-temporal dependencies between such prices. 
In addition there are generally a host of other processes occurring over time that result in 
unobserved temporal autocorrelations among housing prices. But since individual 
housing sales do not occur at regular time intervals, it is difficult to model such processes 
in terms of standard discrete time series. An approach to unequally spaced temporal 
events has been developed for first-order autoregressive [AR(1)] processes by a number 
of authors [see Wansbeek and Kapteyn, (1985), McKenzie and Kapuscinski (1997), 
Batalgi and Wu (1999)].  A continuous version of these models [CAR(1)] has also been 
developed by Jones and Boadi-Boateng (1991) [and Jones (1993)]. The continuous 
version is certainly the most flexible one, but involves stochastic differential equations 
that rely on rather sophisticated analytical methods. Moreover, since housing sales are 
basically recorded on a daily basis, there is no need to consider finer time intervals. 
Hence we choose to develop a standard AR(1) model on daily time intervals, and then 
embed the observed sales events within this process. The approach we adopt is most 
closely related to Batalgi and Wu (1999). But since their formulation is in terms of panel 
data, it is convenient to give a self-contained development for the present case. Finally, 
an interesting alternative approach to modeling sales transactions with unequal time 
intervals was proposed by Pace et al. (2000). Because of its close similarity to the present 
paper, a detailed comparison of these two models is presented in Section 5 below. 
 
We begin in the next section by developing the basic model, and then consider maximum 
likelihood estimation and testing of its parameters. This is followed by a small simulation 
study to examine the properties of the estimation procedure. The model is then applied to 
a selected example from the Philadelphia CDC study, and is compared with the approach 
                                                 
1 The number of affordable housing units provided (built or renovated) by the CDC is also commonly used 
as a measure of “success”. However, it has been argued by many housing researchers that increased 
housing supply is only a measure of input, and thus is not a fair assessment of neighborhood revitalization 
as an outcome [see for example Smith (2003) and the many studies cited therein]. Hence the assumption 
implicit in the present approach is that improved neighborhood quality should increase local demand for 
housing, and thus local housing prices. 
2 Certain technical appendices have been omitted to save space, and can be found in the Electronic 
Supplementary Material online. 
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of  Pace et al. (2000). Finally, a possible extension is considered in the concluding section 
of the paper. 
 
2.  Development of the Model 
 
Consider a sequence of sales prices, ( : 1,.., )iy i n= , resulting from the sale of individual 
houses at distinct time points, ( : 1,.., )it i n=  in a given metropolitan area.3 Such prices of 
course depend on a host of attributes, 1( ,.., )i i ikx x x= , of each house i , as well as the sales 
prices of houses recently sold in the immediate area of house i . Here we model such 
dependencies by spatio-temporal lag weights, ijw , that are assumed to be positive only if 
house j  is sold prior  to house i ,4 and is “sufficiently close” to i  in both time and space 
to be an influential factor. More precisely, it is here assumed that there is some threshold 
time interval, Δ , and threshold distance, d , beyond which other housing sales have no 
direct influence on the price of house i . Hence, if the relevant distance from i  to j  is 
denoted by ijd , then is assumed that only houses in the spatio-temporal neighborhood,  
 

{ : (0 ) & ( )}i i j ijN j t t d d= < − ≤ Δ ≤     (1) 
 
of i  have direct influence on the sales price of house i . If in  denotes the cardinality 
(size) of iN , then the corresponding lag weights, ijw , are given by 
 

1/ ,
0 ,

i i
ij

i

n j N
w

j N
∈⎧

= ⎨ ∉⎩
  (2) 

 
While this simple spatial-threshold assumption plays no substantive role in the analysis to 
follow, it is used in both the simulations and empirical application below. 5  With these 
conventions, our basic model of housing prices takes the following spatio-temporal lag 
form 
 

01 1
, 1,..,n k

i ij j h ih ij h
y w y x u i nλ β β

= =
= + + + =∑ ∑    (3) 

 
In the first term, λ  is an intensity parameter reflecting the strength of price 
dependencies.  Note from the normalization assumption, 1/ij iw n= , in (2) that this term is 
                                                 
3 Alternatively, it may often be more appropriate to use the log of sales price as iy . 
4 Note that there may in fact be some minimal time lag required before a given sales price can influence 
subsequent prices (such as the time required for this sale to be published in the local paper). Hence the 
inclusion of all prior sales is a simplifying assumption. 
5  It is worth noting that even if more elaborate spatial kernel functions were to be used, the bandwidth, d , 
of each kernel is well known to be the single most critical determinant of spatial dependence (see for 
example Silverman, 1986). 
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simply the average housing price in iN  weighted by λ .6 To ensure that variances in 
housing prices remain bounded over time, it is required that there be a diminished 
dependency of house prices i  on these averages, i.e., that (Green, 2003, p.255): 
 

| | 1λ <  (4) 
 
The second term in (3) involves the usual linearity assumption on housing attributes, 
where hβ  is the relevant coefficient for attribute h .  (Of particular relevance for our 
present purposes is the inclusion of time as an attribute of each sale, in order to capture 
price trend effects.)  Finally, the residuals, ( : 1,.., )iu i n= , in (3) are assumed to be 
generated by an underlying autoregressive process which we now develop. 
 
2.1 Autoregressive Process with Unequally Spaced Events 
 
Consider a discrete process, { ( ) : }u t t T∈ , over a sequence of consecutive days,  

1 1 1{ , 1,.., ,...}T t t t k= + + , which is generated by the following AR(1) process, with 
autocorrelation parameter, ρ , 
 

1( ) ( 1) ( ) ,u t u t t t tρ ε= ⋅ − + >    (5) 
 
where in addition it is assumed that 1( ) ~ (0, )u t N v  and that all innovations, 1{ ( ) : }t t tε > , 
are independently and identically distributed normal variates, 2( ) ~ (0, )t Nε σ . This 
process is also assumed to be stationary, so that ( ) ~ (0, )u t N v  holds for all t T∈ . Since 
each ( )u t  is necessarily normal with zero mean by (5), this is equivalent to requiring that 
variance stay constant, i.e., that var[ ( )]u t v≡ . Moreover, since ( 1)u t −  and ( )tε  are 
independent, this yields the following well known stationarity condition: 
 

2
2 2

2var[ ( )] var[ ( 1)] var[ ( )]
1

u t u t t v v v σρ ε ρ σ
ρ

= ⋅ − + ⇒ = + ⇒ =
−

 (6) 

 
In particular, it follows that [as a parallel to (4)] residual variance will be finite only if, 
 

| | 1ρ <  (7) 
 
Within this standard AR(1) setting, we now assume that the first sales event occurs on 
day 1t , so that the first residual in (3) is given by 1 1( )u u t= . Next, if the second sale 
occurs on day 2 1t t m= + , then since 1 1 1( 1) ( ) ( 1)u t u t tρ ε+ = ⋅ + + , and 
 

1 1 1( 2) ( 1) ( 2)u t u t tρ ε+ = ⋅ + + +  1 1 1[ ( ) ( 1)] ( 2)u t t tρ ρ ε ε= ⋅ ⋅ + + + +    (8) 
                                                 
6 Note also that if housing prices are in log form, then this term corresponds to a geometric average of 
housing prices rather than an arithmetic average. 
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2

1 1 1[ ( 2) ( 1)]u t tρ ε ρ ε= ⋅ + + + ⋅ +  , 
 
it follows by successive substitutions into (5) for 2m >  that, 
 

2 1 11
( )mm m j

j
u u t jρ ρ ε−

=
= + +∑    (9) 

 
More generally, if we now replace 1 2 1 2( , , , )u u t t  by 1 1( , , , )i i i iu u t t− −  and replace 2 1m t t= −  
by 1i i it t −Δ = − , then exactly the same argument shows that for all 2,..,i n= , 

 
1

i
i i iu u eρΔ

−= +                (10) 
 
where the (cumulative) innovations, ie , now have the form: 
 

11
( )i i j

i ij
e t jρ εΔ Δ −

−=
= +∑   (11) 

 
Moreover, since var( )iu v=  for all 1,..,i n= , it also follows from (10) that, in a manner 
similar to (6), 
 

2 2
1var( ) var( ) var( ) var( )i i

i i i iu u e v v eρ ρΔ Δ
−= + ⇒ = ⋅ +   (12) 

 
                                                                         2var( ) (1 )i

ie v ρ Δ⇒ = −  
 
[which can also be verified by summing the variances in (11) and using the identity, 

2 2/(1 )v σ ρ= − ]. Following Jones (1993) it is convenient to rescale the innovations, ie , 
as, 
 

2 1/ 2(1 )i
i ieε ρ Δ −= −         (13) 

 
so that var( ) var( ) .i iu vε ≡ =  With this rescaling, it follows that the relevant residual 
process ( : 1,..., )iu i n= , for (3) can now be summarized as follows:  
 

1 ~ (0, )u N v   (14) 
 

2 1/ 2
1 (1 )i i

i i iu uρ ρ εΔ Δ
−= + −   with   (0, ) , 2,..,i N v i nε =∼   (15) 
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It is of interest to note that this residual process, [(14),(15)], is essentially identical to the 
continuous formulation in Jones (1993, p.62).7  Thus, by allowing time intervals to 
become arbitrarily small, the above formulation provides a somewhat more intuitive 
motivation of CAR(1) processes. 
 
However, there is one additional restriction in the present model that is not shared by the 
continuous model. In particular, observe that with a minimal time unit (such as one day), 
it is quite possible that more that one event occurs in the same time interval (such as more 
than one house sold on the same day). It should be clear from (15) that this leads to 
implausible results, since the residuals iu  for simultaneous events must be identical.8  
There are several ways to treat this problem. First, one can simply choose the time unit to 
be smaller than the closest pair of consecutive events in the given data. While this is 
possible in the present setting, intervals smaller than a day are at best artificial, and have 
little meaningful content. A much more satisfactory approach would be to introduce an 
additional “idiosyncratic” error term in (3) reflecting the unobserved attributes of 
individual houses that are time independent. This approach is discussed in more detail in 
the Concluding Remarks. For the present however, we choose to focus on a single set of 
errors driven by an underlying AR(1) process, and to examine the behavior of this model 
in detail. But since there are indeed a number of instances of houses sold on the same day 
in the application presented below, we have chosen to “jitter” the time sequence enough 
to allow a well-ordered sequence of sales events. Given that this error model [(14),(15)] 
is intended only to capture unobserved effects with some degree of stationary temporal 
dependency, such “tie breaking” conventions are deemed to have little affect on the 
overall behavior of the model.     
 
2.2 Matrix Formulation of the Model 
 
By combining (3), (14), and (15) we can give a more compact statement of the above 
model as follows. If we let 1( ,.., )ny y y ′= , ( : , 1,.., )ijW w i j n= = , 1( ,.., )kβ β β ′= , 

1( ,.., )nu u u ′= , and let [ : 1,.., , 0,1,.., ]ijX x i n j k= = =  with 0 1, 1,.., ,ix i n= = , then (3) 
becomes 
 

y Wy X uλ β= + +         (16) 
 
Similarly if we let 1( ,.., )nε ε ε ′= , then [(14),(15)] can also be written in matrix form as 
 

( ) ( ) , ~ (0, )nu D u C N v Iρ ρ ε ε= +    (17) 
 
where ( )D ρ  is a lower triangular matrix of the form 
                                                 
7 If time intervals, tΔ , are allowed to become “arbitrarily small”, and are denoted by tδ , then in the 

formulation of Jones (1993), 2

0( ) exp( ) tt t δφ δ α δ ρ= − =  where 0exp( )ρ α= − . 
8 This does not arise in the continuous model where it is natural to assume that simultaneous events occur 
with probability zero.  



 7

 

2

3

0
0

( ) 0 0

0 0 0n

D
ρ

ρ ρ

ρ

Δ

Δ

Δ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

# % % %
"

        (18) 

 
and ( )C ρ  is a diagonal matrix of the form 
 

( )C ρ = ( )
( )

2
1/ 22

1/ 22

1
1

1 n

ρ

ρ

Δ

Δ

⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟⎜ ⎟−⎝ ⎠

%         (19) 

 
Hence the present spatio-temporal model is now summarized by (16) through (19) 
[together with the implicit parameter restrictions (4) and (7)]. 
 
Note that there is a strong similarity between the present model and the well-known 
“spatial autoregressive model with autoregressive disturbances” summarized, for 
example, in Anselin and Florax (1995,pp. 22–24). However, it should be clear that the 
present autocorrelation parameter, ρ , enters in a more complex manner than the 
autoregressive disturbance parameter of that model. On the other hand, the present model 
is in many ways simpler to analyze, since there are no simultaneities either in space or 
time. As a consequence, both the spatial weight matrix, W , and the temporal dependency 
matrix, ( )D ρ , are lower triangular matrices, which greatly simplifies the analysis of this 
model. 
 
2.3 Likelihood and Concentrated Likelihood Functions 
 
To estimate the present model it is convenient to combine (16) and (17) into a reduced 
model form as follows. First, for notational simplicity, we write ( )D D ρ=  and 

( )C C ρ=  and solve for u  in terms of ε  to obtain 
 

1( ) ( )n nI D u C u I D C Bε ε ε−− = ⇒ = − =    (20) 
 
where 1( )nB I D C−= − .9 Next we set nA I Wλ= −  and write (16) as 
 

( )nI W y X B Ay X Bλ β ε β ε− = + ⇒ = +    (21) 
 
                                                 
9 It is shown in (A1.2) of Appendix 1 (see footnote 2) that det( ) 1nI D− = , so that 1( )nI D −− always exits 
and B is well defined.  
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Hence (20) and (21) are together equivalent to the reduced model10 
 

1 1 , ~ (0, )ny A X A B N v Iβ ε ε− −= +    (22) 
 
This in turn implies that y  is multivariate normal with distribution 
 

( )1 1 1, ( )y N A X vA BB Aβ− − −′ ′∼          (23) 
 
Hence the log likelihood function for parameters ( , , , )vβ λ ρ  is given by 
 

1 11
2 2( , , , | ) ln(2 ) ln{det[ ( ) ]}nL v y vA BB Aβ λ ρ π − −′ ′= − −   (24) 

 
                                                            1 1 1 1 11

2 ( ) [ ( ) ] ( )v y A X A BB A y A Xβ β− − − − −′ ′ ′− − −  
 

         1 11
2 2 2

ln(2 ) ln( ) ln{det[ ( ) ]}n n v A BB Aπ − −′ ′= − − −    

 
                                                            11

2 ( ) ( ) ( )v Ay X BB Ay Xβ β−′ ′− − −  
 
where implicitly, ( )A A λ=  and ( )B B ρ= .  
 
In Appendix 1 (see footnote 2 above) it is shown that the associated concentrated 
likelihood function of ρ  is given by: 
 

( )2
2

1
22 2

ˆˆ( | ) [1 ln(2 )] ln{ [ ( ), )]} ln 1 i
n

c i
n nL y vρ π λ ρ ρ ρ Δ

=
= − + − − −∑   (25) 

 
where  
 

11ˆ ˆ ˆ ˆ ˆˆ ˆ[ ( ), ] [ ( )] ( ) [ ( )]nv v Ay X BB Ay Xλ ρ ρ β ρ β ρ−′ ′= = − −   (26) 
 
with ˆ ˆ[ ( )]A A λ ρ=  and where in addition,    
 

1 1 1ˆ ˆ ˆ ˆ ˆ( ) [ ( ), ] [ ( ) ] ( )X BB X X BB Ayβ β ρ β λ ρ ρ − − −′ ′ ′ ′= = =   (27) 
 
and 

1

1

( )ˆ ˆ( )
( )

y G BB GWy
y W G BB GWy

λ λ ρ
−

−

′ ′ ′
= =

′ ′ ′ ′
,    (28) 

 
 
                                                 
10 It is also shown in (A1.2)  of Appendix 1 that det( ) 1A = , so that 1A− always exits. 
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with 
 

1 1 1( ) [ ( ) ] ( )nG G I X X BB X X BBρ − − −′ ′ ′ ′= = − .   (29) 
 
This one-dimensional function can in principle be maximized by a simple line search to 
obtain the maximum-likelihood estimate, ρ̂ . However, there are several practical 
considerations that should be mentioned at this point. First, in autocorrelation models 
where time intervals between events are unequal, the value of ρ  is very dependent on the 
underlying time unit. In particular, since (15) shows that the only quantities used in the 
analysis are the powers, ρΔ  (and their squares 2ρ Δ ), it is these values that determine the 
likelihood function in (25).  So if time is rescaled by a factor, α , then the identity, 

( )1/ ααρ ρ
ΔΔ ≡ , implies that ( )1/ˆ ˆ αρ ρ→ . Hence even though positive autocorrelation 

estimates will always lie between zero and one, the actual value of ρ̂  depends on the 
time units and can only be interpreted in this context.  
 
A second related issue concerns the sign of ρ . While (7) allows negative as well as 
positive values of ρ , it should be clear that negative dependencies are somewhat 
problematic in the present setting. In particular, the type of oscillation behavior implied 
by negative ρ  depends crucially on the choice of time unit which, as mentioned above, 
can be quite arbitrary in the present setting.11   Moreover, since positive dependencies are 
of primary interest in the present setting, we simply restrict the relevant interval of ρ  
values to the interval [0,1), and take all zero values of ρ̂   to mean “no autocorrelation”.12    
 

 A final consideration that arises with unequally spaced events relates to the degree of 
inequality between time intervals. In particular, if the difference between the smallest and 
largest values of Δ  is considerable, then computational overflows can result. For 
example, if time units are in days (as in the present application) and there is a 30 day lag 
between two consecutive sales, then standard double-precision computations of the 
quantity 2 1/ 2(1 )iρ Δ−  601 ρ= − will be numerically equal to one for all values .5ρ < . 
While most cases are not this extreme, it should be clear that the concentrated likelihood 
function will tend to be very flat for small values of ρ . The consequences of this flatness 
are discussed further in Section 3.1 below.  
 
Given an estimate, ρ̂ , of ρ , one can immediately obtain corresponding estimates 

ˆ ˆ ˆ( , , )vλ β  by successive substitution into (29),(28), (27) and (26). Hence whenever ρ̂  is 
unique, it follows that all estimates will be unique. Here it should be noted that while the 
                                                 
11 Indeed, such oscillation behavior loses all meaning in the continuous version of AR(1), where the 
autocorrelation parameter is required to be nonnegative [as is evident from the positivity restriction, 

0 0α > , in Jones (1993) for the identity, 0exp( )ρ α= − , of footnote 7 above].  
12 Following Anselin and Moreno (2003), one might also interpret such negative estimates of ρ to be 
evidence that the present spatio-temporal specification is simply not supported by the data.  
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concentrated likelihood function, ( | )cL yρ , can fail to be concave (as can be shown by 
numerical examples), the maximum-likelihood estimates, ρ̂ , have proved to be unique in 
all simulated cases studied to date. Thus it appears that non-uniqueness of parameter 
estimates is not a serious issue in the present model. 
 
Finally, this set of estimates ˆ ˆ ˆˆ( , , , )vβ λ ρ  can be used to estimate asymptotic variances for 
testing purposes. A complete derivation of the asymptotic covariance matrix is given in 
Appendix 2 (see footnote 2 above). 
 
3. Selected Simulation Results 
 
Two types of simulation analyses were done for this model. The first involved an entirely 
artificial space-time process constructed on a square grid of housing sites. The purpose of 
these simulations was to examine the effect of sample size on the reliability of parameter 
estimates. As will be shown below, maximum-likelihood estimates for this model are 
quite sensitive to sample size, and can be extremely inefficient for small samples. In view 
of this, it was crucial to determine whether such effects were present in the CDC 
application developed below. So a second set of simulations was run for that model, 
using the empirical space-time structure and sample size, together with the parameter 
estimates obtained from the given data set. The results of these simulations, presented in 
Section 4.3 below, confirmed that the sample size of this application (400 sales) was 
sufficiently large to achieve reasonably efficient estimates. Moreover, since data sets for 
housing sales are typically much larger than this, the present results suggest that 
maximum-likelihood methods should produce reliable results in most applications. But 
given the wider range of potential applications of this model, it is of interest to consider 
its small sample behavior.13 
 
3.1 A 100-Sample Case 
 
Here “small sample” behavior is well illustrated by sample sizes as large as 100. To 
construct such a case, a population of 100 houses was placed on a 10 by 10 unit grid of 
locations, and these houses were sold in random order with time intervals sampled from 
an exponential (“memoriless”) distribution with a mean of 4 days. Time intervals were 
then rounded upward so that the minimal time interval was one day. To construct space 
time dependencies as in (1), a threshold time interval of 60Δ =  days was chosen, along 
with a threshold distance of three units, 3d = . This produced a W  matrix of space-time 
influences in which 65 % of the houses were influenced by the previous sale of at least 
one house nearby.14 Two housing attribute values 1 2( , )x x  were randomly sampled from a 
uniform distribution on the unit interval, producing a 100 2×  matrix, X , of housing data. 
                                                 
13 Here it should be emphasized that the following simulations are intended only to illustrate the “typical” 
small sample properties of this model in a single situation. Systematic simulation studies of model 
performance under a range of space-time structures and parameter values are left for future work. 
14 Here parameter choices ( , )d Δ  for W  were chosen to yield a degree of space-time interaction among 
housing sales that roughly matched that of the Philadelphia application below, where about 66% of the 
houses were influenced by previous sales (based on the space-time bandwidths used). 
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The parameter values chosen for this simulation were (5,1,2)β ′= , 4v = , .4λ = , and 
.2ρ = . The variance, v , was chosen to be relatively large in comparison to the 

conditional mean. This was done to maintain some degree of comparability with the 
application below which also involves two explanatory variables, and thus resulted in a 
substantial unobserved variation. In addition, the value of ρ  was chosen to be low 
enough to allow substantial unobserved variation between sales occurring only one day 
apart (as discussed at the end of Section 2.1 above). 
 
In this setting, a set of 1000 sales price vectors, ( : 1,..,1000)iy y i= = , were simulated. 
The resulting distributions of parameter estimates are summarized in Table 1 below. 
 

   0β    1β    2β    λ    ρ    ν  
Mean 5.032 0.991 1.963 0.397 0.206  3.817 
Std Dev  .586 0.646 0.693 0.045 0.165  0.562 

 
                             Table 1: Estimates for the Simulation of 100 Sales 
 
Here the means of all parameters are close to their true values, but the standard deviations 
on most parameters are quite high. Recall that the high variance, 4v = , is a contributing 
factor here, especially for the β  parameters. This can be seen in Figure 1(a) below, 
where even then most inefficient estimator, 1̂β , is symmetrically distributed about its true 

value, 1 1β =  (shown by the arrow head below the figure). The situation for λ̂  is 
surprisingly much better than for the betas, and is seen in Figure 1(b) to be much more 
 
 
 
 
concentrated around its true value .4λ = . But the situation for ρ̂  is quite different, as 
shown in Figure 2(a) below.  
 
 
 
 
Even though the sample mean of ρ̂  seems reasonable, the actual sampling distribution 
exhibits extreme variation. Notice also that this variation combined with the 
nonnegativity restriction on ρ  (discussed at the end of Section 2.3 above) produces a 
large spike of zero values. Hence it is clear that without this restriction there would also 
be a severe negative bias in the estimates of ρ . Even with the restriction, there is a slight 
downward bias in ρ̂ , which is directly inherited by v̂  as seen in Table 1 and Figure 2(b).  
This underestimation of variance is of particular significance for statistical inference, 
since the primary objective of this model is to account for the unobserved variation that is 
masked by space-time dependencies.  
 

  Figure 1 here 

  Figure 2 here 
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The main reason for the extreme variation in ρ̂  values turns out to be the relative flatness 
of the concentrated likelihood function for ρ , as seen in Figure 3 below, where a case 
with ρ̂  close to the mean [in (a)], 
 
 
 
 
 
and a case with ρ̂  truncated to zero [in (b)] are seen to have similar concentrated likely- 
hood functions, both very flat in the range of low ρ  values. This can in turn be attributed 
to the fact that for all time intervals, Δ , that are well above one (say at least five days), 
the values of  ρΔ  and 21 ρ Δ−  are approximately zero and one, respectively, for all low 
values of ρ . Hence these terms are essentially constant for small ρ . This flatness of 
course also results in small values of the Hessian for the concentrated likelihood function, 
and hence tends to inflate the asymptotic variance of ρ̂  estimates. (Indeed, for the 1000 
simulations above, only about 25% resulted in a significant value of ρ .)  
 
Finally, since all other estimates are constructed from estimates of ρ , it should be clear 
that this instability in ρ  estimates will be inherited by all other estimates.15 Thus it would 
appear that for samples this small, autocorrelated errors with unequal spacing can create 
substantial problems for parameter estimation. 
 
 
3.2  A 400-Sample Case 
 
Given these small-sample problems, it is of interest to extend the above example to a grid 
large enough to allow a sample size comparable to the sample size, 400n = , in the CDC 
application below. Hence a 20 by 20 grid was used to obtain 400 housing sites. These 
were again sold in random order, with lag times defined by rounded samples from an 
exponential distribution with mean equal to 4 days. A 400 2×  matrix, X , of housing 
attributes was again sampled from the uniform distribution, and the same parameter 
values for [ , , , ]vβ λ ρ  were used. The results are shown in Table 2 below. 
 

   0β    1β    2β    λ    ρ    ν  
Mean 5.012 1.001 1.985 0.401 0.196  3.963 
Std Dev  .274 0.339 0.343 0.034 0.094  0.281 

 
                             Table 2. Estimates for the Simulation of 400 Sales 
                                                 
15 In view of this, it is somewhat surprising that estimates of λ  appear to behave quite well by comparison. 
Moreover, since this relation persists in all simulations studied thus far, it raises an interesting (open) 
question as to why the expression for ˆ ˆ( )λ ρ  in (28) above should remain more stable than ρ̂ .  
 

 Figure 3 here 
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Here we see that there is considerable improvement with respect to all estimates. Not 
only are the means slightly better, but the sample standard deviations are roughly cut in 
half. The reason is made clear by the histogram for ρ̂  in Figure 4(a) below, which 
exhibits much better statistical properties.  
 
 
 
 
While a spike at zero is still evident, there is now a clear concentration around the true 
value, .2ρ = , with only a slight downward bias and a much smaller standard deviation. 
This reduction is again inherited by all parameter estimates constructed from ρ̂ . Of 
particular importance for statistical inference is the improvement in v̂ , as seen in Table 2 
and Figure 4(b). Not only is the standard deviation cut in half, but also the downward bias 
has almost disappeared. Hence it appears that for sample sizes of 400 and larger, the 
maximum-likelihood estimates of all parameters are quite reliable. Additional 
confirmation of this will be given in Section 4.3 below. 
 
4.  Application to a Community Development Corporation Area in Philadelphia   
 
The following application is taken from the Philadelphia study mentioned in the 
Introduction, and focuses on one of the CDCs in this larger study [which will be reported 
in a subsequent paper (Wu and Smith, 2009)]. The present CDC, designated as the 
Peoples’ Emergency Center (PEC), consists of nine contiguous block groups located in 
West Philadelphia, as shown in Figure 5 below.  
 
 
 
 
The specific objective of this study was to determine whether the overall trend of housing 
sales prices in each CDC area was significantly greater than that of comparable non-CDC 
areas in Philadelphia.16 Here a control area (CA), consisting of twenty five contiguous 
block groups in North Philadelphia was identified (also shown Figure 5) and used for 
purposes of comparison. The data for the present illustration consists of all housing sales 
in these two areas during the 20-month period from January 2004 to September 2005. 
During this period there were 64 housing sales in PEC, and 336 housing sales in the 
larger control area, CA.17  
 
To compare sales trends, an instance of model (3) was constructed with iy  denoting the 
sales price per square foot of each house i (to control for variations in house sizes). To 
account for space-time dependencies among housing sales, the time and distance 
                                                 
16 During this time period there was a significant increase in housing prices throughout the entire 
Philadelphia area. 
17 This address-level sales data was extracted from the Philadelphia Board of Revisions of Taxes (BRT) 
Properties File from 1990 to 2006. 

 Figure 4 here 

 Figure 5 here 
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thresholds in (1) above were chosen to be 60Δ =  and 500d = , so that for any two 
houses, i  and j , the corresponding space-time weight, ijw , is nonzero if only if house j  
is within 500 feet of house i  and is sold no more than 60 days prior to the sale of house 
i .18  Sales in each area were distinguished by a location dummy, iδ  ( = 1 for PEC houses 
i ), and the sales time, it , of each house i  was used to capture (linear) sales-price trends. 
In this context, the relevant instance of model (3) for the present application takes the 
form:  
 

0 1 2 31
( ) , 1,..,n

i ij j i i i i ij
y w y t t u i nλ β β β δ β δ

=
= + + + + + =∑   (30) 

 

where 400n =  and where i itδ  denotes the interaction effect between time and location. 
For our present purposes, the coefficient of this interaction effect ( 3β ) is the key 
parameter of interest. This can be seen more clearly by rewriting (30) as follows: 
 

0 2 1 31
( ) , 1,..,n

i ij j i i i ij
y w y t u i nλ β β δ β β δ

=
= + + + + + =∑   (31) 

 
Here it is clear that 3β  represents the difference in slopes between the linear sales-price 
trends in the PEC and CA areas. Hence a positive value of 3β  would at least be consistent 
with a positive local effect of the PEC housing projects.  
 
4.1 OLS Estimation 
 
To analyze this effect we start by treating (30) as a standard linear model. Here it is of 
interest to observe that if temporal autocorrelation effects are assumed to be absent, i.e., if 

0ρ = , then (30) is precisely a standard linear model. To see this, consider the form of the 
full likelihood function in (24) and note first that if 0ρ = , then by definition, nC B I= = , 
and in particular ln[det( )] 0C = . Hence if we let 
 

, ( , )X Wy Xλβ β
⎛ ⎞= =⎜ ⎟
⎝ ⎠

� �   (32) 

 

so that  Ay X y Wy X y Xβ λ β β− = − − = − �� , and rewrite the reduced likelihood with 
0ρ =  as ( , , ) ( , )L v L vβ λ β≡ � , then it follows at once from (24) that 

 
1

2 2 2( , ) ln(2 ) ln( ) ( ) ( )n n
vL v v y X y Xβ π β β′= − − − − −� � �� �  (33) 

 
which is precisely the standard linear model likelihood function for ( , )vβ� .19  
                                                 
18 It should be clear from Figure 5 that the areas PEC and CA are sufficiently far apart to ensure that no 
space-time dependencies occur between houses in separate areas. 
19 It should be noted here that since this model involves both lagged dependent variables and a time trend 
term, it is technically an instance of a “autoregressive process around a deterministic time trend”. But while 
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Hence the ordinary least squares (OLS) estimates of ( , ) ( , , )v vβ λ β=�  for this case are 
guaranteed to satisfy all the usual optimality properties of maximum-likelihood 
estimates.20 More generally, if temporal autocorrelation effects are present but not too 
severe (as will be seen to be the case in this application), then OLS should continue to 
yield quite reasonable estimates. The results for OLS in the present case are summarized 
in Table 3 below: 
 
________________________________________________________________________ 
  
 
 
 
 
 
 
 
 
 
________________________________________________________________________ 
 
 
 
 
 
 
 
 
 
 
Here both the time parameter 1( )β  and the key time-location interaction parameter ( 3β ) 
are significantly positive – with interaction being very significant. Moreover the relative 
size of these coefficients shows that price increases in PEC are considerably higher than 
those of CA, with a rate of increase above that of CA by more than 5 cents per square 
foot per day. Notice also that the spatial effect of nearby previous sales (λ ) is 
significantly positive.  
 
In the next section it is shown that our present spatio-temporal extension of OLS does not 
change these conclusions in any substantial way. Moreover, while the present analysis is 
based only on a small data set drawn from the larger Philadelphia CDC study, these same 
                                                                                                                                                 
the rates of convergence for OLS estimates are more delicate in this case, it can be shown that the standard 
model significance tests continue to be asymptotically valid. [See for example Hamilton (1994, Section 
16.3)]. 
20 In particular, OLS estimates in the presence of lagged dependent variables are consistent and 
asymptotically normally distributed about their true values. However, since the lagged dependent variables 
and residuals are not fully independent, these estimates are typically biased for small samples. [See for 
example Davidson and MacKinnon (2004, Section 3.2). 

Table 3. OLS Results for PEC 

Constant 0( )β                              10.203            4.482            0.00001 

Spatial Lag ( )λ    0.123            2.314            0.021 
Time 1( )β    0.014            2.419           0.016 

PEC Indicator 2( )β                      13.160           2.461            0.014 

Time-PEC Interaction 3( )β            0.053            3.774            0.0002 

Pseudo R-Squared                            0.362            

AIC 3435.219 
Variance ( )v                                 308.651 

Variable                                       Coefficient           t -value               p -value 
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conclusions follows from the larger study as well. Hence it does appear that prices have 
been rising faster in the CDC areas than can be accounted for by general housing price 
increases during this period. In so far as increased housing values can be taken to reflect 
neighborhood revitalization, our results thus suggest that these Philadelphia CDC projects 
have achieved some degree of success. For a fuller discussion of these points, see Wu and 
Smith (2009). 
 
However, there are a number of shortcomings of the present analysis that carry over to 
the larger study as well. The most obvious is the absence of additional housing attributes 
that should be controlled for (as reflected by the low value of pseudo R-square21). But 
unfortunately, such attributes were not available in usable form for the current data set.22 
The other key question for our present purposes relates to possible temporal 
autocorrelation among residuals that is not captured by the simple time trend in (30). As 
is well known, such autocorrelation tends to smooth residuals which can in principle 
inflate the statistical significance of key parameters. Indeed, this was the primary 
motivation for the present spatio-temporal model.  
 
 
4.2 Spatio-Temporal Estimation 
 
Hence we now re-examine this data in terms of present spatio-temporal model. The 
results of this estimation are summarized in Table 4 below. Notice first that the key 
parameter estimates and significance levels are strikingly similar to Table 3. 
 
________________________________________________________________________ 
  
     
 
 
 
 
 
 
 
 
________________________________________________________________________ 
 
                                                 
21 The standard R-square is known to be somewhat problematic in the case of lagged dependent variables. 
Hence for comparability with the spatio-temporal formulation below, we choose to define pseudo R-square 
here to be  the squared correlation between y  and it prediction, 1ˆ ˆˆˆ ( | ) ( )ny E y X I W Xλ β−= = −  with OLS 

estimates λ̂  and β̂ . However, it is also of interest to note that in this particular application the unadjusted 
R-square (0.372) is was almost the same as the pseudo R-square (0.362). 
22 Here it should be noted that CDCs are local non-profit organizations whose funding is devoted almost 
entirely to housing projects, and not to data collection. Hence all housing data was drawn from the 
Philadelphia BRT (footnote 17 above). Moreover, while this BRT data did include provisions for a number 
of key housing attributes (such as “number of bedrooms” and “interior and exterior condition”), most of 
this data was either missing or unusable for other reasons.  

Constant 0( )β                              10.203            4.482            0.00001 

Spatial Lag ( )λ    0.123            2.314            0.021 
Time 1( )β    0.014            2.419           0.016 

PEC Indicator 2( )β                      13.160           2.461            0.014 

Time-PEC Interaction 3( )β            0.053            3.774            0.0002 

Variable                                       Coefficient           t -value               p -value 
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Moreover, as is seen from the pseudo R-square and AIC values, the overall goodness of 
fit for both models is also very similar.23 Hence, in view of the discussion in Section 4.1 
above, these similarities would seem to suggest that temporal autocorrelation is not 
present. However, the p-value (0.044)  for temporal autocorrelation, ρ , does indicate 
some statistical significance here. But as noted in Section 2.3 above, the estimated value 
of ρ  can only be interpreted relative to the time units used in the analysis. In the present 
case, ˆ .112ρ = , with a time unit of one day. This implies from (10) that for consecutive 
housing sales, 1i −  and i , that are more than one day apart, the influence of residual, 1iu − , 
on iu  is less than 2

1 1(.013)i iu uρ − −≈ . So in spite of its apparent statistical significance, the 
autocorrelation impact of ρ  in the present context is actually minimal.  
 
In summary, the present application of the spatio-temporal model has simply served to 
verify that the OLS estimates above do not appear to be severely influenced by 
unobserved temporal autocorrelation effects.  
 
But given the small-sample estimation difficulties illustrated in Section 3.1 above, it is 
still of interest to ask whether the present value of ρ̂  might actually be underestimating 
the true value. While no definitive answer can be given to this question, it is instructive to 
simulate the behavior of maximum-likelihood estimates for this application. 
 
 
4.3 Simulation of Spatio-Temporal Estimates 
 
Recall from Section 3.1 that the sample size, 400n = , was chosen specifically to be 
comparable with the present application. While the results there suggest that the present 
estimate of ρ  should behave reasonably well, both the spatio-temporal dependency 
structure and data used for that simulation are considerably different than the present 
case. Hence it is of interest to carry out the same simulation procedure using the present 
data set and W  matrix. In addition, to gage how well the model is doing in the region of 
the current parameter estimates, the “true” parameter values were chosen to be (slightly) 
rounded versions of the parameter estimates above ( 0 10.52β = , 1 0.013β = , 2 12.38β = , 
                                                 
23 In the present context of maximum-likelihood estimation, the AIC measure is considered by many to 
yields more reliable goodness-of-fit comparisons than pseudo R-square. However, the latter is somewhat 
easier to interpret. 

Table 4. Spatio-Temporal Results for PEC 

Pseudo R-Squared                            0.362            

AIC 3435.219 
Variance ( )v                                 308.651 
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3 0.05β = , 0.12λ = , 0.112ρ = , and 305.01v = ). The results of this simulation are 
summarized in Table 5 below.  
 
 

   0β    1β    2β  3β    λ    ρ    ν  
Mean 10.466  0.0134  12.398 0.0545 0.1120 0.1067 301.51 
Std Dev  2.459 0.0062  5.128 0.0141 0.0524 0.0542  21.69 

 
                                  Table 5. Estimates for the PEC Simulation  
 
Here it is clear that the maximum-likelihood estimates are behaving quite well for this 
data and set of parameter values above. Of particular interest are the ρ -estimates, which 
are shown in more detail in Figure 6(a) below. 
 
 
 
 
As in Figure 4(a) there is still a noticeable spike at zero. But again there is strong 
clustering about the true value, .112ρ = , resulting in only a small downward bias in ρ̂ . 
As expected, these results for ρ  lead to even better results for the estimates of variance, 
v , as compared to Figure 4(b). In short, these results lend further credibility to the 
estimate of ρ  above, and hence to the minimal nature of temporal autocorrelation in the 
present application.   
 
5. Comparison with a Spatio-Temporal Lag Model Approach 
 
An alternative approach to the spatio-temporal analysis of individual housing sales with 
unequal time intervals was proposed by Pace et al. (2000).24 Here housing sales are again 
ordered by time of occurrence, and the full structure of time dependencies among these 
sales is specified by a nonnegative matrix, ( )ijT τ= , with 0ijτ =  for all j i≥ .  Similarly, 
all spatial dependencies for a given sale are assumed to involve only previous sales, and 
the structure of such dependencies is represented by a nonnegative matrix, ( )ijS s= , with 

0ijs =  for all j i≥ .  These are combined into a general linear model designated as the 
spatio-temporal linear model (STLM). For our present purposes, it is convenient to focus 
on the special case of STLM given by the following spatio-temporal lag model 
paralleling (16) above:25 
 

( )T S TS STy T S TS ST y X uλ λ λ λ β= + + + + +   ,   ~ (0, )u N vI   (34) 
 
                                                 
24 We are indebted to an anonymous referee for pointing out the close similarities between our current 
model and that of Pace et al. (2000). 
25 This is a special case of  the STLM model in expression (7) of Pace et al. (2000), where the interaction 
terms ( , , , )TX SX TSX STX  are missing, along with matrix of non-lagged variables, Z . 

 Figure 6 here 
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Here the simple expression, Wyλ , in (16) now has a more elaborate form, while the 
unobserved residuals, u , in (17) have a much simpler form. In essence, all spatio-
temporal dependencies are here postulated to be among the observable sales prices, y , 
and not the residuals, u .26  As the authors point out, the appeal of this model is its 
mathematical simplicity. In particular, since lower triangularity is preserved under 
products, the spatio-temporal lag matrix in (34) is lower triangular. This, together with 
the standard OLS specification of residuals, implies that all parameters can be 
consistently estimated using OLS. Hence this model can be applied to very large data 
sets, as is common in real estate markets.  
 
To compare (34) with the present model in [(16),(17)], we begin by considering the types 
of spatio-temporal interactions that can be captured by the product matrices, TS  and ST . 
Here we choose to focus on ST , and write STy  more explicitly as: 
 

1

21 21 2

31 32 31 32
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0 0
0 0

0 0

0 0
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⎜ ⎟⎜ ⎟ ⎢ ⎥
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#
# % % % # % % %

" "

 (35) 

 
Hence the spatio-temporal influence on the thi housing sale, say 1 1( ,.., )i iy yφ − , is seen to 
be of the form: 
 

( )1 1 1 1
1 1 1 1 1 1

( ,.., ) ( )i h i h
i i ih hj j ih hj jh j h j

y y s y s yφ τ τ− − − −

− = = = =
= =∑ ∑ ∑ ∑    (36) 

 
If we examine a typical term, ih hj js yτ , then the first point to notice is that by definition, 
j h i< < . Hence all influences on the price of housing sale, i , by the prices, jy , of 

previous housing sales, j , involve indirect influences through some other housing sale, 
h , that is intermediate in time between i  and j . To gain some insight as to the nature of 
such influences, suppose first that both ihs  and hjτ  are positive so event j  does exert 
some influence on event i  through h .  Suppose further that 0ih ijτ τ= =  (so that events h  
and j  both happen long before i ), and similarly that 0ij hjs s= =  (so that events i  and h  
are both very far from event j  in space). Then this spatio-temporal interaction can be 
                                                 
26 It should be remarked that Pace et al. (2000) motivate the form of their model by constructing [in 
expressions (1), (2) and (5)] a spatio-temporal extension of the spatial Durbin model (Anselin, 1988) which 
does indeed account for spatio-temporal autoregressive dependencies in the unobserved residuals. But this 
development is somewhat misleading in the sense that their final model, STLM [expression (7)], ignores 
the crucial “common factor” constraints on coefficients that preserve these autoregressive dependencies. 
Hence, while STLM could in principle be used to test this “common factor hypothesis” (as implied by their 
discussion on p.234), the model itself is simply a more elaborate version of the spatio-temporal lag model 
in (34) above.  
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given the following interpretation: Even though event h  happened long before i , it is 
close enough in time to event j  to share some common temporal influences with j . 
Moreover, even though event i  is very far away from j  in space,  it is close enough to h  
to share some of the spatial effects of these earlier influences. Similar interpretations can 
be given to TS , and show that such spatio-temporal influences are indeed quite 
meaningful. But the crucial point here is that these influences are necessarily indirect.  
 
In our present model, for example, it is assumed that housing sale i  can be influenced by 
all previous sales j  that are sufficiently close to i  in both space and time, i.e., for which 
both 0ijτ >  and 0ijs > . But with respect to the above interpretation, it is clear for 
example that if all other sales near i  happened after i , so that 0ih hjs τ =  for all h i< , then  
j  can have neither an “ ST ” effect or  a “TS ” effect on i  in (34). While it is true that j  

can still have additive “T ” and “ S ” effects in (34) , it should be clear that there is no 
way to model our particular joint space-time interaction effect in the STLM model.  
 
However, there is another matrix product that does allow such effects. In particular, if 
one considers the Hadamard product, S T⋅ , defined by simple component-wise 
multiplication, [ ] ( ) ( )ij ij ijS T s τ⋅ = ⋅ , then this clearly encompasses the desired joint 
interactions since,  
 

[ ] 0 ( 0) ( 0)ij ij ijS T s and τ⋅ > ⇔ > >    (37) 
 

Of equal importance in the present context is the fact that Hadamard products obviously 
preserve lower triangularity. Hence by broadening the spatio-temporal lag operator in 
(34) to 
 

( )T S TS ST S Ty T S TS ST S T y X uλ λ λ λ λ β⋅= + + + + ⋅ + +   (38) 
 
one can encompass both direct and indirect spatio-temporal interactions in a manner that 
still permits consistent OLS estimation.  
 
Finally it is of interest to ask whether one can also use these simple weight matrices, S  
and T , to model spatio-temporal autocorrelation effects in the unobserved residuals, u .  
As in model [(16),(17)] we focus here on temporal autocorrelation and, as an alternative 
to (10) and (11), now consider the much simpler linear autoregressive model, 
 

1 1u ε=  (39) 
 

1

1
, 2,..,i

i ij j ij
u u i nρ τ ε−

=
= + =∑    (40)  

 
with independent innovations, 2~ (0, )i Nε σ , for all i . Here the unequal time intervals 
between i  and j  are assumed to be captured by appropriately chosen values of ijτ . This 
yields the matrix form,  
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1( )u Tu u I Tρ ε ρ ε−= + ⇒ = − ,  2~ (0, )N Iε σ .   (41) 
 
which is seen an instance of expressions (1) and (5)  in Pace et al. (2000).  
 
From a theoretical perspective the major difficulty with this process is that stationarity is 
not possible without further modification. In particular, if it is assumed that  
 

var( ) 0 , 1,..,iu v i n= > =   (42) 
 
then it is easily shown that (41) and (42) are inconsistent, unless either OT =  or 0ρ ≡ . 
The basic idea can be seen from (39) plus the first instance of (40). For by (39) it follows 
that 
 

2
1 1var( ) var( )u vε σ= ⇒ = .  (43) 

 
Hence by setting 2i =  in (40) we see that 
 

2
2 21 1 2 2 21 1 2var( ) ( ) var( ) var( )u u u uρτ ε ρτ ε= + ⇒ = +   (44) 

 
           2 2

21 21( ) [1 ( ) ]v v v vρτ ρτ⇒ = + = +          
   
But if 0ρ ≠  then 21 0τ ≠  would imply that 2

21( ) 0ρτ > , so that (44) can only hold if 
0v = . Since this contradicts (42), we must have 21 0τ = . Proceeding by induction, this 

forces OT =  whenever 0ρ ≠ .27  
 
However, it is also well known that by a simple relaxation of the variance of the initial 
innovation, 1ε , this problem can be overcome for the special case of the standard AR(1) 
model [given by (10) and (11) above with 1iΔ ≡ ].28 Here ( )ijT τ=  takes the special form 
with , 1 1i iτ − =  for all 2,..,i n= , and 0ijτ =  elsewhere, so that by relaxing (43) and setting 

21 1τ = , it now follows from the argument in (44) that [in a manner paralleling (12)], 
 

2 2 2 2/(1 )v v vρ σ σ ρ= + ⇒ = −    (45) 
 
Hence by restricting the admissible values of ρ  to the open interval ( 1,1)−  [so that v  is 
defined], and assuming only that the initial variance in (39) takes the form 
 

2 2
1var( ) /(1 ) vε σ ρ= − ≡  ,   (44) 

                                                 
27 A full argument is given in Appendix 3 (see footnote 2 above). 
28 In fact this “special case” provides the motivation for essentially all linear autoregressive models, both in 
time and space.  For the spatial case, this is clear from the motivating examples in the original papers of 
Whittle (1954) and Ord (1975). 
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a simple inductive argument shows this initialization of the AR(1) model yields a well 
defined stationary process as in (42), with 2var( )iε σ=  for all 1i > .29 From a practical 
viewpoint, this larger initial variance is taken to reflect the entire history of the 
unobserved process prior to 1i = .30 
 
Hence, there remains the interesting question of whether this simple modification for the 
AR(1) model might not allow variance stationarity (42) for other possible specifications 
of T .  More precisely, one may ask whether there exist (nonzero) specifications of 

( )ijT τ=  other than AR(1) [together with an appropriate choice of 2σ ] such that the 
model: 
 

1 1 1, ~ (0, )u N vε ε=   (45) 
 

2, ~ (0, ) , 2,..,i ij j i ij i
u u N i nρ τ ε ε σ

<
= + =∑    (46)  

 
with independent innovations ( : 1,.., )i i nε =  satisfies stationarity condition (42). Here the 
answer is unfortunately negative. In particular, if one imposes the reasonable assumption 
that more distant time influences are never greater than more recent influences, i.e., that  
 

0 ih ijh j i τ τ< < ⇒ ≤ ≤   (47) 
 
and requires only that model [(45),(46)] hold for ρ  in some sufficiently small open 
interval containing zero (so that full independence is allowed), then it is shown in 
Appendix 3 (see footnote 2 above) that AR(1) is indeed the only possibility here.31  So 
while model (41) [or its relaxation in (45) and (46)] is very appealing from an analytical 
viewpoint, such models must always involve non-stationary residuals. Moreover, since 
the structure of these non-stationarities will depend critically on the particular 
specification of T , one must justify why this specification together with its implicit non-
stationarities is appropriate for the particular time interval (and irregular event sequence) 
under study.32 
 
 
6. Concluding Remarks 
 
In this paper, we have developed a spatio-temporal model that is particularly suitable for 
the analysis of address-level events occurring sporadically in time. In particular, this 
                                                 
29 Proofs of this result can be found in any standard text, such as Hamilton (1994, Section 3.4). 
30 For further discussion of this point see Green (2003, Section 12.2). 
31  It is also worth noting that this result depends only on the first two moments of the independent 
innovations, ( : 1,.., )i i nε =  so that the normality assumption in (7) is not required. 
32 For example, if 0ρ >  then it is clear from the cumulative nature of (46) that sales residuals iu  with 

many sales in the recent past, i.e., with many positive dependencies ( : )ij j iτ < , will tend to have much 
higher variances than those with very few sales in the recent past. 
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model not only avoids the need for temporal aggregation (that is typical of most spatio-
temporal regression models), but also allows for the possibility of short-run temporal 
dependencies (such as changes in asking prices based on very recent sales).   Moreover, 
while the above analysis suggests that more robust estimation procedures may be needed 
for small-sample applications, the present maximum-likelihood framework does appear 
to be well suited for the analysis of larger data sets, as typified by housing sales 
transactions in major urban areas.  
 
There is however a more subtle limitation of the present model that does not arise in more 
standard temporal aggregation schemes. In particular, when events are aggregated with 
respect to regular time intervals, as in the standard AR(1) model, these aggregate events 
are by definition well separated in time. But in our present extension of the AR(1) model 
to individual events, it is quite possible for such events to occur at almost the same time. 
In particular, it is possible for several house sales to occur on the same day. Moreover, as 
discussed in Section 2.3 above, the steady-state conditions for this model imply that the 
unobserved residuals for such events must be identical. This would make perfectly good 
sense if the unobserved variation captured by iu  was due entirely to time dependent 
phenomena affecting all events occurring at time it . For then it could be argued by 
simple continuity that events occurring close in time to it  would be similarly affected. 
But in actuality each residual, iu , necessarily includes any unobserved attributes of 
individual house i  that influence its sales price but are not shared by other houses sold at 
times close to it .   
 
Hence one important extension of the present model would be to incorporate such effects 
by the addition of an idiosyncratic residual, oiu , for each sales event i . If it is assumed 
that these residuals are iid  normal variates, say with ( : 1,.., ) (0, )o oi o nu u i n N v I′= = ∼ , 
and in addition that ou  is independent of the temporal effects captured by u , then the 
model in (16) could be extended as follows:  
 

oy Wy X u uλ β= + + +  ,  ~ (0, )u N vBB′  ,  ~ (0, )o o nu N v I   (48) 
 
Here events occurring simultaneously would exhibit distinct idiosyncratic residuals even 
though they shared a common temporal residual.  
 
From a conceptual viewpoint, this extension appears to be rather straightforward. But 
analytically it is considerably more complex. In particular, it is no longer possible to 
reduce the estimation problem to a single dimension. However, if this model is 
reparameterized by the standard technique of setting / ov vθ = , then it can be shown that 
(34) still exhibits many of the analytical properties developed for model (16) above. This 
extension will be presented in a subsequent paper.  
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Figure 1. (a) Histogram for ˆ
1β  (b) Histogram for λ̂  
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Figure 2. (a) Histogram for ρ̂   (b) Histogram for v̂  
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Figure 6. (a) Histogram for ρ̂   (b) Histogram for v̂  
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Appendix 1. Analysis of Likelihood and Concentrated Likelihood Functions. 
 
We begin by recalling from expression (24) in the text that the full log likelihood 
function is given by 
 
(A1.1)  1 11

2 2 2
( , , , | ) ln(2 ) ln( ) ln{det[ ( ) ]}n nL v y v A BB Aβ λ ρ π − −′ ′= − − −  

 
                                                    11

2 ( ) ( ) ( )v Ay X BB Ay Xβ β−′ ′− − −  
 
where again ( )A A λ=  and ( )B B ρ= . Next we observe that significant reduction of the 
log-determinant term in (A1.1) is possible. In particular, since both W  and D  are lower 
triangular with zero diagonals, it follows that both A  and nI D−  are lower triangular 
with unit diagonals, and thus that  
 
(A1.2)  det( ) 1 det( )nA I D= = −  
 
This together with the definition of B  [in (20) of the text] in turn implies that 
 
(A1.3) 1 1 1ln{det ( ) ]} 2ln[det( )] 2ln[det( )] (0) 2ln[det{( ) }][ nA BB A A B I D C− − −′ ′ = − + = + −  
 
                                                2ln[det( )] 2ln[det( )] (0) 2ln[det( )]nI D C C= − − + = +  
 
Hence (A1.1) reduces to  
 
(A1.4)  

2 2
( , , , | ) ln(2 ) ln( ) ln[det( )]n nL v y v Cβ λ ρ π= − − −  

 
                                                    11

2 ( ) ( ) ( )v Ay X BB Ay Xβ β−′ ′− − −  
 
As with all general linear models of this type, the standard approach to maximum-
likelihood estimation is to start by fixing the autocorrelation parameters ( , )λ ρ  and 
solving for the conditional estimates of β  and v  in terms of their respective first-order 
conditions. If we now denote the first and second order partial derivatives of ( ,...)xφ  by 

xφ∇  and xxφ∇ , then  
 
(A1.5)  1 1 110 ( ) ( ) ( ) ( )vL X BB Ay X BB Ay X BB Xβ β β− − −′ ′ ′ ′ ′= ∇ = − ⇒ =  
 
     1 1 1ˆ ˆ ( , ) [ ( ) ] ( )X BB X X BB Ayβ β λ ρ − − −′ ′ ′ ′⇒ = =  
 
Similarly, for v  we again obtain the standard result: 
 



(A1.6)  2
11

2 20 ( ) ( ) ( )v
n
v vL Ay X BB Ay Xβ β−′ ′= ∇ = − + − −  

 
             11 ( ) ( ) ( )nv Ay X BB Ay Xβ β−′ ′⇒ = − −  
 
so that by substituting β̂  into (A1.6) we obtain the corresponding estimate of v : 
 
(A1.7)  11 ˆ ˆˆ ˆ( , ) ( ) ( ) ( )nv v Ay X BB Ay Xλ ρ β β−′ ′= = − −  
 
By substituting (A1.5) and (A1.7) into (A1.4) we then obtain the following concentrated 
likelihood function, ( , | )cL yλ ρ , for ( , )λ ρ :   
 
(A1.8)   

2 2 2
ˆ( , | ) ln(2 ) ln( ) ln[det( )]c

n n nL y v Cλ ρ π= − − − −  

 
                                           

2 2
ˆ[1 ln(2 )] ln[ ( , )] ln{det[ ( )]}n n v Cπ λ ρ ρ= − + − −                             

 
where dependencies on ( , )λ ρ  are now made explicit. Observe in particular that λ  
appears only in the log-quadratic term of (A1.8). This shows that further reduction is 
possible in the present model by considering the first-order condition of (A1.8) with 
respect to λ :  
 
(A1.9)    1

2 ˆ ˆ ˆ0 ( , ) ( , ) ( , ) 0c
nL v v vλ λ λλ ρ λ ρ λ ρ−= ∇ = − ∇ ∇ =⇔  

 
To evaluate the right hand side, observe first from (A1.5), 
 
(A1.10)   1 1 1ˆ [ ( ) ] ( )Ay X Ay X X BB X X BB Ayβ − − −′ ′ ′ ′− = −  
 
                                       1 1 1{ [ ( ) ] ( ) }nI X X BB X X BB Ay GAy− − −′ ′ ′ ′= − =  
 
where 
 
(A1.11) 1 1 1( ) [ ( ) ] ( )nG G I X X BB X X BBρ − − −′ ′ ′ ′= = −  
 
so that by (A1.7), 
 
(A1.12) 1 11 1( ) ( ) ( ) ( )ˆ( , ) n nn ny A G BB GAy y I W G BB G I W yv λ λλ ρ − −′ ′ ′ ′ ′ ′ ′ ′= − −=  
 
                          1 1 2 11 [ ( ) 2 ( ) ( ) ]n y G BB Gy y G BB GWy y W G BB GWyλ λ− − −′ ′ ′ ′ ′ ′ ′ ′ ′ ′− +=  
 
Hence the first order condition 
 



(A1.13) 1 110 [ 2 ( ) 2 ( ) ]ˆ( , ) n y G BB GWy y W G BB GWyvλ λλ ρ − −′ ′ ′ ′ ′ ′ ′= ∇ − +=  
 
yields the following explicit solution for λ , 
 

(A1.14) 
1

1

( )ˆ ˆ( )
( )

y G BB GWy
y W G BB GWy

λ λ ρ
−

−

′ ′ ′
= =

′ ′ ′ ′
 

 
with G  given by (A1.11).  Finally, by substituting (A1.14) into (A1.8), we obtain the 
following concentrated likelihood function for the autocorrelation parameter, ρ , 
 
(A1.15) 2 2

ˆˆ( | ) [1 ln(2 )] ln{ [ ( ), )]} ln{det[ ( )]}c
n nL y v Cρ π λ ρ ρ ρ= − + − −     

 
This can be simplified even further by noting from (19) in the text that 
 
(A1.16) ( )1/ 22

2
det[ ( )] 1 i

n

i
C ρ ρ Δ

=
= −∏  

 
and hence that  
 
(A1.17) ( )2

2
1
22 2

ˆˆ( | ) [1 ln(2 )] ln{ [ ( ), )]} ln 1 i
n

c i
n nL y vρ π λ ρ ρ ρ Δ

=
= − + − − −∑  

 
 
 



Appendix 2: Derivation of the Asymptotic Covariance Matrix 
 
First we note that in this Appendix, references will be made to expressions in Appendix 1 
as well as in the text. If the full parameter vector for the log likelihood function in (24) of 
the text is denoted by ( , , , )vθ β λ ρ= , then (as with all maximum-likelihood estimates), 
one can approximate the asymptotic covariance matrix, ˆcov( )θ , for ˆ ˆ ˆ ˆˆ( , , , )vθ β λ ρ= , by 
calculating the Hessian matrix,  
 
(A2.1)  ˆ ˆ( ) ( | )H L yθθθ θ= ∇  
 
of second partial derivatives of the full likelihood function in (A1.4) evaluated at θ̂ , and 
the associated expected Fisher information matrix: 
 
(A2.2)  ˆ ˆ( ) [ ( )]E Hθ θ= −I   
 
The desired asymptotic covariance matrix is then estimated by the inverse, 
 
(A2.3)  1ˆ ˆcov( ) ( )θ θ −= I  
 
Alternatively, one can simply take  
 
(A2.4)  0

ˆ ˆ( ) ( )Hθ θ= −I  
 
to be the observed Fisher  information matrix, and estimate covariance by 
 
(A2.5)  1

0
ˆ ˆcov( ) ( )θ θ −= I  

 
The second approach has the obvious advantage of avoiding the need for calculating 
expectations.1 Moreover, it has been argued [for example in Hinkley and Efron (1978) 
and Lindsay and Li (1997)] that in many cases this observed form actually has better 
asymptotic properties. Finally, since one must obtain an analytical expression for the 
Hessian matrix,  
 

(A2.6)  
v v

v vv v v v vv v v

v v

v v

H H H H L L L L
H H H H L L L LH H H H H L L L L
H H H H L L L L

ββ β βλ βρ ββ β βλ βρ

β λ ρ β λ ρ

λβ λ λλ λρ λβ λ λλ λρ

ρβ ρ ρλ ρρ ρβ ρ ρλ ρρ

∇ ∇ ∇ ∇⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟∇ ∇ ∇ ∇

= =⎜ ⎟ ⎜ ⎟∇ ∇ ∇ ∇
⎜ ⎟ ⎜ ⎟∇ ∇ ∇ ∇⎝ ⎠ ⎝ ⎠

 

 

                                                 
1 It is also worth noting that many gradient procedures for maximizing likelihood, such as Gauss-Newton 
procedures, involve the computation of this matrix. Hence ˆ( )H θ  is automatically available at the 
termination of such algorithms. 



(where for example, [ ]v vL Lβ β∇ = ∇ ∇ ), in order to calculate the associated expected Fisher 
information matrix, 
 

(A2.7)  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

v v

v vv v v v vv v v

v v

v v

E H E H E H E H
E H E H E H E H
E H E H E H E H
E H E H E H E H

ββ β βλ βρ ββ β βλ βρ

β λ ρ β λ ρ

λβ λ λλ λρ λβ λ λλ λρ

ρβ ρ ρλ ρρ ρβ ρ ρλ ρρ

− − − −⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟− − − −

= =⎜ ⎟ ⎜ ⎟− − − −⎜ ⎟ ⎜ ⎟− − − −⎝ ⎠ ⎝ ⎠

I I I I
I I I I

I I I I I
I I I I

 

 
we shall derive both matrices explicitly. To do so, we begin by recalling from (A1.4) and 
(A1.16) that the full likelihood function is given by 
 
(A2.8)  ( )2

2
1
22 2( , , , | ) ln 1ln(2 ) ln( ) i

n

i
n nL v y vβ λ ρ ρπ Δ

=
= − − −− ∑  

 
                                                     11

2 ( ) ( ) ( )v Ay X BB Ay Xβ β−′ ′− − −  
 
and that the partials of L  with respect to β  and v  are given from (A1.5) and (A1.6) by 
 
(A2.9)  1 1 11 1 1( ) ( ) ( ) ( )v v vL X BB Ay X X BB Ay X BB Xβ β β− − −′ ′ ′ ′ ′ ′∇ = − = −  
 
(A2.10) 2

11
2 2 ( ) ( ) ( )v
n
v vL Ay X BB Ay Xβ β−′ ′∇ = − + − −  

 
Hence 
 
(A2.11) 11 ( )vH L X BB Xββ ββ

−′ ′= ∇ = −  
 
which in turn implies that 
 
(A2.12) 11( ) ( )vE H X BB Xββ ββ

−′ ′= − =I  
 
Similarly, 
 
(A2.13) 2

11 ( ) ( )v v vH L X BB Ay Xβ β β−′ ′= ∇ = − −  
 
together with the expectation, 1( )E Ay AA X Xβ β−= = , implies that 
 
(A2.14)       2

11( ) ( ) [ ( ) )] 0v v vE H X BB E Ay Xβ β β−′ ′= − = − =�I  
 
Finally,  
 
(A2.15) 2 3

11
2 ( ) ( ) ( )vv vv
n
v vH L Ay X BB Ay Xβ β−′ ′= ∇ = − − −  

 



implies that 
 
(A2.16) 2 3

11
2( ) [( ) ( ) ( )]vv vv
n
v vE H E Ay X BB Ay Xβ β−′ ′= − = − + − −I  

 
To calculate the remaining expectation in (A2.14), we begin with the following result on 
the expectation of quadratic forms [see also Searle (1971, p.55)]. For any random n -
vector, z , and n n×  matrix, M , 
 
(A2.17) ( ) ( ) [ ( )] [ {cov( ) ( ) ( ) }]z Mz tr Mzz E z Mz tr M E zz tr M z E z E z′ ′ ′ ′ ′= ⇒ = = +  
 
                                       ( ) [ cov( )] [ ( ) ( ) }]E z Mz tr M z tr ME z E z′ ′⇒ = +  
 
                                                           [ cov( )] ( ) ( )tr M z E z M E z′= +  
 
Hence, letting z Ay X β= − , 1( )M BB −′= , and noting from (22) in the text that ( ) 0E z =  
and cov( ) cov( )z Ay BBν ′= = , it follows from (A2.17) that 
 
(A2.18)       1[( ) ( ) ( )] [ ] [ cov( )] ( ) ( )E Ay X BB Ay X E z Mz tr M z E z M E zβ β−′ ′ ′ ′− − = = +    
 
                            1[ ( ')] (0) (( ) ) ( )ntr M vBB v tr BB BB v tr I nv−′ ′= + = ⋅ = ⋅ =  
 
and we may conclude that 
 
(A2.19) 2 3 2

1
2 2( )vv
n n
v v vnv= − + =I  

 
Turning next to λ , observe first from (A2.8) that 
 
(A2.20) 11

2 [( ) ( ) ( )]vL y Wy X BB y Wy Xλ λ λ β λ β−′ ′∇ = − ∇ − − − −  
 
                                1 12

2
1( ) ( ) ( ) ( ) ( )v vy Wy X BB Wy y Wy X BB Wyλ β λ β− −′ ′ ′ ′= − − − − = − −  

 
implies 
 
(A2.21) 11[ ] ( )vH L y W BB Wyλλ λ λ

−′ ′ ′= ∇ ∇ = −  
 
so that again by (A2.17) with 1( )M W BB W−′ ′=  and z y= , together with (22), 
 
(A2.22) 11( ) [ ( ) ]vE H E y W BB Wyλλ λλ

−′ ′ ′= − =I  
 
                              1 11{ [ ( ) cov( ) ( ) [ ( ) ] ( )}v tr W BB W y E y W BB W E y− −′ ′ ′ ′ ′= +  
 



                              1 1 1 1 1 11{ [ ( ) { ( ) }] ( ) [ ( ) ] }v tr W BB W vA BB A A X W BB W A Xβ β− − − − − −′ ′ ′ ′ ′ ′ ′= +  
                 
                              1 1 1 1 1 11[ ( ) ( ) ] ( ) ( ) }vtr W BB WA BB A X A W BB WA Xβ β− − − − − −′ ′ ′ ′ ′ ′ ′ ′ ′= +  
 
                              1 1 1 1 1 11[( ) ( ) ( ) ] ( ) ( ) ( ) }vtr BB WA BB WA X WA BB WA Xβ β− − − − − −′ ′ ′ ′ ′ ′ ′= +  
 
Next by (A2.9), 
 
(A2.23) 1 11 1[ ( ) ( )] ( )v vH L X BB y Wy X BB Wyβλ βλ λ λ− −′ ′ ′ ′= ∇ = ∇ − = −  
 
which implies that 
 
(A2.24) 1 1 11 1( ) ( ) ( ) ( )v vE H X BB WE y X BB WA Xβλ βλ β− − −′ ′ ′ ′= − = = =I  
 
Similarly by (A2.10) 
 
(A2.25) 2

11
2[ ] [( ) ( ) ( )]v v vH L Ay X BB Ay Xλ λ λ β β−′ ′= ∇ ∇ = ∇ − −  

 
                               2 2

1 12 1
2

( ) ( ) ( ) ( ) ( )
v v

y Wy X BB Wy Ay X BB Wyλ β β− −′ ′ ′ ′= − − − = − −  
 
which implies 
 
(A2.26)  2

11( ) [( ) ( ) ]v v v
E H E Ay X BB Wyλ λ β −′ ′= − = −I   

 
To evaluate this expectation, first observe that again by (A2.17) with 1( )M A BB W−′ ′=  
and z y= ,  
 
(A2.27)       1 1 1[( ) ( ) ] [ ( ) ] [ ( ) ]E Ay X BB Wy E y A BB Wy E X BB Wyβ β− − −′ ′ ′ ′ ′ ′ ′ ′− = −  
 
                            1 1 1[ ( ) cov( )] ( ) [ ( ) ] ( ) ( ) ( )tr A BB W y E y A BB W E y X BB WE yβ− − −′ ′ ′ ′ ′ ′ ′ ′= + −                   
 
But since 
 
(A2.28)       1 1( ) [ ( ) ] ( ) ( ) ( )E y A BB W E y X BB WE yβ− −′ ′ ′ ′ ′ ′−             
 
                           1 1 1( ) [ ( ) ]X A A BB W A Xβ β− − −′ ′ ′ ′ ′= 1 1( )X BB WA Xβ β− −′ ′ ′−  
 
                           1 1 1[( ) ]( )X A A BB WA Xβ β− − −′ ′ ′ ′ ′= 1 1( ) 0X BB WA Xβ β− −′ ′ ′− =  
 
and 1 1cov( ) ( )y vA BB A− −′ ′= , it follows that (A2.27) reduces to  
 



(A2.29) 1 1 1 1[( ) ( ) ] [{ ( ) } ( ) ]E Ay X BB Wy v tr A BB WA BB Aβ − − − −′ ′ ′ ′ ′ ′− = ⋅  
 
                                                                1 1 1[ ( ) { ( ) }]v tr WA BB A A BB− − −′ ′ ′ ′= ⋅   
 
                                                                1( )v tr WA−= ⋅  
 
Finally, since W  is by construction lower triangular with zero diagonal, it follows that 

1( ) 0tr WA− = . To see this, observe first that for any lower triangular matrix, T , with zero 
diagonal, the determinant | |I Tθ−  is a product of ones and hence is unity. But the 
characteristic equation for 1WA−  is then of the form 
 
(A2.30) 11 10 | | | | | | | |I WA A A W A A Wθ θ θ−− −= − = ⋅ − = −  
 
                           1 | ( ) |I W I W Wλ λ θ−= − − −  
 
                           (1) | ( ) | | ( ) | 1I W W I Wλ θ λ θ= ⋅ − − = − + =  
 
Hence the characteristic equation for 1WA−  can have no non-zero solutions, and it follows 
that all eigenvalues of 1WA−  are zero. Finally, since the trace of any matrix is the sum of 
its eigenvalues, this implies in particular that 1( ) 0tr WA− =  and hence that  
 
(A2.31) 0vλ =I  
 
Finally we turn to those terms involving the key parameter, ρ , which are by far the most 
complex to compute. Again we start with the partial of L  in (A2.8) with respect to ρ : 
 
(A2.32) ( )2 1

2
1
2

1
2ln 1 ( ) [ ( ) ]( )i

n

i vL Ay X BB Ay Xρ ρ ρρ β βΔ −
=
⎡ ⎤ ′ ′∇ = ∇ − − − ∇ −⎣ ⎦− ∑  

 
 Here we consider each term in turn. First 
 
(A2.33)      ( )2 2 1 2 1ln 1 2 (1 )i i i

iρ ρ ρ ρΔ Δ − Δ −∇ − = − Δ −    
 
                            ( )2 2 1 2 1

2 2
1
2 ln 1 (1 )i i i

n n
ii iρ ρ ρ ρΔ Δ − Δ −

= =
⎡ ⎤⇒ ∇ − = Δ −⎣ ⎦− ∑ ∑  

 
Next to calculate 1( )BBρ

−′∇  it is convenient to recall that 1( )nB I D C−= − , so that by 

letting 2M C−=  and nG I D= − , it follows (from the symmetry of C ) that  
 

(A2.34) ( )1 1 1 1 1( ) [ ( )] [ ( )]n nBB B B C I D C I D− − − − −′′ ′= = − −  



 
                                    2( ) ( )n nI D C I D G MG−′ ′= − − =  
 
Similarly, if we let ( )G Gρ ρ∇ =  and ( )M Mρ ρ∇ =  then by the chain rule for matrix 
derivatives, 
 
(A2.35)  1( ) [ ] [ ( )] [ ( )] [ ( )]BB G MG G MG G M G G M Gρ ρ ρ ρ ρ

−′ ′ ′ ′ ′∇ = ∇ = ∇ + ∇ + ∇   
 
                                          G MG G M G G MGρ ρ ρ′ ′ ′= + +     
 
Hence it suffices to compute Gρ  and M ρ . To do so, it is convenient to give explicit 
representations of [ ( , ) : , 1,.., ]D D i j i j n= =  and [ ( , ) : , 1,.., ]C C i j i j n= =  as follows. First 
by (18) in the text, it follows that 
 

(A2.36) , 2,.., , 1( , )
0 ,

i i n j iD i j
otherwise

ρΔ⎧ = = −= ⎨
⎩

 

 
so that [ ( , ) : , 1,.., ]G G i j i j n= =  is of the form 
 

(A2.37) 
1 , 1,..,

( , ) , 2,.., , 1
0 ,

i

i j n
G i j i n j i

elsewhere
ρΔ

⎧ = =
⎪= − = = −⎨
⎪⎩

 

 
Similarly, by (19) in the text, 
 

(A2.38) 2 1/ 2
1 , 1

( , ) (1 ) , 2,.., ,
0 ,

i

i j
C i j i j n

elsewhere
ρ Δ

⎧ = =
⎪= − = =⎨
⎪⎩

 

 
so that [ ( , ) : , 1,.., ]M M i j i j n= =  is of the form 
 

(A2.39) 2 1
1 , 1

( , ) (1 ) , 2,.., ,
0 ,

i

i j
M i j i j n

elsewhere
ρ Δ −

⎧ = =
⎪= − = =⎨
⎪⎩

 

 
Hence, the gradient condition, 
 
(A2.40) ( ) ( )nG I D Dρ ρ ρ= ∇ − = −∇  
 
together with 1( )i i

iρ ρ ρΔ Δ −∇ = Δ  implies that [ ( , ) : , 1,.., ]G G i j i j nρ ρ= =  is of the form, 



 

(A2.41) 
1, 2,.., , 1( , )

0 ,
i

i i n j iG i j
otherwiseρ

ρΔ −⎧−Δ = = −= ⎨
⎩

 

 
Similarly, (A2.39) together with 
 
(A2.42) 2 2 2 1 2 1 21 2 2(1 ) (1 ) ( 2 ) 2 (1 )i i i i i

i iρ ρ ρ ρ ρ ρΔ Δ Δ − Δ − Δ− − −⎡ ⎤∇ − = − − − Δ = Δ −⎣ ⎦  
 
implies that [ ( , ) : , 1,.., ]M M i j i j nρ ρ= =  is of the form 
 

(A2.43)  
2 1 2 22 (1 ) , 2,..,( , )

0 ,
i i

i i j nM i j
otherwiseρ

ρ ρΔ − Δ −⎧ Δ − = == ⎨
⎩

 

 
Hence, 1( )BBρ

−′∇  is given by (A2.35) together with [(A2.37), (A2.39), (A2.41),(A2.43)].  
 
These results complete the calculation of Lρ∇  in (A2.32). Hence to calculate the Hessian 
element H Lρρ ρρ= ∇  we see from (A2.32) that 
 
(A2.44)      2 1

2
1
2

1
2ln(1 ) ( ) [ ( ) ]( )i

n

i vL Ay X BB Ay Xρρ ρρ ρρρ β βΔ −
=

⎡ ⎤ ′ ′∇ = ∇ − − − ∇ −⎣ ⎦− ∑  
 
and that from (A2.33) 
 
(A2.45) 2 2 1 2 1ln(1 ) (1 )i i i

iρρ ρρ ρ ρΔ Δ − Δ −⎡ ⎤ ⎡ ⎤∇ − = ∇ Δ −⎣ ⎦ ⎣ ⎦  
 
                                                     2 2 2 2 21 1(1 ) (2 1) 2 (1 )i i i i

i i iρ ρ ρ ρΔ − Δ Δ Δ− −⎡ ⎤= Δ − Δ − + Δ −⎣ ⎦  
 
Hence it remains to calculate the second partial derivative, 1( )BBρρ

−′∇ . As with the first 
partial derivative, we start with the chain rule applied to (A2.35): 
 
(A2.46)  1( ) [ ]BB G MG G M G G MGρρ ρ ρ ρ ρ

−′ ′ ′ ′∇ = ∇ + + [ ]G MG G M G G MGρρ ρ ρ ρ ρ′ ′ ′= + +  
                                                                                     
                               [ ]G M G G M G G M Gρ ρ ρρ ρ ρ′ ′ ′+ + + [ ]G MG G M G G MGρ ρ ρ ρ ρρ′ ′ ′+ + +  
 
which shows that it suffices to calculate Gρρ∇  and Mρρ∇ .  But since 
 
(A2.47) 1 2[ ] (1 )i i

i i iρ ρ ρΔ − Δ −∇ −Δ = −Δ −Δ  
 
it follows from (A2.41) that [ ( , ) : , 1,.., ]G G i j i j nρρ ρρ= =  is given by 
 



(A2.48) 
2(1 ) , 2,.., , 1( , )

0 ,
i

i i i n j iG i j
otherwiseρρ

ρΔ −⎧−Δ −Δ = = −= ⎨
⎩

 

 
Similarly,  
 

(A2.49)  
2 1 2 2[2 (1 ) ] , 2,..,( , )

0 ,

i i
i i j nM i j

otherwise
ρ

ρρ
ρ ρΔ − Δ −⎧∇ Δ − = == ⎨

⎩
 

 
where 
 
(A2.50)    2 1 2 4 2 2 2 2 22 2 3 2[2 (1 ) ] 8 (1 ) 2 (2 1) (1 )i i i i i i

i i i iρ ρ ρ ρ ρ ρ ρΔ − Δ Δ − Δ Δ − Δ− − −∇ Δ − = Δ − + Δ Δ − −  
 
Hence 1( )BBρρ

−′∇  is given by (A2.44) together with [(A2.37), (A2.39), (A2.41),(A2.43)] 
and [(A2.48),(A2.49),(A2.50)]. In turn this implies that H ρρ  is given by (A2.44), (A2.45) 

and this calculation of 1( )BBρρ
−′∇ . Turning now to ρρI , it follows from (A2.44) that, 

 
(A2.51) ( )E Hρρ ρρ= −I  
 
                               2 1

2
1
2

1
2ln(1 ) {( ) [ ( ) ]( )}i

n

i v E Ay X BB Ay Xρρ ρρρ β βΔ −
=

⎡ ⎤ ′ ′= ∇ − + − ∇ −⎣ ⎦∑  
 
But by setting 1( )M BBρρ

−′= ∇  in (A2.18), it now follows that 
 
(A2.52) 1 1{( ) [ ( ) ]( )} [ ( ) ]E Ay X BB Ay X v tr BB BBρρ ρρβ β− −′ ′ ′ ′− ∇ − = ⋅ ∇  
 
and hence that 
 
(A2.53) 2 1

2
1 1
2 2ln(1 ) [ ( ) ]i

n

i
tr BB BBρρ ρρ ρρρ Δ −

=
⎡ ⎤ ′ ′= ∇ − + ∇⎣ ⎦∑I  

 
Next, to calculate H ρλ  we observe from (A2.32) that 
 
(A2.54) 11

2 {( ) [ ( ) ]( )}vH L Ay X BB Ay Xρλ ρλ λ ρβ β−′ ′= ∇ = − ∇ − ∇ −  
 
                               11

2 {2( ) [ ( ) ] ( )}v Ay X BB y Wy Xρ λβ λ β−′ ′= − − ∇ ∇ − −  
 
                               11 ( ) [ ( ) ]v Ay X BB Wyρβ −′ ′= − ∇  
 
Hence, 
 
(A2.55) 11( ) {( ) [ ( ) ] }vE H E Ay X BB Wyρλ ρλ ρβ −′ ′= − = − − ∇I                                      



 
                               1 11 { [ ( ) ] } [ ( ) ] ( )v E y A BB Wy X BB WE yρ ρβ− −′ ′ ′ ′ ′ ′⎡ ⎤= − ∇ − ∇⎣ ⎦  
 
                               1 1 11 { [ ( ) ] } [ ( ) ] ( )v E y A BB Wy X BB W A Xρ ρβ β− − −′ ′ ′ ′ ′ ′⎡ ⎤= − ∇ − ∇⎣ ⎦  
 
But by setting 1[ ( ) ]M A BB Wρ

−′ ′= ∇  and z y=  in (A2.17) it follows that  
 
(A2.56)       1{ [ ( ) ] }E y A BB Wyρ

−′ ′ ′∇  
 
                      1 1{ [ ( ) ] cov( )} ( ) [ ( ) ] ( )tr A BB W y E y A BB WE yρ ρ

− −′ ′ ′ ′ ′= ∇ + ∇  
 
                       1 1 1 1 1 1{ [ ( ) ] [ ( ) ]} [( ) ][ ( ) ]tr A BB W vA BB A X A A BB WA Xρ ρβ β− − − − − −′ ′ ′ ′ ′ ′ ′ ′ ′= ∇ + ∇                               
 
                       1 1 1 1 1{[ ( ) ] [( ) ]} [ ( ) ]tr BB WvA BB A A X BB WA Xρ ρβ β− − − − −′ ′ ′ ′ ′ ′ ′= ∇ + ∇  
 
                       1 1 1 1{[ ( ) ] } [ ( ) ]v tr BB WA BB X BB WA Xρ ρβ β− − − −′ ′ ′ ′ ′= ⋅ ∇ + ∇  
 
Hence by substituting this back into (A2.55), it is seen that the last two terms cancel, 
leaving 
 
(A2.57) 1 1{[ ( ) ] }tr BB WA BBρλ ρ

− −′ ′= − ∇I  
 
To complete the calculations, we observe first from (A2.9) that 
 
(A2.58) 11 [ ( ) ]( )vH L X BB Ay Xβρ βρ ρ β−′ ′= ∇ = ∇ −  
 
which is directly obtainable from the above calculation of 1( )BBρ

−′∇ . Moreover, 
 
(A2.59) 11( ) [ ( ) ][ ( ) ]vE H X BB E Ay Xβρ βρ ρ β−′ ′= − = ∇ −I  
 
                              11 [ ( ) ][ ] 0v X BB X Xρ β β−′ ′= ∇ − =  
 
Finally, to obtain vH ρ , observe from (A2.10) that 
 
(A2.60) 2

11
2 ( ) [ ( ) ]( )v v vH L Ay X BB Ay Xρ ρ ρβ β−′ ′= ∇ = − ∇ −  

 
which is again obtainable from the calculation of 1( )BBρ

−′∇ . Moreover, by the same 
argument as in (A2.52) it now follows that 
 



(A2.61)        2
11

2( ) {( ) [ ( ) ]( )}vE H E Ay X BB Ay Xλρ λρ ρβ β−′ ′= − = − − ∇ −I  
 
                                      ( )2

11
2 {[ ( ) ] }v v tr BB BBρ

−′ ′= − ⋅ ∇  
 
                                      2

11
2 {[ ( ) ] }v tr BB BBρ

−′ ′= − ∇  
 
This together with the observation ji ijH H ′=  and ji ij′=I I  for all , { , , , }i j vβ λ ρ∈  with 
i j≠  is seen to complete the calculation of both H  and I  in (A2.6) and (A2.7), 
respectively. 



Appendix 3. Stationarity in Linear Autoregressive Models 
 
As in the text, we assume throughout this appendix that the matrix, ( : , 1,.., )ijT i j nτ= = , 
is nonnegative and lower triangular, i.e., that 0ijτ ≥  for all 2,..,j i n< =  and 0ijτ =  
otherwise. In this context, we begin by recalling the linear autoregressive scheme of  (39) 
and (40) in the text, 
 
(A3.1)  1 1u ε=  
 
(A3.2)  1

1
, 2,..,i

i ij j ij
u u i nρ τ ε−

=
= + =∑   

 
with independent innovations, 2~ (0, )i Nε σ , 1,..,i n=   [which are implicitly assumed to 
be ordered in time, so that 1ε  is the first innovation, and so on]. This model can be 
summarized in matrix form as:  
 
(A3.3)             ,u Tuρ ε= +   2~ (0, )N Iε σ  , 
 
Our first result is to show that this model can be stationary only under complete 
independence,1 i.e., that 
 
 Proposition 1. Model (A3.3) is compatible with the variance stationarity 
            condition, 
 
(A3.4)  var( ) 0 , 1,..,iu v i n= > =  
 
 iff it is true that either 0ρ =  or OT = .  
 
 Proof: If either 0ρ =  or OT =  then the result holds trivially by setting 2v σ= . 
Hence it suffices to establish the necessity of these conditions. Here it is enough to show 
that if (A3.4) holds with 0ρ ≠  then OT = . We proceed by induction, and for sake of 
completeness, begin by repeating the argument for 2i =  in (43) and (44) of the text. 
Since (A3.1) yields the implication, 
 
(A3.5)  2

1 1var( ) var( )u vε σ= ⇒ = , 
 
it follows by setting 2i =  in (A3.2) that 
 
(A3.6)  2

2 21 1 2 2 21 1 2var( ) ( ) var( ) var( )u u u uρτ ε ρτ ε= + ⇒ = +  

                                                 
1 It should be noted that none of the results in this Appendix require either normality of innovations, ε ,  or 
nonnegativity of T . However, since these are natural parts of the models being considered, we shall retain 
these assumptions throughout. 



 
                                                 2 2

21 21( ) [1 ( ) ]v v v vρτ ρτ⇒ = + = + .       
 
Hence if 0ρ ≠  then 21 0τ ≠  would imply that 2

21( ) 0ρτ > ,  and thus that 0v =  in (A3.6). 
But since this contradicts (A3.4), it follows that (A3.2) can only hold for 2i =  if 21 0τ = , 
which in turn implies that 2 2u ε= . More generally, we may proceed by induction as 
follows. If  for any 2k ≥  it is true that ( 0: 1,.., )ij j i kτ = ≤ = , so that j ju ε= for all 

1,..,j k=  then by (A3.2) 
 
(A3.7)  1 1, 1 1, 11 1

k k
k k j j k k j j kj j

u uρ τ ε ρ τ ε ε+ + + + += =
= + = +∑ ∑  

 
                 2 2

1 1, 11
var( ) var( ) var( )k

k k j j kj
u ρ τ ε ε+ + +=

⇒ = +∑  

 
                               ( )2 2 2

1, 1,1 1
1 ( )k k

k j k jj j
v v v vρ τ ρτ+ += =

⇒ = + = +∑ ∑  

 
But since 2

1,( ) 0k jρτ + ≥  for all 1,..,j k= , and since 0ρ ≠  must imply that 2
1,( ) 0k jρτ + >  

whenever 1, 0k jτ + ≠ , it again follows that 0v >  is only possible if 1,( 0 : 1)k j j kτ + = < + . 
Hence by induction (together with the lower-triangular definition of T ) we may conclude 
that if 0ρ ≠  then OT = . ■ 
 
To broaden the range of variance stationary models to include certain models with 
autoregressive dependencies, we now relax the initial variance of 1ε  and consider the 
model, 
 
(A3.8)         1 1 ~ (0, )u N vε=  
 
(A3.9)  1 2

1
, ~ (0, ) , 2,..,i

i ij j i ij
u u N i nρ τ ε ε σ−

=
= + =∑  

 
with ( : 1,.., )i i nε =  independent. Here we require some additional structural assumptions 
to ensure that variance stationarity (A3.4) is at least possible, and also to eliminate 
unwanted cases. First observe from the argument in (A3.6) above that if  (A3.4) holds 
then 
 
(A3.10) 2 2 2

2 21 1 2 21var( ) ( ) var( ) var( ) ( )u u v vρτ ε ρτ σ= + ⇒ = +  
 

                                    
2

2
211 ( )

v σ
ρτ

⇒ =
−

 

 



Hence v  is only finite and positive if  21 1ρτ < . Moreover, if 21 0τ = , so that 2v σ=  [as 
in (A3.5) above] then the argument of Proposition 1 goes through. Thus to avoid 
restricting the model to independent processes with OT = , we now require that 
 
(A3.11) 21 0τ >  . 
 
This ensures that variance stationarity is at least possible for sufficiently small values of 
ρ , i.e., with 21| | 1/ρ τ< . In this context, we require that the set, R , of admissible values 
for ρ  contain all such values that are sufficiently close to 0, i.e., that  
 
(A3.12) 0 0 0 21( , ) (0,1/ )R for someρ ρ ρ τ− ⊂ ∈  . 
 
This ensures in particular that 0 R∈ , and hence that “complete independence” continues 
to be one possible model. 2  Next recall from (A3.9) that ijτ  reflects the relative influence 
on event i of prior event j . Hence it is natural to assume that more recent events, j , are 
at least as influential as those in the distant past, i.e., that 
 
(A3.13) ih ijh j i τ τ< < ⇒ ≤  
 
The set of conditions [(A3.8),(A3.9),(A3.11),(A3.12),(A3.13)] is here said to define a 
linear autoregressive model.   
 
It is convenient to designate the special case with , 1 21i iτ τ− =  for all 3,..,i n=  and 0ijτ =  
elsewhere as the AR(1) model. Notice that one can always set 21 1τ =  by simply rescaling 
the autoregressive parameter, ρ , to the value 21/ρ ρ τ=  [with admissible range, 

21{ / : }R Rρ τ ρ= ∈ ]. But in the arguments to follow it is convenient to represent all 
appearances of 21τ explicitly. With these conventions, our objective is to show that AR(1) 
is the only linear autoregressive model satisfying variance stationarity (A3.4). Before 
doing however, it is instructive to observe that without condition (A3.13) this is not true. 
For example, consider the linear autoregressive model with ,1 1 , 2,..,i i nτ = =  and 0ijτ =  
otherwise. Here all events after the first event depend only 1ε , so that for all 2,..,i n=  
 
(A3.14) 2

1 1 1var( ) var( ) var( )i i i i iu u u uρ ε ρ ε ε ρ ε= + = + ⇒ = +  
 

                                                               
2

2 2
21

v v v σρ σ
ρ

⇒ = + ⇒ =
−

 

 

                                                 
2 From an analytical perspective, condition (A3.12) will also be seen to ensure that all variances, var( )iu , 
are continuously differentiable functions of ρ  in an open neighborhood of 0ρ = . 



Hence for 2 2
1var( ) /(1 ) vε σ ρ= − = , this model is trivially stationary. But dependencies 

of this type are hardly what one thinks of as being “autoregressive”. Hence requirement 
(A3.13) is designed to eliminate such cases. With these preliminary observations, our 
main  result is to show that:   
 

Proposition . The only linear autoregressive model that is compatible with 
variance stationarity  (A3.4)  is the AR(1) model. 

 
 Proof:  As mentioned in the text, the proof that an AR(1) process is variance 
stationary is completely standard (using the rescaling, 21/ρ ρ τ→ , if necessary), and is 
omitted. Hence the objective of this proof is to show that variance stationarity (A3.4) 
implies that a linear autoregressive process must be AR(1). To do so, we now assume that 
(A3.4) holds, and proceed by induction. If for notational simplicity, we set 21 0τ τ= > , 
then again by (A3.10) it follows for 2i =  that 2 1 2u ρτ ε ε= +  and 2 2 2(1 )vσ ρ τ= − . 
Hence for 3i =  we have 
 
(A3.15) 3 31 1 32 2 3 31 1 32 1 2 3( ) ( )u u uρ τ τ ε ρτ ε ρτ ρτε ε ε= + + = + + +  
 
                            2

31 32 1 32 2 3( )ρτ ρ τ τ ε ρτ ε ε= + + +   
 
                         2 2 2

3 31 32 1 32 2 3var( ) ( ) var( ) ( ) var( ) var( )u ρτ ρ τ τ ε ρτ ε ε⇒ = + + +  
 
                         2 2 2 2 2

31 32 32( ) [( ) 1] (1 )v v vρτ ρ τ τ ρτ ρ τ⇒ = + + + −  
 
                         2 2 2 2 2

31 32 321 ( ) [( ) 1] (1 )ρτ ρ τ τ ρτ ρ τ⇒ = + + + −  
 
for all Rρ ∈ . Since this last expression is continuously differentiable on the open 
interval 0 0( , )ρ ρ−  in (A3.12), we may differentiate this identity with respect to ρ  and 
obtain the new identity, 
 
(A3.16)        2 2 2 2 2 2 2

31 32 31 32 32 320 2( )( 2 ) (2 )(1 ) (2 )( 1)ρτ ρ τ τ τ ρτ τ ρτ ρ τ ρτ ρ τ= + + + − − +  
 
for 0 0( , )ρ ρ ρ∈ − . Next dividing by any 0(0, )ρ ρ∈  we obtain the reduced identity 
 
(A3.17)         2 2 2 2 2 2

31 32 31 32 32 320 2( )( 2 ) (2 )(1 ) (2 )( 1)τ ρτ τ τ ρτ τ τ ρ τ τ ρ τ= + + + − − +  
 
for 0(0, )ρ ρ∈ . Finally, letting 0ρ ↓  and appealing to the continuity of this expression at 

0ρ = , we obtain the limiting relation: 
 
(A3.18) 2 2 2 2 2 2

31 32 31 320 2 2 2τ τ τ τ τ τ= + − ⇒ = +  
 



Next, by differentiating (A3.17) once more (and dividing by 2) we obtain the new 
identity 
 
(A3.19) 2 2

32 31 32 31 32 32 320 ( )( 2 ) ( )(2 ) 4τ τ τ ρτ τ τ ρτ τ τ τ ρτ τ= + + + −  
 
for 0(0, )ρ ρ∈ . Hence letting 0ρ ↓  and again appealing to continuity, we see that at 

0ρ = , 
 
(A3.20) 31 32 31 32 31 320 2 3τ τ τ τ τ τ τ τ τ= + =  
                        
                           32 31 0τ τ τ⇒ =  
 
But since 21 0τ τ= >  by (A3.11) we must have 32 31 0τ τ = . Moreover, since 31 320 τ τ≤ ≤  
by nonnegativity together with (A3.13), it then follows that 31 0τ = .3 Finally, since this in 
turn implies from (A3.18) that 32τ τ= , we see from (A3.15) that 
 
(A3.21) 3 2 3u uρτ ε= +  . 
 
Hence the given model is AR(1) up to 3i = . We now extend this argument by induction 
to all i . To do so, suppose that for some 3k >  it is true that  
 
(A3.22) 1 , 2,..,i i iu u i kρτ ε−= + =  . 
 
Then it follows by successive substitution [starting with (A3.8)] that  
 
(A3.23) 

1
( )i i j

i jj
u ρτ ε−

=
=∑  ,  2,..,i k=  . 

 
Hence for 1i k= +  we must have 
 
(A3.24) 1 1, 1 1, 11 1 1

( )k k i i j
k k i i k k i j ki i j

u uρ τ ε ρ τ ρτ ε ε−
+ + + + += = =

⎡ ⎤= + = +⎣ ⎦∑ ∑ ∑  

 
                               1, 11 1

[ ( ) ]k i i j
k i j ki j

ρ τ ρτ ε ε−
+ += =

= +∑ ∑  . 

 
But by letting 1, ( )i j

ij k i ja τ ρτ ε−
+= , and using the summation identity,  

 
(A3.25)    

1 1 1

k i k k
ij ij iji j j i j i j

a a a
= = ≤ = =

= =∑ ∑ ∑ ∑ ∑  

 
                                                 
3 Here we use nonnegativity of τ -values. However, one could equally well assume , 1| | | |ij i iτ τ

−
≤  in 

(A3.13), and the same argument would go through. 



it follows that (A3.24) can be rewritten as 
 
(A3.26) 1 1, 11

[ ( ) ]k k i j
k k i j kj i j

u ρ τ ρτ ε ε−
+ + += =
= +∑ ∑  

 
                               1, 11

( )k k i j
k i j kj i j

ρ τ ρτ ε ε−
+ += =

⎡ ⎤= +⎣ ⎦∑ ∑  

 
                              1

1, 11

k k i j i j
k i j kj i j
τ ρ τ ε ε+ − −

+ += =
⎡ ⎤= +⎣ ⎦∑ ∑  

 
                              1 1

1, 1 1, 11 2

k k ki i i j i j
k i k i j ki j i j
τ ρ τ ε τ ρ τ ε ε− + − −

+ + += = =
⎡ ⎤ ⎡ ⎤= + +⎣ ⎦ ⎣ ⎦∑ ∑ ∑  

 

                        
2

1
1 1, 11

var( ) var( )k i i
k k ii

u τ ρ τ ε−
+ +=

⎡ ⎤⇒ = ⎣ ⎦∑  

 

                          
2

1
1, 12

var( ) var( )k k i j i j
k i j kj i j
τ ρ τ ε ε+ − −

+ += =
⎡ ⎤+ +⎣ ⎦∑ ∑  

 

  
2

1
1,1

k i i
k ii

v vτ ρ τ −
+=

⎡ ⎤⇒ = ⎣ ⎦∑  

 

                                 
2

1 2 2 2 2
1,2

(1 ) (1 )k k i j i j
k ij i j

v vτ ρ τ ρ τ ρ τ+ − −
+= =

⎡ ⎤+ − + −⎣ ⎦∑ ∑  

 

  { }2 2
1 1 2 2

1, 1,1 2
1 1 (1 )k k ki i i j i j

k i k ii j i j
τ ρ τ τ ρ τ ρ τ− + − −

+ += = =
⎡ ⎤ ⎡ ⎤⇒ = + + −⎣ ⎦ ⎣ ⎦∑ ∑ ∑  

 
for all Rρ ∈  [as in (A3.15)].  Hence differentiating with respect to ρ  on 0 0( , )ρ ρ− , we 
now have  
 

(A3.27)          ( )1 1
1, 1,1 1

0 2 ( )( )k ki i i
k i k ii i

iτ ρ τ τ ρτ− −
+ += =

⎡ ⎤= ⎣ ⎦∑ ∑  

 

                           ( ){ }1 2 2
1, 1,2

2 ( 1 )( ) (1 )k k ki j i j i j
k i k ij i j i j

i jτ ρ τ τ ρτ ρ τ+ − − −
+ += = =

⎡ ⎤+ + − −⎣ ⎦∑ ∑ ∑  

 

                           { }2
1 2

1,2
1 ( 2 )k k i j i j

k ij i j
τ ρ τ ρτ+ − −

+= =
⎡ ⎤+ + −⎣ ⎦∑ ∑  

 
for all 0 0( , )ρ ρ ρ∈ −  [as in (A3.16)].  Again dividing by 0(0, )ρ ρ∈ , we obtain 
 

(A3.28) ( )1 1
1, 1,1 1

0 2 ( ) ( )( )k ki i
k i k ii i

iτ ρτ τ ρτ− −
+ += =

⎡ ⎤= ⎣ ⎦∑ ∑  



 

                           ( ){ } 2 2
1, 1,2

2 ( ) ( 1 )( ) (1 )k k ki j i j
k i k ij i j i j

i jτ ρτ τ ρτ ρ τ− −
+ += = =

⎡ ⎤+ + − −⎣ ⎦∑ ∑ ∑  

 

                           { }2
2 1

1,2
2 1 k k i j i j

k ij i j
τ τ ρ τ+ − −

+= =
⎡ ⎤− + ⎣ ⎦∑ ∑   

 
for all 0(0, )ρ ρ∈ , so that by letting 0ρ ↓  we now have the following limiting relation at 

0ρ = , 
 
(A3.29) { }2

1,1 1,1 1, 1,2 2
0 2( )( ) 2 ( )( ) 2 1 (0)k k

k k k j k jj i
τ τ τ τ τ+ + + += =

= + − +∑ ∑  

 
                           2 2

1,1

k
k jj

τ τ +=
⇒ = ∑  

 
which is seen to be a direct generalization of (A3.18). Proceeding in a similar manner, we 
differentiate (A3.28) once again to obtain 
 

(A3.30) ( )2 1 1
1, 1,2 1

0 2 ( 1) ( )( )k ki i i
k i k ii i

i iτ ρ τ τ ρτ− − −
+ += =

⎡ ⎤= −⎣ ⎦∑ ∑  

 
          ( )1 2 1

1, 1,1 2
2 ( ) ( )( 1)k ki i i

k i k ii i
i iτ ρτ τ ρ τ− − −

+ += =
⎡ ⎤+ −⎣ ⎦∑ ∑  

 

                                ( ){ }2
1, 1,2

2 2 ( ) ( 1 )( )k k ki j i j
k i k ij i j i j

i jρτ τ ρτ τ ρτ− −
+ += = =

⎡ ⎤− + −⎣ ⎦∑ ∑ ∑  

 
                                2 2(1 )ρ τ+ − ⋅   
 

                                  ( ){ 1
1, 1,2 1

2 ( ) ( 1 )( )k k ki j i j i j
k i k ij i j i j

i j i jτ ρ τ τ ρτ− − − −
+ += = + =

⎡ ⎤− + −⎣ ⎦∑ ∑ ∑  

 

                                    ( ) }1
1, 1,2 1

2 ( ) ( 1 )( )k k ki j i j i j
k i k ij i j i j

i j i jτ ρτ τ ρ τ− − − −
+ += = = +

⎡ ⎤+ + − −⎣ ⎦∑ ∑ ∑  

 
                                    ( )2 1

1, 1,2
4 ( 1 )( )k k ki j i j i j

k i k ij i j i j
i jτ τ ρ τ τ ρτ+ − − −

+ += = =
⎡ ⎤− + −⎣ ⎦∑ ∑ ∑  

 
for 0(0, )ρ ρ∈ . Finally, dividing by 2, and letting 0ρ ↓  one last time, we obtain the 
following additional relation at 0ρ = , 
 
(A3.31) 1,2 1,1 1,1 1,20 ( )( ) ( )[ (2) ]k k k kτ τ τ τ τ τ+ + + += +  (0)−       
 



                                { 1, 1 1,2
(1) [ ][ (2)]k

k j k jj
τ τ τ+ + +=

+ ∑  

 
                                           ( )}1, 1, 12

[ ] (2)k
k j k jj
τ τ τ+ + +=

+ ∑    

 
                                2

2
2 (0)k

j
τ

=
− ∑  

 
       1,2 1,1 1,2 1,1( ) 2 ( )k k k kτ τ τ τ τ τ+ + + += +   
 
                                   + 1, 1 1, 1, 1 1,2 2

2k k
k j k j k j k jj j

τ τ τ τ τ τ+ + + + + += =
+∑ ∑  

 
       1, 1 1,1

3 k
k j k jj

τ τ τ+ + +=
= ∑  

 
  1, 1 1,1

0 k
k j k jj

τ τ τ+ + +=
⇒ = ∑  

 
which is seen to be a generalization of (A3.20). But the positivity of τ  and the 
nonnegativity of all ijτ  then implies that 1, 1 1, 0k j k jτ τ+ + + =  for all 1,..,j k= , which together 
with the inequalities, 1, 1, 10 k j k jτ τ+ + +≤ ≤  for all 1,.., 1j k= −  yields the conclusion that 
 
(A3.32) 1, 0 , 1,.., 1k j j kτ + = = −   . 
 
Moreover, since (A3.32) together with (A3.29) implies that 1,k kτ τ += , we must have 
 
(A3.33) 1 1k k ku uρτ ε+ += +   . 
 
Hence it follows by induction that (A3.22) must hold for all 2,..,i n= , so that the given 
model is AR(1). ■ 
 
 




