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Abstract — How many users can be supported in a direct
sequence CDMA system? It is shown that under some con-
ditions, a threshold function (or phase transition) is mani-
fested in the number of users that can be supported. This
phenomenon is essentially combinatorial in nature and may
be explicated by random graph methods.

I. INTRODUCTION

Code-division multiple access schemes allow a multiplex-
ing of resources among several users sharing a multiaccess
channel. In such settings, each user modulates a preassigned
(pseudo-) random signature waveform and transmits informa-
tion independently of, and possibly concurrently with, other
users. The individual signature waveforms are known to the
receiver who can resort to a variety of schemes to attempt to
recover the data transmitted by each user. The performance
measure of interest is the probability of error for each user.

While sundry factors impact receiver performance includ-
ing variable and random user transmission delays occasioned
by asynchronous transmission, uneven power distribution (the
near-far problem), the complexity of the receiver’s algorithm,
and additive channel noise, a fundamental limitation is im-
posed by user interference. We examine this problem, stripped
of obfuscating complexity in a synchronous, noise-free setting.

A misreading of a “folk theorem” to the effect that CDMA
schemes degrade “gracefully” might suggest that the proba-
bility of receiver error increases smoothly (and slowly) as the
number of users increases. Such a reading would be erro-
neous, however, and indeed, there is an asymptotically abrupt,
catastrophic breakdown in performance at a critical rate of
growth of the number of users with the number of chips in the
pseudonoise signature sequence. This phenomenon is essen-
tially combinatorial in nature and may be explicated by ran-
dom graph methods. We begin by setting up notation.

II. DIRECT SEQUENCE SPREAD SPECTRUM

Suppose there are K users in a direct sequence spread spec-
trum setting. The ith user is assigned a signature waveform

si(t) =

n∑
j=1

σijp(t − jTc) (0 ≤ t ≤ T)

where σi = (σi1, . . . , σin) is a code sequence of n chips taking
values in {−1, 1}, p(t) is a pulse of energy 1/n with support in
an interval [−Tc, 0] where Tc is the chip interval, and T = nTc

is the duration of the signature waveform, i.e., the bit trans-
mission interval. Each signature waveform si(t) is antipodally
modulated by the bit bi ∈ {−1, 1} transmitted by the ith user. If
the users transmit in synchrony, channel noise is abeyant, and

the received amplitudes of the individual waveforms are the
same then the received waveform is of the form

r(t) =

K∑
i=1

Abisi(t)

= A

K∑
i=1

n∑
j=1

biσijp(t − jTc) (0 ≤ t ≤ T).

This antiseptic setting provides the clearest venue in which to
examine user interference shorn of external complexity. As we
will see shortly, there is no fundamental bar to the extension of
the following results to more general settings, albeit at the cost
of added notational complexity.

Now, it is easy to see that the likelihood function depends
on the observations only through the outputs of a bank of
matched filters (cf. Verdú [1])

Yk ,
∫T

0

r(t)sk(t) dt (1 ≤ k ≤ K).

It follows that Y = (Y1, . . . , YK) is a sufficient statistic for de-
modulating the bit sequence b = (b1, . . . , bK).

Let us rewrite these equations in a more compact vector
form. The received signal is the vector

r =
A√
n

K∑
i=1

biσi

from which we form the sufficient statistic Y via the inner prod-
ucts

Yk =
1√
n
〈r, σk〉 =

A

n

K∑
i=1

bi〈σi, σk〉

=
A

n

K∑
i=1

n∑
j=1

biσijσkj (1 ≤ k ≤ K). (∗)

In conventional single user detection the receiver forms the es-
timate bbk of the information bit bk according to

bbk = sgn Yk = sgn
„ K∑

i=1

n∑
j=1

biσijσkj

«
(1 ≤ k ≤ K)

and we shall restrict our attention to this setting while indicat-
ing briefly an extension to the decorrelating detector.

Suppose the signature sequences are randomly selected
by independent sampling from the outcomes of symmetric
Bernoulli trials, i.e., the sequence of random variables {σij} is
i.i.d. with

Pr{σij = −1} = Pr{σij = +1} = 1/2.

Further suppose that the information bits b1, . . . , bK can be
arbitrary. How many users can be supported in such a scheme?



III. FIXED FRACTION OF ERRORS

We are interested in the number of receiver errors

E =

K∑
i=1

1{bbi 6=bi}.

Accordingly, for k = 1, . . . , K, define the random variables

Xk , bk

K∑
i=1

n∑
j=1

biσijσkj

= n +

K∑
i=1
i6=k

n∑
j=1

bkbiσijσkj. (∗∗)

Let p = p(K, n) = Pr
{bbi 6= bi

}
connote the probability of

a single receiver error. Observe that the kth bit estimate is in
error iff Xk ≤ 0. Hence

p(K, n) = P{Xk ≤ 0} = P
{
S

(k)

(K−1)n ≤ −n
}

(∗ ∗ ∗)

where

S
(k)

(K−1)n ,
K∑

i=1
i6=k

n∑
j=1

bkbiσijσkj

is a symmetric random walk over (K − 1)n steps. Now let the
number of users K = Kn depend explicitly on dimensional-
ity n. If Kn increases at a suitable rate with n, we can now
deploy sharp large deviation normal estimates for the tail of
the binomial (cf. Feller’s wonderful text [2]) to estimate the tail
probability on the right-hand side of (∗ ∗ ∗).

Write Φ(·) for the Gaussian distribution function

Φ(x) =
1√
2π

∫x

−∞ e
−y2/2

dy.

We hence obtain the following:

THEOREM 1 If K = Kn grows with n such that Kn/
√

n → ∞ as
n → ∞, then

p(Kn, n) ∼ Φ

„
−
√

n√
Kn

«
(n → ∞).

If, in addition, Kn = o(n), then

p(Kn, n) ∼

√
Kn√
2πn

e
−n/2Kn (n → ∞).

But the expected number of receiver errors is given simply by

E(E) = E
`
E(Kn, n)

´
= Knp(Kn, n).

We hence immediately have:

COROLLARY 1 For any 0 < γ < 1/2, if K = Kn increases such
that

Kn ∼
nˆ

Φ−1(γ)
˜2

(n → ∞),

then E(E)/Kn → γ as n → ∞.

Thus, even if a constant fraction of errors can be tolerated, the
number of users cannot increase faster than a constant times n.
There is a catastrophic breakdown (a “phase transition”) much
earlier under the more stringent condition that no errors are
permitted.

IV. NO ERRORS: A POISSON LAW

Under what conditions can we say more about the distribu-
tion of the number of receiver errors E = E(Kn, n)? It tran-
spires that for a suitable rate of growth of Kn with n, the num-
ber of errors actually follows a Poisson law.

THEOREM 2 Fix any positive λ. If K = Kn grows with n such that

Kn =
n

2 log n
+

n log log n

4 log2 n
+

n log(4π)

4 log2 n

+
n log log λ

2 log2 n
+ O

„
n log log n

log3 n

«
(∗ ∗ ∗∗)

then the number of receiver errors E = E(Kn, n) converges in distri-
bution to Po(λ), the Poisson distribution with parameter λ. In other
words, for every nonnegative integer j,

Pr{E = j} → λj

j!
e

−λ (n → ∞).

Thus, asymptotically, the number of receiver errors is Poisson.
In particular, for the rate of growth given in (∗ ∗ ∗∗), the proba-
bility Pr{E = 0} that there are no receiver errors tends to e−λ as
n → ∞. We hence observe a catastrophic threshold function at
n/2 log n.

COROLLARY 2 Fix any 0 < ε < 1. Then:

1. If, for all sufficiently large n,

Kn ≤ (1 − ε)
n

2 log n
,

then P{E = 0} → 1 as n → ∞.

2. Conversely, if, for all sufficiently large n,

Kn ≥ (1 + ε)
n

2 log n
,

then P{E = 0} → 0 as n → ∞.

Roughly speaking, if K is less than n/2 log n, the matched filter
decisions are guaranteed to be error free; contrariwise, if K exceeds
n/2 log n there are guaranteed to be errors. The rather fine order
of infinity in the asymptotics of (∗ ∗ ∗∗) actually allows us to
deduce much more precise results.

Dependencies in the random variables Xk (1 ≤ k ≤ K) de-
fined in (∗∗) complicate the analysis. The method of proof of
the theorem is to reduce the problem to the study of a random
walk Sn where, for each n, Sn is the row sum of a triangu-
lar array of lattice random vectors. The principal technical re-
sult then needed to complete the Poissonisation argument is
a sharp estimate for the probability of large deviations of the
walk Sn. The details are involved and the calculations deli-
cate. For a large deviation theorem in this vein see Fang and
Venkatesh [3].

V. MATCHED FILTER DETECTOR: EXTENSIONS

The basic approach may be extended, at some notational
and computational cost, to include some of the other pertur-
bants to the system that we had excluded. Embedding the
waveforms in additive, white Gaussian noise does not create
any new difficulties in analysis—the additive noise terms at
the output of the matched filters are i.i.d., Gaussian, and we
can run the analysis through by first conditioning on them and



finally taking expectations to remove the conditioning. Differ-
ent waveform amplitudes can likewise be handled if, for in-
stance, the amplitudes are bounded between known limits or
their distribution known. Again, one proceeds by condition-
ing.

VI. DECORRELATING DETECTOR

The decorrelating detector (cf. Verdú [1]) is an alternative
approach to the matched filter detector. While its implementa-
tion complexity is higher, it has some very attractive properties
among which is the fact that it does not require knowledge of
the energies of any of the active users.

Let’s first introduce some new notation. Form the n × K

matrix
Σ ,

ˆ
σ1 σ2 . . . σK

˜
whose components are all ±1 and whose columns are identi-
cally the random signature sequences of each of the K users.
We can now succinctly rewrite the sufficient statistic Y whose
components are given by (∗) in matrix-vector form as1

Y =
A

n

`
Σ

T
Σ

´
b

where b = (b1, b2, . . . , bK)T is the (column) vector of data
bits. The decorrelating detector forms the bit estimates bb =`bb1, bb2, . . . , bbK

´T according to

bb = sgn
`
Σ

T
Σ

´ ′
Y ,

where,
`
ΣT Σ

´ ′ denotes the Moore-Penrose generalised inverse
of ΣT Σ. Observe that`

Σ
T
Σ

´ ′
=

`
Σ

T
Σ

´−1

if the signature sequences are linearly independent. In this
case, of course, we automatically recover all data bits without
error. Komlós [4] has shown, however, that almost all square
binary matrices are nonsingular asymptotically. Particularised
to our purposes, we have the following result:

LEMMA 1 If K = Kn ≤ n, the probability that the random signa-
ture sequences σ1, σ2, . . . , σK are linearly independent tends to 1

as n → ∞.

(Kahn, Komlós, and Szemeredi have improved Komlós’ orig-
inal result and have shown indeed that the probability that
a random square binary matrix is singular is exponentially
small.) This immediately leads us to:

THEOREM 3 If Kn ≤ n then the decorrelating detector makes no
errors with probability approaching one as n → ∞ for any sequence
of data bits. Conversely, if Kn > n, with probability bounded away
from zero, there exist sequences of data bits which cannot all be re-
covered by the decorrelating detector.

Somewhat more precise statements can also be made.
Noisy channels are harder to analyse for the decorrelating

detector as the generalised inverse causes correlations in the
noise variables. See Verdú [5] for details.

VII. CONCLUSION
1Interpret all vectors as column vectors.

User interference induces random graph-theoretic effects in
direct sequence spread spectrum systems. These effects show
up not gradually as one might perhaps have expected but
abruptly in the form of threshold phenomena in the number
of users that can be accomodated.
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[5] S. Verdú, “Optimum multi-user asymptotic efficiency,” IEEE Trans.
Commun., vol. COM–34, no. 9, pp. 890–897, 1986.


