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Abstract
This paper introduces a set of input-output blocks to build in-
tuitive models of dynamic systems with mode switching due
to changes in operating conditions, sensor failure, model re-
configuration, and model-order reduction. These blocks make
it possible to construct hierarchical component models of
mode-switching systems. An application to an automotive
steer-by-wire example and Simulink simulation results are
presented.

1. INTRODUCTION
Models of dynamic systems often exhibit multiple modes

of behavior, reflecting different physical operating regimes or
controller switching. Simulation languages typically include
primitives from which multi-mode models can be developed,
but they often lack structures for creating these models in
a systematic way. This paper presents a set of input-output
blocks designed to support the modular and hierarchical con-
struction of models of dynamic systems with mode switching.

There are several types of mode switching in dy-
namic models. Basic mode switching includes discontinuous
changes in the dynamic model parameters due to signals satu-
rating or crossing specified thresholds. Mode transitions with
memory, such as in systems with hysteresis or controllers
with finite-state switching logic, lead to hybrid dynamic sys-
tems (models with both continuous and discrete states) [6].
More complex mode switching could include changes in
the order of the dynamic model or complete reconfigura-
tion of the interconnections between subsystems [8]. Signif-
icant changes in the dynamic model typically require a re-
initialization of the continuous state when the mode changes
[5]. The block set proposed in this paper provides structures
for supporting all of these types of mode-switching behaviors
while retaining flexibility for defining the discrete and con-
tinuous dynamics for each mode.

Charon [1], HyVisual [3], and Simulink (with the State-
flow toolbox) [7] are three frameworks capable of modeling
mode-switching systems. Charon can specify a hybrid sys-
tem in a hierarchical way, but does not use the input-output
block structure familiar to control system engineers. HyVi-

sual contains everything necessary to model mode-switching
systems, but does not provide a user-friendly way to build
mode-switching systems from component models. Simulink
and Stateflow do not naturally lead to a hierarchical model
(although hierarchical models are possible), since alternating
discrete-state and continuous-state hierarchy is not allowed.

The following section presents the five proposed input-
output blocks with brief descriptions of their structure and
purpose. Section 3 describes the use of the block set to
model an automotive steer-by-wire system that includes mode
switching due to torque sensor failure, driver modes, and
model-order reduction in certain operating regimes. Simula-
tion results in Sect. 4 illustrate mode-switching behaviors for
the steer-by-wire system using realizations of the blocks in
Simulink. The concluding section summarizes the contribu-
tions of this paper and directions for further research.

2. INPUT-OUTPUT BLOCKS FOR MODE
SWITCHING SYSTEMS

To build hierarchical models of mode switching systems,
the following blocks are introduced: basic system block, com-
posite system block, mode block, supervisor block, and hybrid
system block.

2.1. Basic System Block (BSB)
The BSB shown in Figure 1 contains the continuous-state

dynamics and generates its own state initial conditions. The
continuous-state dynamics evolve only when the BSB is ac-
tive. When a transition from passive to active occurs, the
continuous states are initialized and evolve according to the
state dynamics. In hierarchical models of mode-switching
systems, BSBs are the fundamental building blocks contain-
ing all of the equations defining the continuous-state dynam-
ics (continuous-time or discrete-time) in the system.

Figure 1. Basic system block (BSB).

A BSB has signals U , Y , W , and α corresponding to the
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input, output, initial condition input, and activate input re-
spectively. A BSB contains the system states, X , and the state
dynamics, Sys. When the block is active (α = 1), the system
states evolve and Y = Sys(X ,U). When the block is passive
(α = 0), the system states do not evolve and Y = 0. The sys-
tem states are initialized when a block transitions from pas-
sive to active according to the initial condition generator func-
tion Init(U,W,α).

2.2. Composite System Block (CSB)
The CSB provides the capability to create dynamic system

components from the interconnection of a set of subsystem
components. It can contain any number of dynamic system
blocks (BSBs, CSBs, and HSBs (defined below)). Figure 2
shows an example CSB, where the solid black circle repre-
sents a multiplexing operation. (In later figures, hollow black
circles represent a demultiplexing operation.) A CSB has the
same inputs and outputs as a BSB. A signal routing function
defines the activate input for each system block inside a CSB
to be the active input of the CSB. This results in all the con-
tained system blocks being active or passive simultaneously.
Other signal routing functions define the connection of sys-
tem blocks contained in a CSB to the inputs and output of the
CSB.

Figure 2. Composite system block (CSB).

2.3. Mode Block (MB)
The MB is a parallel grouping of system blocks repre-

senting different models for a mode-switching component.
Since all system blocks have the same input-output structure,
their placement within a MB is arbitrary, as shown in Figure
3, where the stripped box represents the switching between
which system block drives the output of the MB. Only one
system block is ever active at an instant. Additionally the out-
put of the MB is connected to the initial condition input of ev-
ery system block within the MB. MBs contain sets of modes
that can be selected by an associated supervisor block SB (de-
fined below).

A MB has an input and output the same as a BSB. A mode
select input, Q, determines which system block is active by
setting the corresponding active state, αn, to 1. Signal routing
functions define the interconnection of signals between the

Figure 3. Mode block (MB).

system blocks contained by a MB with the inputs and output
of the MB.

2.4. Supervisor Block
A SB consists of two user defined functions, SupR and

SupQ , which choose the operating mode, as shown in Fig-
ure 4. A SB monitors all input and output signals for the MBs
being supervised in a hybrid system block (defined below),
and chooses the operating region for each MB accordingly.

The SB continuously monitors the signals, updates its
state, and chooses the operating mode, while the actual mode
switching and system dynamics are performed inside the
MBs. When passive, the SB and all the system blocks within
all the MBs being supervised are also passive.

Figure 4. Supervisor block (SB).

A SB has inputs of U,α,W , and Ŷ representing the in-
put, activate input, initial condition input, and outputs respec-
tively. A SB has a supervisor output, Q.

2.5. Hybrid System Block
An HSB contains exactly one SB and a system of MBs, as

shown in Figure 5. Through the use of hybrid system blocks,
mode switching and model order switching systems are im-
plemented. The HSB allows modeling flexibility since it can
be interchanged with BSBs and CSBs. In a complete model,
MBs and SBs exist only within HSBs. An HSB has the same
inputs and outputs as the BSB and CSB. Signal routing func-
tions define the interconnection of signals within an HSB.

3. MODELING MULTI-MODE SYSTEMS
This section discusses how to model multi-mode systems,

applying the blocks presented in the previous section. We
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Figure 5. Hybrid system block (HSB).

use the steer-by-wire system shown in Figure 6 to illustrate
the features of the proposed methodology. In comparison to
conventional steering mechanisms, steer-by-wire systems can
improve steering performance and vehicle handling by vary-
ing the response to driver inputs to accommodate variations
in the vehicle dynamics [11].

Figure 6. Steer-by-wire system (from [10]).

Figure 7 (on the following page) shows the steer-by-
wire system model. Components of each block are labeled
(HSB,CSB,SB), which describes the block. The driver and
steering controller are HSBs since they contain mode switch-
ing, while BSBs model the labeled components. By modeling
systems in this fashion, individual component models can be
updated without changing the structure of the entire system.

3.1. Basic Dynamic Components
In the steer-by-wire example, there are three basic dynamic

components: digital communication, steering wheel dynam-
ics, and vehicle dynamics. The steering wheel dynamics re-
ceives a torque input from the driver and a signal from the
digital communication representing the feedback torque. The
digital communication is a bidirectional network. The steer-
ing controller receives the steering wheel angle encoder mea-
surement from the steering wheel dynamics and the steering
wheel dynamics receives the digital feedback torque signal
from the steering controller.

The vehicle dynamics are modeled using the bicycle model
approximation presented in [4]. The bicycle model assumes
only two wheels, and computes the tire sideslip angle, vehi-
cle yaw rate, and steering aligning torque from the vehicle
velocity and steering angle. The vehicle dynamics produce
the steering angle.

3.2. Hybrid System Components
To model the steer-by-wire system, the driver’s response

must be considered. We assume the driver operates in two
different modes: force-input mode and position-servo mode.
In the force-input mode, the driver applies an uncontrolled
torque force (a disturbance) to the steering wheel, such as
releasing or jerking the steering wheel. In the position-servo
mode, the human uses sensory feedback information and a
desired trajectory to steer the vehicle by applying a controlled
torque to the steering wheel. The position-servo mode models
normal steering.

Figure 8 shows a model of the driver’s modes of opera-
tion. The left MB has a single mode, representing the desired
trajectory, while the right MB contains the control strategies.
Both control strategies use the same subsystem to generate
the desired trajectory; however, by modeling the system as in
Figure 8, a change in the desired trajectory model only affects
one block. This allows easy model updating through the mod-
eling flexibility inherent with the proposed block structures.

Figure 8. Driver modes.

The steering controller in a steer-by-wire system can con-
tain many modes. A candidate controller involves a torque
sensor to measure accurately the aligning torque generated by
the vehicle dynamics [2]. If the torque sensor were to fail, the
operating mode would change, whereby the controller would
operate without a torque sensor. The steering controller uses
the desired steering angle from the digital communication and
all available sensory data from the vehicle dynamics to gen-
erate a steering actuator control signal.

Figure 9 shows the steering controller model. In the model,
the control strategy changes with the availability of a torque
sensor measurement. Similar to the driver model, the steering
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Figure 7. Steer-by-wire system block diagram.

controller design allows for changes to occur without updat-
ing multiple blocks. For instance, if the state feedback con-
troller were to change, only the state feedback block would
need to be updated.

Figure 9. Steering controller block diagram (In all Figures,
dotted lines represent the SB block output).

In certain operating modes, the driver and steering wheel
dynamics may be modeled with a reduced-order system,
where the actual steering wheel angle can be modeled as the
desired steering angle. This leads to a reduced-order model
where the human and steering wheel dynamics can be ne-
glected. Figure 10 (on the following page) shows the reduced-
order block diagram. The reduced-order model will improve
computation time at a cost of accuracy. The loss in accuracy
varies in different operating modes; thus the reduced-order
model should only be used in operating regions where the
accuracy loss is acceptable. In more critical regions, the full-
order model is desired to more realistically approximate the
system’s response. The ability to expand the system to incor-
porate reduced-order models is an attribute of the proposed
modeling framework.

To build a model order switching system, we begin with
the full order system (shown in Figure 10). With a CSB, we
create a subsystem containing the portion of the full order
system being reduced. This CSB and a system block repre-

senting the reduced-order system are placed inside a MB. A
HSB contains the MB and a SB controls to use the full or
reduced-order system as shown in Figure 11. Since the HSB
has the same input-output structure as the CSB representing
the original full order system, the overall system structure
does not change. The ability to change model order within
a single system can drastically reduce computation time.

Figure 11. HSB containing both full-order and reduced-
order models for driver and steering wheel.

4. SIMULATION RESULTS
4.1. Simulink Implementation

Simulink contains all the necessary components to model
mode-switching systems, but lacks the structure to model
mode-switching systems both hierarchically and conve-
niently. Implementing the proposed blocks in Simulink as
subsystem blocks enhance Simulink by providing the needed
structure effectively model mode-switching systems.

The BSB shown in Figure 1 can be implemented in
Simulink as in Figure 12. The state equations subsystem con-
tains the continuous dynamic equations, while the initial con-
dition generator determines the initial conditions.

The CSB shown in Figure 2 can be implemented in
Simulink as in Figure 13. Since the CSB is a subsystem block,
it is implemented by using subsystem blocks. The multiplex-
ers and demultiplexers are used to route signals accordingly.
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Figure 10. Reduced order Steer-by-wire system block diagram (top level).

Figure 12. Simulink implementation of a BSB.

Figure 13. Simulink implementation of a CSB.

The MB shown in Figure 3 can be implemented in
Simulink as in Figure 14. Similar to the CSB, the modes
are implemented using subsystem blocks, and switches with
comparative logic are used to select the mode.

Figure 14. Simulink implementation of a MB.

The SB shown in Figure 4 can be implemented in Simulink
as shown in Figure 15. The SB consists of a finite-state ma-
chine implemented with a stateflow block and an event gener-
ator, which monitors the input signals and creates events for
the stateflow block.

Figure 15. Simulink implementation of a SB.

Finally, the HSB shown in Figure 5 can be implemented
in Simulink as shown in Figure 16. The HSB uses subsystem
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blocks to represent the MBs and SB. As in the other blocks,
the multiplexer and demultiplexer are used to route the sig-
nals.

Figure 16. Simulink implementation of a HSB.

As part of the Simulink implementation, additional spec-
ifications are needed to complete the block translations. In
the BSBs, the initial condition generator and dynamic-state
equations must be defined. In the MBs, additional compara-
tive logic and switch inputs are added according to the num-
ber of system blocks in the MBs. The SBs need the event
generator and stateflow block to be specified. Finally, all the
blocks (BSB,CSB,MB,SB,HSB) need multiplexers, demul-
tiplexers, and signal routing performed according to their re-
spective block definitions.

These blocks have been implemented as a Simulink library.

4.2. Simulation Results
To demonstrate the proposed modeling framework, the

steer-by-wire system is implemented in Simulink by using
the block translations above. The first simulation assumes
no mode-switching and uses the full order system. The de-
sired trajectory is a sine wave of amplitude = 0.526 and
f requency = 6.2rads/sec to represent a driver continuously
turning the steering wheel. Figure 17 shows that the actual
steering angle closely follows the desired steering angle with
phase lag of 0.15 seconds. This phase lag is caused by the
dynamics inherent in the steer-by-wire system.

In the steer-by-wire example, a torque sensor measures the
aligning torque generated by the vehicle dynamics for the
steering controller. In a system with sensory information for
control, the effect of a sensor failure must be addressed. In the
event of a torque sensor failure, the steering controller will
no longer have the measured aligning torque, and will use a
different control strategy. For the trajectory in Figure 17, a
simulation with a torque sensor failure at time t = 6 seconds
is shown in Figure 18. When the torque sensor fails, there is
a noticeable disturbance in the steering angle of 0.51 radi-
ans. The effect of this disturbance must be analyzed to ensure
safety of the system.

Modeling driver behavior is complex [9]. In this example,
the driver is assumed to have two operating modes. In the first
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Figure 17. Steer-by-wire system simulation (no mode
switching).
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Figure 18. Steer-by-wire system simulation (torque sensor
failure at t = 6 seconds).
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mode, the driver applies an uncontrolled torque and in the
second applies a controlled torque based on the desired steer-
ing angle. To show how the steer-by-wire system behaves, a
simulation where the driver releases the steering wheel, ef-
fectively applying a zero torque force to the steering wheel,
is shown in Figure 19. When the driver lets go of the steering
wheel, mode switching occurs and the driver is modeled as a
zero torque source. In this mode, the feedback torque drives
the steering wheel until the steering angle generated by the
vehicle dynamics becomes zero.
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Figure 19. Steer-by-wire simulation (human mode switch-
ing at t = 5 seconds).

To reduce computation time, reduced-order models are
used at a cost of accuracy. A reduced-order model of the steer-
by-wire system can be used for the driver and steering wheel
dynamics. In the reduced-order mode, the driver and steering
wheel dynamics can be modeled as a small delay. Figure 20
shows the simulation results for model order switching. This
plot closely follows Figure 17 which did not use model order
switching.

When using a variable integration step solver to simulate
a mode-switching system, the step size can be analyzed as
an indicator of performance. In Simulink, the integration step
size is computed dynamically based on system complexity.
The integration step size inversely relates to the time a sim-
ulation run requires. The larger the step size, the faster the
simulation run, and vice versa. Figure 21 shows the integra-
tion step size computed by Simulink during the simulation in
Figure 20. These results show that the integration step size in
mode 2 (reduced-order model) is about 50 times the integra-
tion step size in mode 1 (full-order model). Using reduced-
order models, when available, can significantly reduce the
time required to perform a simulation. For more complex sys-
tems, the computation time saved can be significant.
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Figure 20. Steer-by-wire simulation (model order switch-
ing).
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Figure 21. Model order switching and integration step vs.
simulation time (step size ratio = 1:50).
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5. DISCUSSION
This paper presents a set of input-output blocks for model-

ing dynamic systems with multiple modes, including modes
with varying numbers of continuous state variables and
modes defined by interconnections of subsystems. Conse-
quently, hierarchical complex mode-switching behaviors, in-
cluding changes in model-order and subsystem reconfigura-
tion can be modeled. Dynamic state re-initialization is also
supported. Simulation results using Simulink demonstrate the
features of the block set. The steer-by-wire example illus-
trates how complex mode-switching can arise in applications,
and how the block set supports the construction of modular
models that are easy to develop and modify.

Directions for future research include a thorough analysis
of methods for verifying properties of models using the pro-
posed block set. The order of the continuous dynamics in hy-
brid system models is a principal barrier to effective verifica-
tion. This provides a further motivation for introducing order-
reducing mode switching in models of dynamic systems. In-
troducing the possibility of switching to lower-order models
whenever possible (e.g., by eliminating fast dynamics when
transients have died out) may aid in the verification of models
of complex hybrid systems.
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