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Abstract— Constraint-based control over wireless sensor net-
works (WSNs) require control strategies that achieve a desired
closed-loop system performance while using minimal network
resources. In addition to constraints associated with distributed
control, WSNs have limitations on bandwidth, energy con-
sumption, and transmission range. This paper introduces and
experimentally evaluates a new receding-horizon approach for
performing constraint-based control using a WSN. By leverag-
ing the system controllability, the receding-horizon controller is
formulated as a mixed-integer programming problem which, at
each time step, simultaneously generates a control sequence and
sensor selection schedule such that the desired performance is
achieved while minimizing the energy required to perform data
acquisition and control. For systems containing many sensors,
a multi-step state estimator is employed to implement the
receding-horizon controller using a conservative abstraction-
relaxation approach that simplifies the original mixed-integer
programming problem into a convex quadratic programming
problem. A wireless process control test bed consisting of
8 coupled water tanks and 16 wireless sensors are used to
experimentally evaluate the receding-horizon controller.

I. INTRODUCTION

In recent years, control systems have increasingly been

implemented over large-scale networked infrastructures in

place of standard wired networks. Using a wireless commu-

nication technology to close the control loop provides major

advantages in terms of increased flexibility, and reduced

installation and maintenance costs. Following this trend,

several vendors are introducing devices that communicate

over low-power wireless sensor networks (WSNs) for indus-

trial automation and process control. Using these devices,

WSNs have been widely analyzed and deployed to extract

information from the physical world for the purposes of

estimation and detection [1].

When a WSN is used to gather sensor measurements

for the purposes of control, network energy usage must be

incorporated in the controller design. Over-sampling and

network congestion both serve to deplete the lifetime of

a WSN containing sensors with a limited battery capacity.

Recently, new policies have been introduced which drop

the periodicity assumption for sensing and control, such

as event-triggered and self-triggered control [2]–[5]. In all

these approaches, the control laws are previously designed
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to guarantee stability of the closed-loop system, and the focus

is on how to implement such algorithms taking into account

computation and network constraints. Other researchers have

addressed network congestion issues using sophisticated

networking protocols [6]–[9], however, these approaches

assume a known sensing schedule or rate.

Another method of extending the network lifetime is

to employ sensor scheduling, where sensor scheduling is

the process of identifying which sensors (if any) should

report a measurement at each periodic sampling instance.

Identifying a sensing schedule has been extensively studied

for the purposes of estimation [10], and more recently sensor

selection has been introduced for detection [11], [12], as a

means of decreasing the network congestion and extending

the WSN lifetime; however, these results have not been

extended to control applications. A significant obstacle in

applying sensor selection for the purposes of control is the

requirement that some measure of the closed-loop system

performance be maintained (for instance, designing a pump

controller and sensor schedule such that the water tank level

remains probabilistically bounded). In this paper, we address

the issue of simultaneously establishing a control sequence

and sensing schedule such that a desired closed-loop per-

formance constraint is satisfied. Specifically, we introduce a

new receding-horizon controller that probabilistically bounds

the closed-loop system performance while minimizing the

number of sensors required to transmit measurements at each

time step.

The following section formulates the constrained-control

problem considered in this work. Section III introduces a

conservative receding-horizon controller based on a finite-

horizon solution to the constrained-control problem. Section

IV and V presents a multi-step state estimator for the

receding-horizon controller and discusses an implementation

using a relaxation-abstraction approach, respectively. A pro-

cess control test bed consisting of 20 sensors is introduced

in VI and experimental results are provided in VII. The final

section provides discussion and future directions for research.

II. PROBLEM FORMULATION

In this work we consider the standard time-varying linear

stochastic system

xk+1 =Akxk + Bkuk + wk

yk =Ckxk + vk

(1)

where xk ∈ RN is the system state, uk is the control input,

yk ∈ RM are the sensor measurements, and (x0, wk, vk)
are Gaussian, uncorrelated, and white with known mean
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(x̂0|−1, 0, 0) and known covariance (S0|−1, W, V ), respec-

tively. A lossy WSN is used to collect sensor measurements

at a centralized controller to determine the stabilizing control

sequence, {u0, . . . , uk}, which is transmitted over a lossless

channel to the plant actuator. The received sensor measure-

ments at time k, rk, are modeled as

rk =HkQkyk, (2)

where Hk and Qk represent the binary network selection

matrix and sensor selection matrix at time k, respectively. A

selection matrix is a binary matrix having independent rows

with exactly one unit entry per row (meaning there is at

most one unit entry per column). In (2), the sensor selection

matrix identifies which sensors are selected to report their

measurements to the fusion center at each time step, where

a unit entry in the mth column indicates that sensor m is

selected. In the following, we write qk = diag(QT
k Qk) to be

the sensor selection vector.1

In (2), the network selection matrix, Hk, indicates the

subset of the selected sensor measurements that are received

by the fusion center after network losses. We model the

network losses using a vector of independent Bernoulli

random variables, λk = [λk(1), . . . , λk(M)]T , such that

P [λk(m) = 1] = pm (3)

indicates the probability that (if selected) the measurement of

sensor m is received by the fusion center and is assumed to

be independent of the sensor measurements, yk. Additionally,

we assume that λk is i.i.d in time. Without a loss of

generality, this work defines the inner product of the network

selection matrix as

HT
k Hk = QkΛkQT

k , (4)

where Λk = diag(λk). This property ensures that Hk has a

random number of rows (determined by trace(QkΛkQT
k )),

and has the same number of columns as Qk has rows.

For notational simplicity in the following, Im is the

m-dimensional identity matrix, em,n represents the m-

dimensional binary vector with a single unit entry in the n-th

position, 1m and 0m are the m-dimensional column vectors

of ones and zeros, respectively, and 0m,n denotes the m by

n matrix of zeros. We also define

~rk ,
[

rT
0 , . . . , rT

k

]T
~xk ,

[

xT
0 , . . . , xT

k

]T

~wk ,
[

wT
0 , . . . , wT

k

]T
~vk ,

[

vT
0 , . . . , vT

k

]T

~uk ,
[

uT
0 , . . . , uT

k

]T
~qk ,

[

qT
0 , . . . , qT

k

]T

~Qk , diag ({Q0, . . . , Qk}) ~Hk , diag ({H0, . . . , Hk})
~Ck , diag ({C0, . . . , Ck})

(5)

where ~uk, ~xk, and ~qk are the control sequence, concatenated

state, and sensor selection schedule, respectively. We note

that for any k′ ≤ k the state, xk, and sensor selection vector,

1We note that Qk can be determined from qk since Qk is a selection
matrix.

qk, can be written as

xk′ =(ek,k′ ⊗ IN )T ~xk

qk′ =(ek,k′ ⊗ IM )T ~qk.
(6)

where x ⊗ y is the Kronecker product of x and y.

We consider a quadratic cost function of the control

sequence, ~uk, and concatenated sensor selection vector, ~qk,

similar to the LQG cost function [13], written as

L(~uk, ~qk) , ~uT
k Ωk~uk + ~qT

k Γk~qT
k , (7)

where Ωk � 0 is the controller cost, and Γk � 0 is

the network cost. The cost function, L(~uk, ~qk), represents

a weighted summation of the energy required to perform

control and the energy required to gather additional sensor

measurements. While the energy cost, L(~uk, ~qk), is similar

to the classical LQG controller cost function, it replaces the

state error cost with a network energy cost. The network

energy cost can be employed to capture the effects of the

expected lifetime of each sensor, where sensors with a low

battery level would be given a high weight and vice versa.

In this work, we wish to design a control sequence and

sensor selection schedule such that the system does not

experience an error. An error occurs at time k when f(xk) ≥
1, where

f(xk) = ||Fkxk + gk||
2. (8)

and Fk ∈ RN×N and gk ∈ RN . We assume that the values of

Fk and gk are independent of the normally distributed state,

xk, such that the distribution of f(xk) is not chi-squared. As

a performance design constraint, the control sequence and

sensor selection schedule must ensure that the probability of

error conditioned on the received measurements is always

bounded,

P [f(xk) > 1|~rk] ≤ αk ∀k ∈ {1, . . . ,∞}, (9)

where 0 ≤ αk ≤ 1 is the maximum probability of error at

time k. Using a slight abuse of notation, in the following we

refer to

We note that the problem detailed in this section is

very similar to stochastic or robust model predictive control

(MPC) problems [14] [15], where the former considers

stochastic plants such as (1) and the latter constrains the

state to remain within some range. While it is true that

these research topics are closely related to our problem,

this work differs because it considers sensor scheduling

as part of the controller design. It will be shown in the

following sections how incorporating sensor scheduling into

the controller design results in dynamic control strategies that

are dependent on both the desired closed-loop performance

and the cost of using network resources.

III. CONTROLLER DESIGN

In this section, we develop a receding-horizon controller

for the constrained-control problem described in the previous

section. This section is divided into two subsections. The

following subsection introduces an off-line finite-horizon
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controller that generates a conservative control sequence for a

finite window of time. The off-line finite-horizon controller

is employed in the final subsection to describe the online

receding-horizon controller that dynamically identifies the

control sequence and sensor selection schedule.

A. Finite-Horizon Control

In this subsection, we introduce a finite-horizon controller

for the problem described in Section II, using a model

predictive approach. Without a loss of generality, this section

assumes the current time is k = 0 and a finite scheduling

window of J time steps. By combining (7) and (9), the

finite-horizon control problem is written as a mixed-integer

programming problem as,

~uJ , ~qJ = argmin
u,q

L(u, q)

s.t. P [f(xk) ≥ 1|~rk] ≤ αk, ∀k ∈ {1, . . . , J}

q ∈ {0, 1}MJ ,
(10)

where M is the number of sensors and the second constraint

ensures the sensor selection schedule is binary. Although it

is not explicitly stated, we note that P [f(xk) ≥ 1|~rk] is a

function of the control sequence, ~uk, and sensor selection

schedule, ~qk′ .

Recalling from (8) that f(xk) is a quadratic function of

the state, xk , evaluating the probability of failure is difficult

since the distribution of f(xk) is characterized by a weighted

sum of noncentral chi-squared random variables [16]. Thus,

the following lemma presents a conservative approximation

conditioned on the received sensor measurements.

Lemma 1: If mk|k′ = E [xk|~rk′ ], Sk|k′ = Cov [xk|~rk′ ],
and k′ ≤ k, then

h(k|k′, k′) ≤ α =⇒ P [f(xk) ≥ 1] ≤ α (11)

where

h(k|i, j) = ||Fkmk|i − gk||
2 + Tr

[

FT
k FkSk|j

]

(12)

Proof: Since f(xk) is a quadratic function of Gaussian

random variables [17], then h(k|k′, k′) = E [f(xk)|~rk′ ]. By

applying Markov’s inequality [18], yields (11)

Lemma 1 indicates that the future probability of error is

bounded by a non-linear function of the predicted state-

estimate. We note that the future state mean, mk|k′ , is

dependent on the received measurements, while the state

covariance, Sk|k′ , only depends on whether a measurement

is received and not the actual received value. Since the mean

is dependent on the unknown future sensor measurements,

maintaining the desired performance requires that the control

sequence be designed invariant to the received measure-

ments.

For reasons that will become apparent in the following

subsection, we also design the finite-horizon controller to

be invariant to the most recent sensor measurements, and

write the energy-minimizing finite-horizon controller as the

following mixed-integer programming problem:

~uJ , ~qJ = argmin
u,q

L(u, q)

s.t. h(k|k − J, k − J) ≤ αk, ∀k ∈ {0, . . . , J − 1}

q ∈ {0, 1}MJ .
(13)

The finite-horizon controller in (13) determines a control

sequence and sensor selection schedule for a window of J
time steps that minimizes a weighted function of the energy

required to perform sensing and control. The finite horizon

controller uses a model-predictive approach to bound the

probability of error by generating a control sequence and

sensor schedule that is invariant to the future measurements

and the J most recent sensor measurements.

B. Receding-Horizon Control

The finite-horizon controller introduced in the previous

subsection schedules the controller sequence for a finite

window of time such that the probability of error is bounded.

Typically, a receding-horizon controller is implemented by

solving the finite horizon controller at each time step, k, and

implementing only the first time step of the resulting control

sequence [13]. Since the finite-horizon controller in (13) is

a constrained minimization problem, the probability of error

can only be bounded if the minimization problem is feasible.

Thus, to implement a receding-horizon controller that bounds

the probability of error requires that successive instances of

the minimization problem in (13) be feasible.

To ensure future minimization problems are feasible re-

quires incorporating the future constraints into the current

minimization problem. Assuming a scheduling window of

J time steps, we write the receding-horizon controller that

ensures the next K minimization problems are feasible as

~uJ+K , ~qJ+K = arg min
u,q

L(u, q)

s.t. h(k|k − J, k − J) ≤ αk, ∀k ∈ {1, . . . , J + K}

q ∈ {0, 1}M(J+K)

(14)

While the constrained minimization problem in (14) ensures

that future instances of the finite-horizon control problem

are feasible, we observe that the constraint on h(k|i, j) when

i ≥ 0 requires knowledge of the future received observations.

Since the future observations are unknown, the remainder

of this subsection develops a heuristic approach for the

receding-horizon controller in (19) that leverages the system

controllability to ensure that future minimization problems

are feasible.

Without loss of generality in the following, we assume

the current time is k = 0 and introduce new notation for the

control sequence. We write uk|k′ to be the controller input

at time k, which is calculated at time k′, where k′ ≤ k and

define

ûk|k′ ,

[

uT
0|0 . . . uT

k′−1|0 uT
k′|k′ . . . uT

k|k′

]T

.

(15)
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The definition of ûk|k′ indicates that the control sequence is

comprised of two subsequences, the former subsequence is

calculated at the current time while the latter subsequence is

calculated at some future time k′. We refer to the time when

the latter controller sequence is calculated as the controller

transition time. Additionally, we claim the system in (1) is

mean-controllable at time k in J time steps if

rank
[

Bk+J Ak+JBk+J−1 . . .
∏k+J

i=k AiBk

]

= N,

(16)

where the state estimate of a mean-controllable system can

be driven to any value in J time steps.

We note that the state estimate, mk|k′ , is dependent on

the control sequence, uk|k′ and by requiring (1) to be mean-

controllable in J time steps, we introduce the following

lemma.

Lemma 2: If (1) is mean-controllable in J time-steps,

then for any state estimate, mJ+k|−1, there exists a control

sequence, ûJ+k|k, such that

mJ+k|k = mJ+k|−1. (17)

Proof: A direct result of controllability [13].

In words, the above lemma states that if a system is control-

lable in J time steps, then regardless of how the first k sensor

measurements update the state estimate at time k, there exists

an initially unknown control sequence of J time steps (which

must be determined in the future at time k) such that the

state estimate conditioned on the received measurements up

to time k equals the initially predicted state estimate at time

k + J .

Applying lemma 2 to (12), we write for k′ ≥ −1,

h(k|k′ − J, k′) ≤ αk =⇒ h(k|k′, k′) ≤ αk ∃~uk|k′ , (18)

when the system in (1) is mean-controllable in J time steps.

Assuming optimality and J step mean-controllability, we

write the receding-horizon controller as

~uJ+K , ~qJ+K =arg min
u,q

L(u, q)

s.t. h(k|min(k − J,−1), k − J) ≤ αk,

∀k ∈ {1, . . . , J + K}

q ∈ {0, 1}M(J+K)

(19)

where the first constraint employs (18) such that for each

constraint involving h(k|i, j) when i ≥ 0, the constraint

is replaced with h(k| − 1, j), which is invariant to future

observations.

Unlike other model-predictive approaches, the proposed

receding-horizon approach does not attempt to drive the state

to zero and is therefore not asymptotically stable. Rather, the

proposed approach allows the controller to design a control

sequence that may drive the state away from zero, so long

as the predicted state is likely to not result in an error. By

requiring that the probability of error be bounded at all times

in the horizon, the controller input is constrained such that

the resulting state estimate is not likely to result in an error.

When the system in (1) is mean-controllable in one time

step, then by choosing J = 1 and K = 1, the receding-

horizon controller guarantees that the next step minimiza-

tion problem is feasible. However, for systems not mean-

controllable in 1 time step the receding horizon-controller

is a heuristic since the statement in (18) only claims the

existence of a future control sequence to bound a single

constraint, not multiple constraints. When the system is not

one-step controllable, choosing the finite-horizon scheduling

window, J , and the feasibility window, K , becomes a trade

off between the complexity required to schedule for longer

periods versus the likelihood that future probability of error

is bounded.

This section introduced a receding-horizon controller for

the constraint-based control problem posed in section II that

determines a control sequence and sensor selection schedule

that bounds the probability of error over a finite window,

J , and is likely to bound the probability of error for times

beyond J . The receding-horizon controller employs the finite

horizon controller to bound the current probability of error

and leverages the system controllability as a heuristic to

ensure the probability of error in the future can be bounded.

IV. ESTIMATOR DESIGN

The receding-horizon controller in (19) requires estimating

the state over multiple time steps where a multi-step recursive

solution is known to be a complicated function of the

network selection matrix and sensor selection matrix [19],

[20]. To avoid this complexity, we recall that the system

model in (1) and the measurement model in (2) are linear,

such that the concatenated state at time k, ~xk , and the

concatenated received measurement at time k′, ~rk′ , can be

modeled as

~xk =Ψx(k, 0)x0 + Ψu(k)~uk−1 + Ψw(k)~wk−1

~rk′ =Υk′

(

Ck|k′~xk + ~vk

) (20)

where k′ ≤ k and

Υk′ , ~Hk′
~Qk′

Ck|k′ ,
[

~Ck′ 0Mk,N(k−k′)

]

Ψx(k) ,

[

I AT
0 . . .

(

∏k−1
i=0 Ai

)T
]T

Ψw(k) ,
[

∆0,k . . . ∆k−1,k

]

Ψu(k) ,
[

∆0,kB0 . . . ∆k−1,kBk−1

]

∆j,k ,

[

. . . 0 I AT
j+1 . . .

(

∏k−1
i=j+1 Ai

)T
]T

.

(21)

The concatenated system model in (20) models the state from

time 0 to k and the received sensor measurements from time

0 to k′, where k′ ≤ k. Since the concatenated model in (20)

is linear and Gaussian, we apply a Kalman filter to estimate
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the concatenated state, written as

~mk|−1 =Ψx(k)x̂0|−1 + Ψu(k)~uk−1

~Sk|−1 =Ψx(k)S0|−1Ψ
T
x (k) + Ψw(k)(Ik−1 ⊗ W )ΨT

w(k)

Σk =Υk

(

~Ck
~Sk|−1

~CT
k + (Ik ⊗ V )

)

ΥT
k

~mk|k′ =~mk|−1 + ~Sk|−1C
T
k|k′ΥT

k′Σ−1
k′ (rk′ − Υk′Ck|k′ ~mk|−1)

~Sk|k′ =~Sk|−1 − ~Sk|−1C
T
k|k′ΥT

k′Σ−1
k′ Υk′Ck|k′

~Sk|−1,

(22)

where (~mk|−1, ~Sk|−1) and (~mk|k′ , ~Sk|k′ ) characterize the

normally distributed a priori and the conditional maximum

likelihood estimate of the concatenated sate, ~xk, respectively.

The multi-step state estimator developed in this section

uses the model information provided in (1) and (2) coupled

with the received measurements to identify the maximum

likelihood estimate of the concatenated state, ~xk. The multi-

step state estimator sacrifices computational complexity such

that the state estimate is a non-recursive function of the

sensor selection schedule. The multi-step state estimator

introduced in this section will be used in the following

section to implement the receding horizon controller in (19).

V. IMPLEMENTATION

The receding-horizon sensor scheduler introduced in (19)

requires solving a mixed-integer programming problem [21]

and results in a potentially exhaustive search of all possible

strategies [22], [23], which is computationally infeasible

for problems with a large number of sensors or a large

scheduling window. To address these issues, this section

formulates a relaxation-abstraction approach that is compu-

tationally feasible for identifying the control sequence and

sensor selection schedule for systems containing a large

number of sensors. The following lemma introduces useful

properties for formulating a convex relaxation of the sensor

scheduling problem.

Lemma 3: Given a positive definite matrix, Σ, and two

selection matrices, H and Hc, where HT H + HT
c Hc = I ,

then the following are true

(i)
(

HcΣ
−1HT

c

)−1
� HcΣHT

c

(ii) HT
(

HΣ−1HT
)−1

H = Σ − ΣHT
c

(

HcΣHT
c

)−1
HcΣ

(iii) HT
(

HΣ−1HT
)−1

H � HT HΣ + ΣHT H

− ΣHT HΣ−1HT HT Σ
(23)

Proof: The details of the proof are omitted due to space

constraints. Part (i) and (ii) are a direct consequence of the

matrix block inverse [17]. Part (iii) results by applying part

(i) to part (ii) and simplifying.

By applying the property (iii) in Lemma 3 to the trace term

of h(k|i, j) in (18), we observe the performance constraints

in (19) can be conservatively relaxed since

ĥ(k|i, j) ≤ αk =⇒ h(k|i, j) ≤ αk (24)

where

ĥ(k|i, j) =||D1~uk + D2||
2 + ~qT

j D3~qj + DT
4 ~qj + D5 (25)

with, by defining x ◦ y to be the Schur product of x and y,

Σ̂ =~Cj
~Sj|−1

~CT
j + (Ij ⊗ V )

F̂ =Fk(ek,k ⊗ IN )T

D1 =F̂Ψu(k)

D2 =gk + F̂Ψx(k)m0|i

D3 =
(

Σ̂−1Ck|j
~Sk|−1F̂

T F̂ ~Sk|−1C
T
k|jΣ̂

−1
)

◦ P1,j ◦ Σ̂

D4 = − 2diag(P2,jΣ̂
−1 ~Ck

~Sk|−1F̂
T F̂ ~Sk|−1

~CT
k )

D5 =Tr
[

F̂T F̂ ~Sk|−1

]

(26)

and P1,k and P2,k such that

P1,k(i, j) =

{

pi if i = j
pipj otherwise

P2,k(i, j) =

{

pi if i = j
0 otherwise

(27)

While the relaxed constraint ĥ(k|i, j) is a quadratic function

of the control sequence and the sensor selection schedule,

the resulting mixed-integer programming problem is known

to be NP-hard [24], and results (in the worst case) in an

exhaustive search [22], [23]. For applications with many

sensors or large scheduling windows, this approach is known

to be infeasible. Applying a similar approach as in [19], [21],

[25], we relax the binary constraint on the sensor selection

schedule and write the relaxed-conservative receding-horizon

controller using a quadratic programming problem as

~uJ+K , ~qJ+K = argmin
u,q

L(u, q)

s.t. ĥ(k|min(k − J,−1), k − J) ≤ αk,

∀k ∈ {1, . . . , J + K}

0M(J+K) ≤ q ≤ 1M(J+K)

(28)

which can be solved using the CVX toolbox [26]. The

minimization problem in (28) identifies a control sequence

and relaxed sensing schedule, where the relaxed sensing

schedule violates the constraints in the original mixed-integer

programming problem if ~qK+J is not binary. To identify

a binary sensor selection vector, the elements are ranked

from largest to smallest and iteratively included in the sensor

selection schedule (by setting the corresponding element of

~qK+J to one) until all the constraints in the original non-

relaxed minimization problem in (19) are satisfied. Once all

the constraints are satisfied, all non-unit elements of ~qK+J

are set to zero.

The conservative implementation of the receding-horizon

controller discussed in this section uses an abstraction-

relaxation approach applied to the receding-horizon con-

troller in (19) to generate the control sequence and sensing

schedule. The approach is shown to be conservative and en-

sures that the original performance constraints are satisfied.
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Coupled Water Tank

Upper Tank

Lower Tank

UPM Wireless Actuator

Wireless Sensors 

(Upper and Lower Tanks)

Fig. 1. Setup for the Interconnected Water Tank System and the IEEE
802.15.4 Wireless Sensor and Actuator Network.

The implementable receding-horizon controller formulated

in this section is evaluated in section VII using a process

control test bed discussed in the following section.

VI. EXPERIMENTAL SETUP

To evaluate the performance of the control approach,

a test bed representing a scaled version of an industrial

setting where a coupled dynamical system is controlled

over a wireless network is implemented. The dynamical

system consists of eight coupled water tank systems from

Quanser [27], where the tanks are collocated with the sensors

and actuators and communicate wirelessly with a controller

node. Fig. 1 shows the interconnected setup of eight coupled

water tank systems and the WSAN.

We now describe the details of the components of our

networked control system.

A. Wireless Sensor Nodes

The wireless sensor platform used in this experiment is

the Telos wireless node [28]. These nodes are equipped

with a 250 kbps 2.4 GHz Chipcon CC2420 IEEE 802.15.4

compliant radio and on-board sensors. Furthermore, each

Telos has integrated Analog-to-Digital (ADC) and Digital-

to-Analog (DAC) converters that allows us to use them as

sensor and actuator nodes. The operating system used is

TinyOS [29].

B. Communication Network

The communication protocol used in our networked con-

trol setup is the IEEE 802.15.4 [30]. This protocol is the

standard for low-power wireless communications and is the

base of the wireless industrial protocols WirelessHART and

ISA100 [31], [32]. For this setup, we consider the IEEE

802.15.4 protocol in a beacon-enabled mode using a Car-

rier Sense Multiple Access/Collision Avoidance (CSMA/CA)

Medium Access Control (MAC) scheme. The network topol-

ogy is a star network, where a coordinator node periodically

sends a beacon message which synchronizes and configures

all the nodes in the network. The communication structure

is depicted in Fig. 2, where wireless nodes communicate

Inactive

CAP CFP

   0     1     2     3     4     5     6     7     8     9     10     11     12     13     14     15

BeaconBeacon

S.D.=aBaseSuperFrameDuration× 2S.O.

B.I.=aBaseSuperFrameDuration× 2B.O.

Fig. 2. Communication structure of IEEE 802.15.4. A beacon message
is transmitted by the coordinator at the beginning of each superframe in
order to synchronize all the nodes in the network. Message transmissions
take place during the active period (Contention-Access Period and Collision-
Free Period). In the inactive period, the nodes enter a low-power mode in
order to save battery.

during an active period, divided by a Contention-Access

Period (CAP) and Collision-Free Period (CFP), and enter a

low-power mode during an inactive period. More information

about the protocol can be found in [30].

C. Interconnected Water Tank System

The Coupled Water Tank system test bed employed in

this work consists of eight pumps, a water basin and sixteen

tanks of uniform cross sections. This system has similar

characteristics to many typical processes used in the chemical

industry, e.g. paper mills and ore concentration plants [33].

Furthermore, the control of such a slow process resembles

the control of HVAC systems [7].

Fig. 3 depicts the interconnected coupled water tank

system. This setup is a variation of the quadruple water

tank system [34], for an interconnection of sixteen individual

tanks. A pump is responsible for pumping water from the

water basin through two sections with different diameters.

Through the section with the largest dimensions flows water

to the lower tank of the respective water tank system. The

smaller section drives water to the upper tank of the adjacent

coupled water tank system, which flows to its respective

lower tank.

The sensing of the water levels Li is performed by

pressure sensors placed under each tank. The ratio between

the sensor measurement and water level is given by Li =
Ks ·Vout, where Ks = 6.25 cm/V. The equations describing

the dynamics of the interconnected water tank system are

nonlinear Thus, in order to apply the proposed techniques,

we linearized the dynamics around quiescent points L10, L20

for the upper and lower tanks, respectively. This results in

the following linear dynamics for each single coupled water

tank system:

L̇j
1 = −

a1

A1

√

g

2L10
Lj

1 +
γKp

A1
V j−1

p

L̇j
2 =

a1

A2

√

g

2L10
Lj

1 −
a2

A2

√

g

2L20
Lj

2 +
(1 − γ)Kp

A2
V j

p .

(29)

where, coefficient j denotes the j − th coupled water tank

system, ai is the outflow diameter of upper and lower tanks,

Ai is the diameter of the upper and lower tanks, g is the
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Fig. 3. Interconnected Water Tank System with 8 coupled water tanks [27],
each composed by a lower and upper tank.

gravitational acceleration in cm/s2, Vp is the voltage applied

to the pump motor, Kp is the pump motor constant, and Li

is the height of the water in both upper and lower tanks.

Moreover, γ = o1

o1+o2

defines the split of water flow in

proportion to the areas of the pump output orifices o1 and

o2 For this system we have the following parameters: a1 =
a2 = 0.178cm2, A1 = A2 = cm2, Kp = 2.775cm3/Vs,

g = 9.8m/s2 and o1 = 0.635cm and o2 = 0.4763cm.

Our objective will be to maintain the water level in all the

lower tanks L2 within a pre-defined region by adjusting the

motor voltage Vp for all the eight tank systems.

VII. EXPERIMENTAL RESULTS

The experimental test bed described in the previous section

is employed to evaluated the performance of the receding-

horizon controller. To generate the system model, we assume

a sampling time of 1.9 seconds and discretize a continuous-

time linear system implementation of (29). In this experi-

ment, we claim an error occurs if any of the lower water

tanks’ differ by more than ±5 centimeters of a time-varying

reference, Xk, defined as

Xk =

{

15 if t ≤ 475 sec

12.5 + 2.5 cos
(

2π
60 (k − 250)

)

otherwise
(30)

The maximum probability of error is α = 0.10 and the state

dimension equals the number of sensors and tanks, N =
M = 16. We assign a finite-horizon window of J = 3, and

a feasibility window of K = 2. The controller cost, Ωk, and

the network cost, Γk, are

Ωk = I40 and Γk = 100 × I80. (31)

Fig. 4 illustrate the tank level measurements versus time.

In Fig. 4, the solid lines are the water tank level measure-

ments and the dashed lines represent the ±5 centimeter

envelope around the reference signal. In this experiment,

since the state cannot be directly measured, the estimated

lower water tank levels conditioned on the received sensor

measurements is plotted versus time. Here we observe that

the controller is able to maintain the desired performance

over the entire experiment. When the reference is static
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Fig. 4. Lower water tank levels (cm) versus time (s)
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Fig. 5. Control sequence vs. time and sensor probability of selection

(t ≤ 475), we observe that the tank water levels vary

marginally from the steady state, where the tank levels vary

by about one centimeter. When the reference signal is static,

the estimated tank levels remain within the required bounds,

and vary with the reference signal. The tank levels vary with

the reference signal since the foal

The controller input and the sensor rate of selection is

selected is shown in Fig. 5, where the top subplot represents

the control sequence and the lower subplot illustrates the

probability of selecting each sensor. For the control sequence

in Fig. 5, we observe that the controller does not reach a

steady state solution for a static reference. This is because

the control sequence is calculated using the receding-horizon

controller which is memoryless with respect to the previously

calculated control sequence. However, the control sequence

rarely deviates by more than 1 volt from the central value of

5 volts.

The sensor selection subplot in Fig. 5 illustrates that the

even sensors (corresponding to the lower tank sensors) are

selected on average 22% of the time, which is slightly
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more often than the upper tank sensor selection of 18%.

By applying sensor selection to constraint-based control, the

active power associated with sampling a WSN is reduced

by a factor of four. Moreover, no single sensor is sensed

significantly more than another. These results indicate that

for the water tank test bed, a desired bound on the probability

of error can be maintained while significantly reducing the

number of sensors transmitting measurements.

VIII. DISCUSSION AND FUTURE WORK

A periodic receding-horizon controller is developed for

performing constraint-based control when sensor measure-

ments are collected using a WSN. The receding-horizon

controller employs a finite-horizon controller that bounds

the probability that a quadratic function of the state exceeds

a pre-specified bound, where exceeding the bounds results

in an error. The receding-horizon controller is proven to

generate a control sequence and sensor selection schedule

that ensures the probability of error is bounded for a finite

window of time. The optimal control sequence and sensor

selection schedule is shown to be the solution to a mixed-

integer programming problem, which is solved using a

conservative abstraction-relaxation approach for large-scale

systems.

Future extensions of this work include a characterization

of the stability criteria in terms of the system dynamics and

network performance constraints. Another direction of future

research is to extend the receding-horizon controller to a

distributed approach, since the current formulation assumes

a centralized controller. Additionally, the current formulation

assumes an independent channel reliability model and does

not account for the correlated effects of gathering measure-

ments in a multi-hop network.
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