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Abstract: This paper examines distributed event-triggered estimation over wireless sensor
networks. In such systems an efficient utilization of the wireless communications must be
performed since energy consumption and communication bandwidth are limit resources. We
pose a global event-triggered communication policy for state estimation that minimizes a
weighted function of the network energy consumption and the number of transmissions subject
to constraints on the estimator performance. The global communication policy determines
when sensors transmit measurements to the central estimator using a sensor-to-estimator
communication channel as well as when sensors received other sensors’ measurements (which
have been transmitted to the central estimator) using a estimator-to-sensor communication
channel. A distributed 1-step greedy heuristic is introduced for the proposed global minimization
problem such that sensors determine their respective communication policies using only the local
information available at each sensor. Simulation results demonstrate that the number of sensor
transmissions can be reduced at a potential increase in network energy consumption (number
of sensor transmission and receptions) with the added benefit of reducing network congestion.
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1. INTRODUCTION

In the last several decades we have seen great advances
in computation, communication and control. The prolif-
eration of tiny devices capable of performing computa-
tion, wireless communication, sensing and actuation has
provided the means to create many intelligent complex
networked systems. These systems are often geographi-
cally distributed, where individual subsystems exchange
information over a shared wireless communication net-
work. The wireless network is then a common resource,
which cannot be disregarded when designing estimation
and control algorithms. Additionally, wireless devices are
often battery powered, which impose computation and
communication constraints of the system design.

Recently, much research has been performed on identifying
transmission policies that transmit information only when
absolutely necessary. These event-triggered transmission
protocols tend to greatly reduce the number of transmis-
sions, but can result in increased network congestion in
the presence of an unknown disturbance. While event-
triggered transmission policies tend to reduce the number
of transmissions, in networked systems this comes at the
cost of requiring constant monitoring of the communica-
tion channel when not transmitting. Unfortunately this
is not suitable for real deployments where the energy
required to operate the radio is practically the same when
both transmitting and receiving.

Many techniques have been proposed to address this issue.
In Zhu et al. [2007], Weimer et al. [2011, 2008] sensor
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selection techniques are presented where it is identified
which sensor (if any) should report a measurement at
each periodic sampling instance. In Liu and Goldsmith
[2004], Park et al. [2011] the authors propose a co-design
of the MAC, sampling period and estimation and con-
trol algorithms. Instead of periodic transmissions, several
researchers have proposed the use of aperiodic sampling
techniques for control Åström and Bernhardsson [1999],
Tabuada [2007] and estimation Yook et al. [2002], Xu and
Hespanha [2004], Cogill [2009], Sijs and Lazar [2009], Li
et al. [2010]. In this case, the transmission of data between
sensors and controllers/estimators is performed only when
required in order to achieve a certain desired level of
performance. The distributed event-triggered problem has
been addressed by Mazo Jr. and Tabuada [2010], Wang
and Lemmon [2011], Guinaldo et al. [2011], Donkers and
Heemels [2012] and by Li and Lemmon [2011], Trimpe and
D’Andrea [2011] for the control and estimation cases, re-
spectively. In these approaches, sensor nodes must broad-
cast its measurements to its neighbors whenever a trig-
gering condition is violated, and continuously listen to the
wireless channel. Unfortunately, in real deployment such
requirement is not feasible for battery powered wireless
devices, as continuously active radio would quickly drain
its energy resource. In Mazo Jr. and Cao [2011] a method
is proposed where these limitations are removed.

This paper addresses the problem of designing resource-
aware distributed event-triggered estimation over large-
scale systems communicating over a wireless network.
Specifically, we aim at reducing sensor’s energy consump-
tion and wireless network congestion. Several sensor nodes
measure parts of the plant state and transmit its measure-
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ments in an event-triggered fashion to a central estimator,
which computes the estimate of the full plant state. We
propose a distributed architecture where sensor broadcasts
are not required in order to bound the central estimator
mean squared error (MSE), thus removing the need for
sensors to continuously listen to the wireless channel. By
doing so, we provide large energy savings when compared
to current approaches.

We address the wireless network congestion issue by al-
lowing sensor nodes to decide to receive additional infor-
mation from the central estimator. The reception of such
information has the benefit of delaying transmission and
avoiding unnecessary congestion in the case that sufficient
information has already been provided by neighboring
sensors to the central estimator. However, reception of
information at the sensor nodes incurs in a certain energy
cost. We formulate and solve a distributed constrained op-
timization problem whereby the energy consumption and
network congestion of the wireless network are minimized.

The following section introduces notation and formulates
an optimization problem that aims to minimize a weighted
function of the network energy and congestion. Section
3 considers the optimization problem when only a single
sensor exists, while Section 4 addresses networked systems.
Simulation results and concluding remarks are provided in
Sections 5 and 6, respectively.

2. PROBLEM FORMULATION

We consider the linear time-invariant stochastic system
driven by noise,

xk+1 = Axk + wk (1)

where xk ∈ RN is the system state with the initial
condition x0 = 0, and wk ∈ RN is a Gaussian process
noise with known mean and covariance,

E [wk] = uk

E
[

(wk − uk) (wk − uk)
T
]

= W
(2)

A network of J sensors is employed to observe the state,
where the measurement model for each sensor, yk,j ∈
{yk,1, . . . , yk,J}, is

yk,j = Cjxk + vk,j (3)

assuming vk,j is a zero-mean Gaussian measurement noise
and

E
[

vk,jv
T
k′,i

]

=

{

Vj , i = j, k = k′

0, otherwise

E
[

vk,jw
T
k′

]

= 0 ∀k, k′
(4)

In this work, we consider the general problem of perform-
ing state estimation using sensor measurements which are
intermittently transmitted by the sensors to the central
estimator using a wireless network. Specifically, we assume
the system architecture illustrated in Fig. 2, which will
be described in detail in the remainder of this section.
As illustrated in Fig. 2, a two-channel wireless network
is employed to both gather and distribute the sensor
measurements. The first wireless channel is dedicated for
sensor-to-estimator (S2E) communication, while the sec-
ond is employed for estimator-to-sensor (E2S) commu-
nication. We assume the central estimator contains two
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İk,J
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Fig. 1. Distributed event-triggered estimation system ar-
chitecture.

wireless radios such that it can continuously access both
communication channels, while the sensors have a single
communication radio and must decide which channel (if
any) to access at each time step. Each sensor decides
whether to transmit or listen for measurements based on
the measurements currently available at the sensor, Ik,j .
If a decision is made to transmit, then the S2E commu-
nication channel is accessed and the information set, İk,j ,
containing all the new measurements of sensor j taken
since the previous transmission and the last time sensor j
accessed the E2S communication channel, is transmitted.
Similarly, if a decision is made to receive, then the E2S
communication channel is accessed and the information
set, Ïk, which is a subset of the central estimator infor-
mation set, Îk, containing all the measurements known by
the central estimator that have not been distributed to
the individual sensors, is received. Since when each sensor
transmits its measurements to the central estimator, it
also transmits the last time when it accessed the E2S
communication channel, the central estimator can easily
determine whether any particular measurement is known
by all sensors. Before mathematically formulating the dis-
tributed event-triggered estimation problem, the following
paragraphs introduce useful notation and mathematically
define the information sets described above and in Fig. 2.

We denote the decision of sensor j to either transmit its
measurements, receive the measurements known by the
central estimator, or to turn off its radio and neither
transmit or receive, using the test φj(k), such that

φj(k) =

{

1 transmit (on S2E channel)
0 radio off
−1 receive (on E2S channel)

(5)

We write the latest time when sensor j transmits and
receives as τ(k, j) and ρ(k, j), respectively, where

τ(k, j) , max{k′|φj(k
′) = 1, k′ ≤ k}

ρ(k, j) , max{k′|φj(k
′) = −1, k′ ≤ k}.

(6)

We define the time, as known by the central estimator,
that all the sensors have heard all the other sensors
measurements as

ρ(k) = min
j,j′∈{1,...,J}

ρ(τ(k, j), j′) (7)

and apply this time to mathematically define the informa-
tion sets for S2E communication of sensor j, İk,j , and E2S

communication, Ïk as
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İk,j , {yk′,j |k ≥ k′ > τ(k − 1, j)} ∪ {ρ(k, j)}

Ïk , {yk′,j |τ(k − 1, j) ≥ k′ > ρ(k − 1)},
(8)

respectively. Additionally, we define the following measure-
ment sets:

Īk,j , {yk′,j|k
′ ≤ k}

Ik , Īk,1 ∪ · · · ∪ Īk,J

Îk , Ik\{yk′,j′ |k
′ > τ(k, j′), 1 ≤ j′ ≤ J}

Îk,j , Îk\{yk′,j′ |k
′ > τ (ρ(k, j), j′) , 1 ≤ j′ ≤ J}

Ik,j , Îk,j ∪ Īk,j

(9)

where, Īk,j is the set of sensor j measurements taken on
or before time k, Ik is the set of all sensor measurements
taken on or before time k, Îk are the measurements known
by the central estimator at time k, and Îk,j are the
measurements mutually known by the central estimator
and sensor j. Additionally, we denote the minimum mean
squared error (MMSE) estimate of x conditioned on the
various measurement sets in (9) as

E [xk|Ik] = mk, Cov [xk|Ik] = Pk,

E
[

xk|Îk

]

= m̂k, Cov
[

xk|Îk

]

= P̂k,

E [xk|Ik,j ] = mk,j , Cov [xk|Ik,j ] = Pk,j ,

E
[

xk|Îk,j

]

= m̂k,j , Cov
[

xk|Îk,j

]

= P̂k,j ,

(10)

where E [·] represents the expected value and Cov [·] is the
associated covariance. The notation and information sets
described above will be employed throughout the remain-
der of this work to formulate and solve the distributed
event-triggered estimation problem.

As an estimation performance constraint, we require

∀j E
[

‖Fj

(

xk − E
[

xk|Îk,j

])

‖22|Ik,j

]

≤ ηj

⇐⇒∀j ‖Fj (mk,j − m̂k,j) ‖
2
2 +Tr

[

FjPk,jF
T
j

]

≤ ηj

(11)

where the weights,{Fj}
J

j=1, are chosen to minimize the

static distributed mean-squared error :

{Fj}
J

j=1 = arg min
{Fj}

J
j=1

lim
k→∞

Tr





J
∑

j=1

Cov
[

Fjxk|Īk,j
]





s.t

J
∑

j=1

Fj = I

(12)

The constraint in (11) requires that a weighted expected
euclidian distance squared between the state and the
open-loop state estimate, conditioned on all the available
measurements at each sensor, is bounded. Additionally,
we assume that when mk,j = m̂k,j then the estimation
constraint in (11) is always satisfied, namely

Tr
[

FjPk,jF
T
j

]

≤ ηj ∀j, k (13)

In wireless networking applications, a primary concern is
minimizing the energy required to perform the task at
hand. For estimation purposes, this requires minimizing
the number of times the radio is operated for both trans-
mitting and receiving measurements. In general, the en-
ergy consumed by transmitting a measurement is approx-
imately equal to the energy consumed through reception
Prayati et al. [2010], thus we write the energy consumed

by the communication network at each time step as

E (φ1(k), . . . , φJ (k)) =
J
∑

j=1

I [φj(k) 6= 0] (14)

where I [z] is a binary indicator function that takes a
value of one when z is true and a value of zero when
z is false. Additionally, excessive transmission attempts
has the added cost of creating congestion in the network
which can restrict the flow of information from the sensors
to the central estimator and result in increased energy
consumption due to congestion resolution in the MAC.
Thus, in this work, we define the network energy objective
as a weighted sum of the network energy and the number
of transmissions, namely

J (α, φ1(k), . . . , φJ(k)) =αE (φ1(k), . . . , φJ (k))

+

J
∑

j=1

I [φj(k) = 1]
(15)

where α is the network energy weighting factor. By choos-
ing α to be small, one effectively decides that transmissions
cost more than the network energy consumption, and
vice-versa. This is translated as a willingness to allow an
increase in the network energy consumption in exchange
for fewer sensor transmissions.

We formulate the constrained minimization problem which
minimizes the network energy objective subject to the
estimation performance constraint as

min
Φ1,...,ΦJ

∞
∑

k=0

J (α, φ1(k), . . . , φJ (k))

s.t ‖Fj (mk,j − m̂k,j) ‖
2
2 +Tr

[

FjPk,jF
T
j

]

≤ ηj ∀k, j

φj(k) ∈ {−1, 0, 1} ∀k, j
(16)

where,

Φj = {φj(k)}
∞
k=0 (17)

The minimization problem in (16) requires identifying a
communication schedule for the entire network for all
time. In previous work, we addressed a similar problem
using a priori communication scheduling in Weimer et al.
[2011]. For wireless communication applications, a priori
scheduling has the benefit that scheduling of sensors can
be achieved such that congestion is reduced or eliminated.
However, this approach has the drawback that sensors are
required to transmit their measurements even when the
information is not needed. Additionally, a priori commu-
nication scheduling is less responsive to disturbances, in
general, since the sensor scheduling is performed without
knowledge of the disturbance. Therefore, in this work,
we consider an event-triggered scheduling solution to the
minimization problem in (16) in the following sections.

3. SINGLE-SENSOR EVENT-TRIGGERED
ESTIMATION

Before discussing a distributed event-triggered estimation
framework in the next section, this section considers the
special case when the network contains a single sensor (J =
1). The single-sensor framework and transmission policy
discussed in this section follows closely the framework
and measurement transmission policy introduced in Li
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et al. [2010] and serves as motivation for formulating a
distributed event-triggered communication policy in the
following section.

When only a single sensor exists, then it is clear from
(12) that F1 = I and the minimization problem in (16)
is equivalently written as

min
Φ1

∞
∑

k=0

J (α, φ1(k))

s.t ‖mk − m̂k‖
2
2 +Tr [Pk] ≤ η1 ∀k

φ1(k) ∈ {−1, 0, 1} ∀k

(18)

The above minimization problem is non-causal and re-
quires future sensor measurements to calculate the ex-
pected value of the state estimate. Since future measure-
ments are unknown, as a heuristic, we introduce a 1-
step greedy approach for determining the decision at each
time step based on the likelihood of future decisions. We
introduce a greedy approximation of the energy objective
function, Ĵ (α, φ1(k), . . . , φJ (k)), as

Ĵ (α, φj(k)) =J (α, φj(k)) + (1 + α) Pr [φj(k + 1) = 1] ,
(19)

where Ĵ (α, φj(k)) is the energy objective at time k plus
the expected energy objective at time k + 1 assuming
the probability of E2S communication in the future is
zero, Pr [φj(k + 1) = −1] = 0. Employing the approximate
energy objective, we formulate the 1-step greedy minimiza-
tion problem for the minimization problem in (18) as

min
φ1(k)

Ĵ (α, φ1(k))

s.t ‖mk − m̂k‖
2
2 +Tr [Pk] ≤ η1

φ1(k) ∈ {−1, 0, 1}

(20)

The objective of the greedy minimization problem in (25)
is the summation of the energy objective at the current
time step with an approximation of the energy objective
at the following time-step. When only a single sensor
exists, the measurement sets in (9) have the following
equivalences:

Ik ≡ Ik,1 ≡ Īk,1 and Îk,1 ≡ Îk (21)

These equivalences exist since the sensor has full knowl-
edge of which measurements are known by the central
estimator. Additionally, these equivalences render E2S
communication irrelevant and thus the energy objective
in (25) can take one of two values, namely

Ĵ (α, 0) = (1 + α) Pr [φ1(k + 1) = 1|φ1(k) = 0]

Ĵ (α, 1) = (1 + α) Pr [φ1(k + 1) = 1|φ1(k) = 1] + 1 + α

(22)

where it is clear that

Ĵ (α, 1) ≥ Ĵ (α, 0) (23)

and thus φ1(k) = 0 always minimizes the energy objective,
but may not satisfy the estimation constraint. Recalling
from the problem formulation that the estimation con-
straint is always satisfied if a transmission occurs, (φ1(k) =
1), we conclude that if the constraint on the estimator
performance is satisfied, then the measurements are not
transmitted, and vice-versa such that

φ1(k) =

{

1 if ‖mk − m̂k‖
2
2 +Tr [Pk] > η1

0 otherwise
(24)

The event-triggered estimation problem presented in this
section assumes a single sensor exists, which has been
shown to result in a communication policy that only
requires S2E communication. In the following section, we
consider the case with multiple sensors such that each
sensor must not only decide when to transmit, but also
when to receive measurements from the central estimator.

4. NETWORKED EVENT-TRIGGERED
ESTIMATION

While the previous section discussed an event-triggered
transmission policy for state estimation using a single
sensor. In this section, we address the event-triggered
estimation problem in (16) when multiple sensors exist.
Using the same logic and reasoning as in the previous
section, we assume a 1-step greedy approach to solving
the minimization problem in (16) and write the resulting
minimization problem as

min
φ1(k),...,φJ (k)

J
∑

j=1

Ĵ (α, φj(k))

s.t ‖Fj (mk,j − m̂k,j) ‖
2
2 +Tr

[

FjPk,jF
T
j

]

≤ ηj , ∀j

φj(k) ∈ {−1, 0, 1}, ∀j
(25)

To solve the minimization problem in (25), requires glob-
ally determining which sensors transmit, receive, and are
turned off. To avoid the inter-sensor communication over-
head associated with solving the global minimization prob-
lem in (25), we propose, as a heuristic, a distributed ap-
proximation where each sensor decides its communication
policy by solving a local optimization problem, namely

min
φj(k)

Ĵ (α, φj(k))

s.t ‖Fj (mk,j − m̂k,j) ‖
2
2 +Tr

[

FjPk,jF
T
j

]

≤ ηj ,

φj(k) ∈ {−1, 0, 1}

(26)

In the special case when each sensor observes a subset of
states that are unobservable by the other sensors, solving
the distributed minimization problem in (26) for each
sensor is equivalent to solving the global minimization
problem in (25). The sensor energy objective function
in the distributed minimization problem can take the
following values:

Ĵ (α,−1) = (1 + α) Pr [φj(k + 1) = 1|φj(k) = −1] + α

Ĵ (α, 0) = (1 + α) Pr [φj(k + 1) = 1|φj(k) = 0]

Ĵ (α, 1) = (1 + α) Pr [φj(k + 1) = 1|φj(k) = 1] + 1 + α

(27)

where consistent with the previous section, we observe that

Ĵ (α, 1) ≥ Ĵ (α, 0). (28)

Applying the same logic as the previous section, we con-
clude that sensor j transmits its measurements to the
central estimator when the estimation constraint in (26)
is not satisfied, namely

φj(k) = 1 ⇔ ‖Fj (mk,j − m̂k,j) ‖
2
2 +Tr

[

FjPk,jF
T
j

]

> ηj .

(29)
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To determine a communication policy for accessing the
estimator-to-sensor communication channel, requires de-
termining the probability of transmission at the next time
step conditioned on the decision to access the estimator-
to-sensor communication channel at the current time step.
However, to calculate this probability requires knowing
what measurements will be received by listening, which
is unknown to the sensors. As a heuristic, we assume that
upon sampling, any received sensor measurements will be
equal to the mean value and approximate the probability
of transmission by applying the Markov inequality such
that

Ĵ (α,−1) ≈
‖FjA (mk,j − m̂k,j) ‖

2
2 +Tr

[

FjP̂k+1F
T
j

]

ηj

1+α

+ α

Ĵ (α, 0) ≈
‖FjA (mk,j − m̂k,j) ‖

2
2 +Tr

[

FjP̂k+1F
T
j

]

ηj

1+α

.

(30)

Since the covariance at the central estimator is unknown
to the sensor before accessing the estimator-to-sensor com-
munication channel, we approximate the central estimator
covariance as a weighted sum of the sensor covariance
and the central covariance assuming all measurements are
received, written as

P̂k ≈ (1 + βj)Pk,j + βjPk (31)

The weighting factor at sensor j is chosen based on the
likelihood that sensor j transmits and the most recent
results from previous accesses of the estimator-to-sensor
communication channel, written mathematically as

βj =

{

0 if Ïρ(k,j) ⊆ Îρ(k,j),j
β̂j if τ(k, j) ≥ ρ(k, j) ∨ Ïρ(k,j) * Îρ(k,j),j

(32)

where

β̂j =
‖Fj (mk,j − m̂k,j) ‖

2
2 +Tr

[

Fj P̂k,jF
T
j

]

ηj

(33)

The value of βj varies according to the likelihood that
sensor j transmits. The logic in this situation is that
if sensor j is likely to transmit, then other sensors are
likely to transmit as well. However, if sensor j attempts to
access the communication channel and discovers that the
measurement set provided through the estimator-to-sensor
communication channel is already known locally, then the
sensor no longer attempts to access the sensor-to-estimator
communication channel until after a transmission occurs.

The sensor chooses to access the communication channel
when the objective is minimized, namely when

Ĵ (α, 0) ≥ Ĵ (α,−1) (34)

which by applying the approximations in (30), we conclude
that

φj(k) = −1 ⇔ βjTr
[

Fj

(

P̂k+1,j − Pk+1

)

FT
j

]

≥
α

1 + α
ηj

(35)

Thus, the communication policy for performing networked
event-triggered state estimation is

w1

x3

w2

x1

x2

x5

γ1 γ2

x6

x4

Fig. 2. The six-tank system. The water flows from tank 1 to
3 and from tank 2 to 4, and from tank 3 and 4 back to
tank 5 and 6, which are reservoir tanks. The fraction
of water pumped into each pair of tanks is regulated
by the two valves γ1 and γ2. The water levels of the
tanks are xi, i = 1, . . . , 6. The water input is driven
by process noises w1 and w2.

φj(k) =















− 1 ⇔ βjTr
[

Fj

(

P̂k+1,j − Pk+1

)

FT
j

]

≥
α

1 + α
ηj

1 ⇔ ‖Fj (mk,j − m̂k,j) ‖
2
2 +Tr

[

FjPk,jF
T
j

]

> ηj

0 otherwise
(36)

This section formulated a communication policy for net-
worked event-triggered state estimation. The proposed
strategy is a heuristic based the optimal distributed event-
triggered state estimation communication policy when sen-
sors have uncorrelated measurements. The communication
policy introduced in this section is evaluated in the follow-
ing section through simulation.

5. SIMULATION RESULTS

In this section, an example is used to evaluate the per-
formance of the distributed event-triggered estimator pro-
posed. We choose the six-tank system inspired from Jo-
hansson [2000], a multi-input multi-output nonlinear sys-
tem consisting of two lower tanks (3 and 4), two upper
tanks (1 and 2) and two reservoirs (5 and 6) and two
pumps, as shown in Fig. 5. The water flows from tank
1 to 3 an from tank 2 to 4, and from tank 3 and 4 to
tank 5 and 6, which are reservoir tanks. The pumps are
connected so that pump 1 delivers water to tanks 1 and 4
and pump 2 delivers water to tanks 2 and 3. The fraction
of water pumped into each pair of tanks is regulated by
the valves γ1 and γ2. The state of the plant is composed
by the water levels in all six tanks as xi, i = 1, . . . , 6 and
the input is driven by the noises w1 and w2. Two wireless
sensors measure the water level in tank 5 (sensor 1) and 6
(sensor 2) and transmit the values to a central estimator.
The goal of this example is to estimate the water level in
the all of the six tanks based on measurements from the
two wireless sensors.

The linearized continuous-time system dynamics around a
working point x0 are given by:
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Fig. 3. Transmission and reception statistics for wireless sensor 1 and 2 in transient conditions; Transmissions is
characterized by a cross (×) and receptions by a circle (◦). Tank 1 and tank 2 levels are shifted at time t = 400 s
and at t = 420 s, sensor 1 avoids transmission since it receives information from the central estimator. The listening
benefit is observed also for sensor 2 at time t = 934 s and t = 1980 s and for sensor 1 again at t = 1374 s.

ẋ(t) = Acx(t) +Bcw(t). (37)

The continuous-time system matrices are defined as:

Ac =













−τ1 0 0 0 0 0
0 −τ2 0 0 0 0
τ1 0 −τ3 0 0 0
0 τ2 0 −τ4 0 0
0 0 τ3 0 0 0
0 0 0 τ4 0 0













, Bc =















γ1

k1Ā
0

0
γ2

k2Ā

0
(1− γ1)

k2Ā
(1− γ1)

k1Ā
0















,

Cc =

(

0 0 0 0 1 0
0 0 0 0 0 1

)

, τi =
ai

Ā

√

g

2x0

i

.

(38)

The water tank parameters ai are the outflow diameter
of the tanks, Ā is the diameter of the tank, g is the
gravitational acceleration in cm/s2, 1

ki
are the the pump

motor constants. Discretizing system (37) with zero-order
hold sampling and period T , we obtain the discrete-time
system in (1).

We now validate the distributed event-triggered algorithm
presented in Section 4 in transient and steady-state condi-
tions. The process and measurement noise covariances are
set to W = diag(0.05, . . . , 0.05) and V = diag(0.2, 0.2), re-
spectively. We define the transmission threshold, ηj = 0.5.

5.1 Transient conditions

The system is simulated for 2000 seconds and is affected
by process and measurement noise. Additionally, at time
t = 400s the levels of tank 1 and tank 2 are shifted by 3 cm
and 5 cm, respectively. Figure 5 depicts the transmission
(TX) and reception (RX) tests as defined in (36), as
well as the history of transmissions and receptions for
both wireless sensors. After the tank levels are shifted,

both sensor 1 and sensor 2 have a consecutive rise of
their transmission statistic. However, due to the listening
feature of the proposed algorithm, at t = 420 s, sensor
1 avoids transmission since it receives information from
the central estimator, thus, avoiding the risk of collision
with packets transmitted by sensor 2. This benefit is high
since sensor 2 had just performed a transmission and the
sensors are correlated. The listening benefit is observed
also for sensor 2 at time t = 934 s and t = 1980 s and for
sensor 1 again at t = 1374 s. Receptions take place in other
moments but its benefits are hardly noticeable since a
long time has passed since the transmission of information
from the neighboring sensor. The MSE of the simulation
is shown in Figure 5.2 for completeness of the analysis. As
it can be seen, the MSE stays bounded by [−1, 1] using
the proposed algorithm, which was the objective.

5.2 Steady-state conditions

Here we analyze the energy consumption of the wireless
nodes, the estimation performance with respect to the
averageMSE as well as the probability of transmission and
reception as a function of the network energy weighting α.
We define the energy consumption asE = 1

J∗T NTX+NRX ,
where NTX and NRX are the number of transmissions and
receptions, J the number of sensors and T is the simulation
horizon. Furthermore, the probability of transmission and
reception is defined as the average number of transmissions
and receptions over the simulation horizon.

Figure 5.2 depicts the results obtained for 100 simulations
of the system for an horizon of 1000 s under different
values of α, for the case of no tank level shift and under
a periodic tank level shift every 100 s. In the case of
periodic tank level shifting, the results show that the
number of network transmissions are able to be reduced if
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receptions of information from the central estimator take
place. This has the benefit of reducing the network traffic
and device contention, possibly reducing packet collision,
with the drawback of increasing the energy consumption of
the network over the condition where no listening occurs.
However, one should note that by reducing contention,
benefits with respect to a reduced energy consumption are
expected to be obtained. Note that the average MSE does
not suffer any major change for different values of α. In the
case of no tank level shift the number of transmission and
receptions if small as expected. Moreover, there is no clear
benefit of reception of information and the probability of
transmission suffers a small reduction for a small increase
of the probability of reception as α is decreased.

6. CONCLUSIONS AND FUTURE WORK

A distributed event-triggered estimation algorithm was
developed for performing distributed estimation of net-
worked systems when sensor measurements are transmit-
ted over a wireless sensor network. The distributed event-

triggered estimator employs a dual-channel architecture
which allows for sensors to transmit their measurements
to the central estimator, but also receive information from
the central estimator in order to delay or avoid possible
transmissions. This feature comes from the fact that the
knowledge of previous transmissions of correlated mea-
surements by neighboring sensors to the central estima-
tor may allow a given sensor to stay open-loop for a
longer period of time. Specifically, we pose a global event-
triggered communication policy for state estimation that
minimizes the weighted function of the network energy
consumption and the number of transmissions, subject to
constraints on the estimator performance. A distributed
greedy heuristic is introduced for the proposed global
minimization problem such that sensors determine their
communication policies using local information available
at each sensor. The distributed estimation algorithm is
employed to perform the estimation of the water level in
a six-tank system using two wireless sensor nodes. Results
shown benefits on reducing the number of sensor transmis-
sions and network congestion, with the potential increase
of the network energy consumption.

Future extensions of this work include an evaluating the
proposed mechanism in a real wireless sensor network sys-
tem where we practically verify the impact of delaying or
avoiding transmissions under high-traffic conditions. Ad-
ditionally, investigating the inclusions of a priori schedul-
ing for estimator-to-sensor communication as a means of
ensuring data dissemination such that the probability of
transmitting immediately after listening is reduced.

REFERENCES
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