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a  b  s  t  r  a  c  t

This  paper  concerns  the  problem  of  detecting  leaks  at carbon  sequestration  sites  through  the  monitoring
of  CO2 levels  using  a wireless  sensor  network  (WSN).  By  applying  a basic  linear  dynamic  model  for
an  advection–diffusion  process,  a model-based  detection  strategy  called  the  Iterative  Partial  Sequential
Probability  Ratio  Test  (IPSPRT)  can  be  employed  to  detect  and  localize  multiple  leaks.  A 3-D  CO2 transport
eywords:
O2 sequestration site monitoring
eak detection

ireless senor network

model  is  employed  to  provide  a  proof of concept  simulated  evaluation  of  the  IPSPRT  against  a  windowed-
average  approach  in  terms  of  time-to-decision  vs. probability  of  false  alarm  and  probability  of  a missed
alarm.  Despite  using  only  a basic  linear  dynamic  model,  the  IPSPRT  is  shown  to  achieve  exponentially
increasing  better  time-to-decision  than  the  windowed-average  approach  as the  probability  of  false  alarm
and probability  of  a missed  alarm  are  decreased.  A  test  bed  implementation  is described  and  employed
to  evaluate  the  performance  of  the IPSPRT  in  the  presence  of common  WSN  errors.
. Introduction

Currently coal accounts for 25% of the world’s energy supply
nd 40% of carbon emissions, and is likely to be a major source
f electricity generation for the foreseeable future (United States
ecretary of Energy Steven Chu, 2009). It has been proposed that
O2 from coal power plants be sequestered in large underground
eological formations for the purposes of enhanced oil recovery
n current oil wells, collecting methane from deep un-minable
oal beds, and general storage (Wells et al., 2006; Saripalli et al.,
006). One viable means to ensure sequestration is to monitor
he surface CO2 concentration for changes not explained by the
mbient fluctuations caused by seasonal and environmental forces
uch as respiration and photosynthesis (Saripalli et al., 2006). Other
ethods of ensuring CO2 sequestration include subterranean CO2

oncentration monitoring and monitoring of trace gasses injected
uring sequestration (Saripalli et al., 2006). Due to the transport
nd dispersion of sequestered CO2 in subsurface formations, mon-
toring (either on the surface or underground) may  need to be
erformed over vast areas (hundreds of square kilometers) for years
here a large number of potential CO2 leak locations (sources)
re possible (Wells et al., 2006; Saripalli et al., 2006). Due to the
nherent cost of installing a wired-network over the CO2 seques-
ration site monitoring area (Saripalli et al., 2006), a wireless sensor
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E-mail addresses: weimerj@kth.se (J. Weimer), krogh@ece.cmu.edu (B.H. Krogh).
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ttp://dx.doi.org/10.1016/j.ijggc.2012.04.001
©  2012  Elsevier  Ltd.  All  rights  reserved.

network (WSN) is the most feasible technology for performing
large-scale, long-term multiple-leak detection.

Many methods have been proposed for the general problem of
detecting potential leaks through noisy observations (see Willsky,
1976; Kailath et al., 1998; Fox et al., 2007; Weimer et al., 2011 and
citations therein). These approaches are divided into model-based
approaches and sensor-level approaches. Model-based approaches
leverage knowledge of underlying dynamics to assist in leak detec-
tion, while sensor-level approaches simply monitor for changes in
individual sensor measurements to detect leaks. Many researchers
have shown that when an accurate model exists, model-based
approaches provide better results than sensor-level approaches
by leveraging the information gained through knowledge of the
dynamics (Willsky, 1976); however, the primary shortcoming of
most model-based approaches is that they do not scale well with
the number of potential leaks.

The following section introduces the multiple-leak detection
problem for CO2 sequestration site monitoring and presents a
model-based test capable of addressing the inherent scalability
issues. Section 3 formulates a CO2 transport model that can be
employed as part of the model-based test for identifying leaks.
Section 4 describes a 3-D CO2 atmospheric transport model, devel-
oped to provide a proof of concept evaluation of the model-based
test against a windowed-average test using simulation in Section 5.

Section 6 presents a WSN  test bed implementation and robustness
analysis of the leak detector’s performance with respect to common
WSN  errors. The concluding section summarizes the contributions
of this paper.

dx.doi.org/10.1016/j.ijggc.2012.04.001
http://www.sciencedirect.com/science/journal/17505836
http://www.elsevier.com/locate/ijggc
mailto:weimerj@kth.se
mailto:krogh@ece.cmu.edu
dx.doi.org/10.1016/j.ijggc.2012.04.001
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. Problem formulation

At CO2 sequestration sites, ensuring the CO2 remains
equestered requires monitoring the CO2 concentrations (or other
race gases injected during sequestration Saripalli et al., 2006) over
arge areas. When the monitoring area is divided into several poten-
ial leak locations, the leak detection problem requires not only
dentifying whether CO2 is leaking, but also identifying where the
eak occurs. A test for performing leak detection makes a decision

hether there is a leak at each location while bounding the prob-
bility of a false alarm, the probability of a missed alarm,  and the
robability of a missed leak. In our formulation, a false alarm occurs
hen no leaks exist at any locations, but the test declares there is

t least one leak. Conversely, a missed alarm occurs when a leak
xists and the test decides there are no leaks. A missed leak occurs
hen the test correctly decides that some leaks exist, but does not

dentify all the locations where leaks exist.
One common sensor-level approach to leak detection is a

indowed-average test. The windowed-average test assumes no
nowledge of the underlying dynamics. Each sensor independently
easures and averages its respective CO2 concentration measure-
ents over a window of the most recent measurements, where

he window size defines the time-to-decision. A leak is declared
o exist if for any sensor, the windowed-average concentration
xceeds an a priori specified threshold; otherwise, it is decided that
o leaks exists. While the windowed-average test is easy to imple-
ent, identifying the window size and test threshold to achieve a

esired level of performance in terms of the probabilities of false
larm, missed alarm, and missed leak may  not be possible since the
hreshold varies significantly with the sensor location, climate, sea-
on, and changing environmental dynamics (such as wind speed,
tmospheric stability).

To improve detection performance, model-based approaches
everage knowledge of the environmental dynamics. Our model-
ased test, the Iterative Partial Sequential Probability Ration Test
IPSPRT), uses a basic linear dynamic model relating the effects of
otential leaks on the CO2 sensor measurements. We  note that the
urpose of the IPSPRT model is not to precisely model the dynamic
ffects of CO2 atmospheric fate and transport and CO2 leak rates,
ut rather to capture the general trends in a completely tractable
ramework. Keeping this in mind, we model the CO2 concentration
ynamics using a state-space model of the form

xk+1 = Akxk + Bk(�kzk + ek) + wk

qk = Cxk + vk,
(1)

here each element of the vector xk represents the CO2 concentra-
ion in parts-per-million (PPM) at a specific location and time, the
lements of qk are the measured CO2 concentration values at time k
n PPM, and each element of zk and ek represents the expected CO2
ux rates at a specific location in PPM-meters-per-second caused
y leaks and environmental processes1 (such as respiration and
hotosynthesis), respectively.2

� k is a diagonal binary matrix representing which of the poten-
ial leak locations are actually leaking. A unit entry in � k indicates
hat there is a leak at the corresponding leak location, while a zero
ntry denotes that no leak is present. Ak and Bk specify a lumped

arameter model of the environmental dynamics, and C is a binary
atrix that identifies the sensor locations, that is, which element

f xk are being measured. wk and vk are zero-mean uncorrelated

1 For the purposes of this work, the expected environmental CO2 generation, ek ,
s  assumed to be known. For detailed studies on the modeling background CO2 gen-
ration, we direct the interested reader to (Yang et al., 2011, 2011) and the citations
ithin.
2 Model (1) is derived in the following section.
nhouse Gas Control 9 (2012) 243–253

Gaussian signals that account for the environmental modeling
uncertainty (including background environmental CO2 generation
uncertainty) and sensor measurement noise, respectively.

The form of the IPSPRT used in this paper assumes all CO2 gen-
eration rates are constant, that is,

zk+1 = zk + hk, (2)

where hk is a Gaussian zero-mean signal that accounts for the CO2
generation rate uncertainty.3 Assuming a lossy WSN  is used to
gather the measured CO2 concentrations for centralized processing,
the received sensor observations are modeled according to

yk = �kqk, (3)

where �k is a binary selection matrix that captures the effects of
packet loss inherent in WSNs, that is, �k selects which elements of
qk comprise the elements of yk. By combining the models in (1)–(3),
the resulting model relating the potential CO2 leak locations to the
collected CO2 concentration measurements is

[
xk+1

zk+1

]
=

[
Ak Bk�k

0 I

]  [
xk

zk

]
+

[
Bk I 0

0 0 I

]⎡
⎢⎣

ek

wk

hk

⎤
⎥⎦

yk = [ �kC 0 ]

[
xk

zk

]
+ �kvk.

(4)

We again remark for clarity that the model in (4) is not intended
to precisely simulate the environmental fate and transport of CO2,
but rather to just capture the general effects. It will be shown in
Section 4 that the IPSPRT performs well even when the dynamics
for atmospheric advection–diffusion and CO2 are simulated using
a more complex model (which will be described in Section 4).

Using the model in (4),  the large-scale multiple-leak detection
problem results in a multiple hypothesis testing problem between
all possible combinations of potential leaks. Even under the sim-
plifying assumptions that the potential leaks are persistent (leak
continuously once becoming active), if there are J leak locations and
leaks can become active at K time steps, the number of potential
combinations of leaks, S(J, K), is

S(J, K) = (K + 1)J . (5)

Even for a small problem containing 30 different potential leak
locations (J = 30) and a single time when leaks can become active
(K = 1), the number of different potential combinations of leaks is
230 � 109. As the number of leaks and times at which leaks can
become active increase, testing between all possible combinations
of leaks becomes infeasible.

To avoid this exponential computational growth, the IPSPRT
iteratively solves a sequential multiple hypothesis testing problem
for a partial subset of the possible leak combinations by sequentially
performing aggregate source detection followed by active source
identification. The remainder of this section discusses the IPSPRT
in detail, following the flow chart provided in Fig. 1.

As illustrated by block A in Fig. 1, the IPSPRT is initialized to
assume that leaks can only become active at time zero, as denoted
by the hypothesis time, KH ≤ k, when the current time k = 0. Addi-
tionally, the IPSPRT assumes that none of the J potential leaks were

previously active, � −1 = 0. After initialization, the CO2 measure-
ments are collected using a WSN  and the environmental model is
formulated (block B in Fig. 1). Using the model and collected CO2

3 More sophisticated models for the CO2 generation rates can be used in place
of  the constant-generation model in (2),  but it will be shown in Section 5 that
the IPSPRT, assuming constant generation, performs well even for non-static CO2

generation rates.
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Fig. 1. IPSPRT flowchart.

easurements, aggregate source detection (block C) attempts to
ecide whether no leaks or some leaks became active at the hypoth-
sis time, KH. This decision is made such that both the probability of
alse alarm and probability of missed alarm are bounded using the
equential Probability Ratio Test (SPRT) developed by Wald (1947).
he test for aggregate source detection can make one of three deci-
ions: no new leaks began at time KH, some leak began at time KH,
r more CO2 measurements are needed to make a decision.

In Fig. 1, if the test for aggregate source detection (block C)
ecides that more measurements are needed, then at the next time
tep (k = k + 1 as denoted by block D), additional CO2 measurements
re gathered and the test continues testing for leaks that began at
he hypothesis time KH. If the test decides no leaks began at the
urrent hypothesis time, KH, then it is assumed that no additional
eaks became active at time KH (i.e. �KH

= �KH−1 in block E), and
he hypothesis time is incremented, KH = KH + 1 (block F). The test
or aggregate source detection is then performed using the incre-

ented value of KH. If the test detects a leak then it is assumed that
ome leak became active at time KH and the IPSPRT proceeds to
ctive source identification, represented by block G.

Active source identification consists of three parts: prominent
ource identification, secondary source identification, and source
erification (as denoted by blocks G.1, G.2, G.3, respectively in
ig. 1). Prominent source identification identifies the most likely
eak locations through an iterative likelihood maximization. After
dentifying the most likely leak locations, secondary source identi-

cation (under the assumption that the most likely leak locations
ctually contain leaks) identifies the leak locations which must also
e checked to meet the performance requirement on the proba-
ility of a missed leak. We  call these leak locations the nuisance
nhouse Gas Control 9 (2012) 243–253 245

locations. Both the likely leak locations and the nuisance locations
are checked as part of source verification. If after performing source
verification the probability of a missed leak still meets the per-
formance criteria, then active source identification terminates by
logging the active sources in �KH

, the hypothesis time is incre-
mented (KH = KH + 1), and aggregate source detection is performed;
otherwise, active source identification is performed again until the
probability of a missed leak meets the performance criteria after
performing source verification, that is, personnel are sent to the
field and more accurate local monitoring is performed to determine
if there are leaks at the identified locations.

3. Advection–diffusion model

Although the IPSPRT is well suited to handle the computa-
tional issues imposed by performing large-scale leak detection, it
requires a linear dynamic model describing, in a general sense, the
leaks on the measured CO2 concentrations in the form of (4).  This
requires a model describing the transport of CO2 from potential
leaks to the sensors through the atmosphere. In general, gas trans-
port through the atmosphere is a complex process with the most
accurate United States Environmental Protection Agency (EPA)
approved models requiring physical terrain data, detailed meteo-
rological data for wind characterization and atmospheric stability,
and source emissions data for the chemical(s) of interest (in the case
of ground-level ambient CO2, the principal sources occur naturally,
including respiration from surface vegetation and soil microbes)
(Federal Register). While these models are considered the most
accurate (Federal Register), identifying the necessary parameters
requires significant empirical studies and remains an open research
issue (Sharan et al., 1996; Sharan and Yadav, 1998; Hernandez et al.,
1991; Seinfeld and Pandis, 1998; Rao, 1983; Turner, 1994). Due
to the complexity of the EPA approved models, a simplified linear
dynamic model, suitable for the IPSPRT, is developed for use in a
first demonstration.

Virtually all models for atmospheric fate and transport origi-
nate from a first-principles model of an advection–diffusion process
(Seinfeld and Pandis, 1998),

ıc(p, t)
ıt

+  �(p, t)
∂c(p, t)

∂p
= ˛(p, t)

∂2
c(p, t)

∂p
2

, (6)

where c(p, t) denotes the concentration of CO2 in part per million
(PPM) as a function of space and time, p = [x, y, z] is the 3-D loca-
tion vector, t is time, �(p, t) = [�x(p, t), �y(p, t), �z(p, t)]T and ˛(p,
t) = [˛x(p, t), ˛y(p, t), ˛z(p, t)]T are the advection and dispersion coef-
ficients, respectively, in units of m/s  and m2/s. The surface boundary
condition is(

�z(p, t)c(p, t) − ˛z(p, t)
ıc(p, t)

ız

)
|p=(x,y,0)

= �(x, y, 0, t) + �(x, y, 0, t), (7)

where �(x, y, z, t) and �(x, y, z, t) represent the CO2 surface leak rate
and the surface CO2 absorption/expulsion rate, respectively, each
known to be non-zero only at the surface (z = 0) and having units of
PPM-meters-per-second.

To generate a model of the form in (4), we  spatially discretize the
partial differential equation in (6) using an Euler’s approximation4

as in Hernandez et al. (1991) with x − y − z granulations of �x, �y,
4 A TVD-based discretization could also be incorporated in place of an Euler’s
approximation (Tannehill et al., 1997).
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approximation (Seinfeld and Pandis, 1998) as

L = 1
a + b log(z0)

, (13)
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nd �z, respectively, and write the continuous-time above-surface
z ≥ 0) advection–diffusion model as

ıc(x, y, z, t)
ıt

= ˛x(t)

(
c(x + �x, y, z, t) − 2c(x, y, z, t) + c(x − �x, y, z, t)

�2
x

)
+˛y(t)

(
c(x, y + �y, z, t) − 2c(x, y, z, t) + c(x, y − �y, z, t)

�2
y

)
+˛z(t)

(
c(x, y, z + �z, t) − 2c(x, y, z, t) + c(x, y, z − �z, t)

�2
z

)
−�x(t)

(
cx − c(x, y, z, t)

�x

)
− �y(t)

(
cy − c(x, y, z, t)

�y

)
−�z(t)

(
cz − c(x, y, z, t)

�z

)
+ �(x, y, z, t)

�z
+ �(x, y, z, t)

�z

(8)

here

cx =
{

c(x + �x, y, 0, t) if �x(t) > 0

c(x − �x, y, 0, t) if �x(t) < 0

cy =
{

c(x, y + �y, 0, t) if �y(t) > 0

c(x, y − �y, 0, t) if �y(t) < 0

cz =
{

c(x, y, z + �z, t) if �z(t) > 0

c(x, y, z − �z, t) if �z(t) < 0

The advection parameters in (8) denote the wind speed and
irection; in the physical world, determining this parameter typ-

cally requires approximation since the wind is continuously
hanging. The eddy diffusion parameters are characterized by sev-
ral parameters, including the crosswind intensity, vertical height,
tmospheric stability, and wind speed, all of which vary (Rao, 1983;
einfeld and Pandis, 1998; Sharan and Yadav, 1998). To generate
he IPSPRT model, we assume that the horizontal advection dom-
nates vertical advection, the horizontal wind vectors are spatially
niform, and the eddy diffusion parameters are

˛x(t) = 10
|�y(t)| + 1

˛y(t) = 10
|�x(t)| + 1

,
(9)

hich represents the trend that eddy diffusion parameter values
ecrease as the wind speed increases in the orthogonal direc-
ion. Additionally, since the WSN  is only deployed on the surface,
here will be no vertical concentration monitoring assumed by the
PSPRT. As a heuristic, we account for the unobservable vertical
ffects of advection and diffusion by assuming that the CO2 surface
ux rates are two-thirds their expected values.5

Applying these approximations, the spatially discretized 3-D
dvection–diffusion model described by (8) can be written in a
urface plane (z = 0) 2-D advection–diffusion model, with suitable
haracteristics for the IPSPRT, as

ıc(x, y, 0, t)
ıt

= ˛x(t)

(
c(x + 	,  y, 0, t) − 2c(x, y, 0, t) + c(x − 	,  y, 0, t)

�2

)
+˛y(t)

(
c(x, y + 	,  0, t) − 2c(x, y, 0, t) + c(x, y − 	,  0, t)

�2

)
−�x(t)

(
cx − c(x, y, 0, t)

	

)
− �y(t)

(
cy − c(x, y, 0, t)

	

)
+ 2

�(x, y, 0, t) + 2
�(x, y, 0, t)

(10)
3�z 3�z

5 This modeling heuristic captures the general trend that as CO2 is released a
ortion does not remain in the observable surface plane.
nhouse Gas Control 9 (2012) 243–253

By applying the same process as Hernandez et al. (1991) to (10),
the 2-D advection–diffusion process can be written in a continuous-
time state-space model as

ıx(t)
ıt

= A(t)x(t) + B(t)(u(t) + e(t)), (11)

where x(t) ∈ RN is the row-by-column concatenation of the pla-
nar monitoring area, A(t) ∈ RN×N is the lumped parameter model
governing the time evolution of x(t), the vector of environmen-
tal background generation/absorption rates is denoted by e(t), and
u(t) ∈ RN is the vector of leak rates at time t.6 In (11), each element
of x(t) represents the concentration over the corresponding dis-
cretized area at time t. The continuous state-space model in (11) is
discretized according to the sensor sampling period, resulting in a
discrete-time state space model for the advection diffusion process

xk+1 = Akxk + Bk(uk + ek) + wk. (12)

Similar to (11), each element of xk in (12) represents the con-
centration over the corresponding discretized area at time k. The
lumped-parameter model (12) is used in (4) to describe the trans-
port of CO2 from leaks to sensor locations, where uk = �kzk.

The model developed in this section describing the transport of
CO2 is designed to capture the general trends occurring in atmo-
spheric fate and transport. The model in (12) is not intended to
accurately simulate the CO2 concentrations, but it will be shown
in Section 5 that when this basic model is employed by the IPSPRT,
accurate detection and identification is achieved. Before evaluating
the IPSPRT, the following section describes how the eddy diffu-
sion parameters are determined and describes the environmental
simulator employed in the evaluation.

4. Environmental simulation

In this study, we are concerned with short-range transport (a
few kilometers) under non-steady-state conditions, and wish to
also account for the effects of the change in the ambient CO2 con-
centration. To address these concerns, this section is divided into
three subsections describing the short-range transport parameters,
the ambient CO2 modeling, and the 3-D environmental simulator,
respectively.

4.1. Short-range transport parameters

Both the 3-D transport model in (8) and the IPSPRT model in (12)
require known advection and eddy-diffusion parameters. To iden-
tify the advection and eddy-diffusion parameters in (6) requires the
following user inputs: mixing height, monitoring area size, time
of day, season, cloud cover, terrain (either grass or forest), and
the wind vector at 10 m above the surface. Using the user-defined
inputs, the Pasquill stability class can be approximated using the
approximations in Table 1 (Seinfeld and Pandis, 1998), where the
Pasquill stability class provides a qualitative measure of how turbu-
lent the atmosphere is vertically. In Table 1, class F denotes the most
stable atmosphere, class A is the most unstable atmosphere, and
class D is a neutral atmosphere. Based on the Pasquill stability class,
the Monin–Obukov length, L, is determined using the straight-line
6 The element-wise comparison between the lumped-parameter model, A(t), in
(11)  and the spatially discretized partial differential equation in (10) is provided in
Appendix C of Weimer (2010).
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Table  1
Estimation of Pasquill stability classes.

Wind speed at 10 m (m/s) Solar radiation Night cloud cover

Strong Moderate Slight ≥50% ≤38%

<2 A A–B B Very stable
2–3  A–B B C E F
3–5  A–B B C D E
5–6  B B–C C D E
>6 C  D D D D

Table 2
Coefficients for straight line approximation to Monin–Obukov distance in (13).

Pasquill stability class a (m−1) b (m−2)

A −0.096 0.029
B −0.037 0.029
C −0.002 0.018
D  0 0
E  0.004 −0.018

w
P
s

r
f
u
1

U

w
a
T
a
a

�0]

]

w

�

U
p
S

˛

Table 4
CO2 generation rates, �, vs. time of day (mol m−2 s−1 of CO2).

Terrain Photosynthesis Respiration

In this study, to evaluate the ISPRT, we  assume the expected

T
W

F  0.035 −0.036

here z0 is the surface roughness for a given terrain (Seinfeld and
andis, 1998) and a and b are constants defined for different Pasquill
tability classes in Table 2 (Seinfeld and Pandis, 1998).

To identify the advection and eddy diffusion parameters
equires the wind speed at different heights and the atmospheric
riction velocity. The vertical wind speed is generally approximated
sing the wind-speed power-law formulation (Heinsohn and Kabel,
999)

(z) = U10

(
z

10

)p

(14)

here U10 is the wind speed at 10 m above the surface, and p is
 unitless value based on the Pasquill stability class according to
able 3 (Heinsohn and Kabel, 1999). The friction velocity, u*, can be
pproximated using the Pasquill stability class according to Seinfeld
nd Pandis (1998),

u∗

U10

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
ln

(
10
z0

)
+ 4.7

L
(10 − z0)

]−1

[
ln

(
10
z0

)]−1

[
ln

(
10
z0

)
+ ln

[
(�2

0 + 1)(�0 + 1)2

(�2
r + 1)(�r + 1)2

]
+ 2[tan−1�r − tan−1

here 
 is Karman’s constant and

0 =
[

1 − 15
z0

L

]1/4
and �r =

[
1 − 150

L

]1/4
.

sing the friction velocity, Pasquill stability class, and wind speed
rofile, the vertical eddy diffusion parameter in the surface layer is
einfeld and Pandis (1998)
z(p, t) = 
u∗z

�(z/L)
(16)

able 3
ind speed power-law exponent, p, in (14).

Pasquill stability class A B 

p 0.07 0.07 
if: stable (E,F)

if: neutral (D)

−1

if: unstable (A, B, C)

(15)

Forest 40 ± 2 × 10−9 −40 ± 2 × 10−9

Grassland 30 ± 2 × 10−9 −30 ± 2 × 10−9

where

�
(

z

L

)
=

⎧⎪⎪⎨
⎪⎪⎩

1 + 4.7
z

L
if: stable (E,F)

1 if: neutral (D)[
1 − 15

z

L

]−1/2
if: unstable (A, B, C)

.

From the vertical eddy diffusion parameter, the horizontal eddy dif-
fusion parameters can be determined according to Fatehifar et al.
(2006). The CO2 transport model described above is based on mul-
tiple common approximations. Since this CO2 transport model is
intended for only short range transport, the Coriolis effect and
upper level transport (above the surface layer) are neglected.

4.2. Ambient CO2 modeling

The ambient or background CO2 concentration is known to
vary daily based on photosynthesis and respiration rates of the
surrounding vegetation. Although the rates of respiration and pho-
tosynthesis are generally not equal (with photosynthesis often
consuming more CO2 than respiration expels), vegetation respi-
ration and photosynthesis are known to exchange approximately

the same amount of carbon annually (Smith, 1981). Currently, the
atmosphere contains (on average) 390 PPM CO2, and is known to
fluctuate approximately 15 PPM annually (depending on the sur-
rounding environment) (Larcher, 1995).

Modeling of the ambient CO2 dynamics is a topic of contin-
ued research (e.g. Yang et al., 2011, 2011 and citations within).
ambient CO2 generation/absorption rate of the surface is known
(i.e. the expected value of �(x, y, 0, t) is known in (8)). As a
proof of concept evaluation of the IPSPRT, which is not intended

C D E F

0.10 0.15 0.35 0.55
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basic 3-D environmental simulator is employed based on the
3-D advection–diffusion model in (8) and the parameter val-
ues provided earlier in this section. To generate spatial CO2
concentrations at specific locations and times, a spatial Euler’s

Table 5
CO2 transport model parameter values.

Parameter Value

Mixing height 1000 m
Monitoring area 1000 m × 1000 m
Time of day Midnight
Fig. 2. normalized CO2 concentrations in PPM for

o satisfy the EPA testing requirements, we develop a simple
odel for the ambient CO2 concentration. To model the fluctu-

tion in ambient CO2, the respiration and photosynthesis rates
iven in Table 4 are used. The rates in Table 4 are chosen such
hat the expected fluctuation in annual CO2 concentration is 15
PM based on the general assumption that plants expel CO2 at
ight (through respiration) and consume CO2 during the day
through photosynthesis). These rates, �(x, y, 0, t), along with
he leak rates, �(x, y, 0, t), define the boundary condition in
6).

While the model for ambient CO2 concentrations employed
n this study is simplified and does not necessarily cap-
ure the full effect, improved models can be incorporated
s part of the IPSPRT since the natural CO2 generation and

bsorption present in the environment are merely inputs
o the IPSPRT. We  remark that for field-testing purposes,
mproved models of ambient CO2 concentration levels would be
eeded.
ping source at 50, 75, 100, 125, 150, and 175 min.

4.3. Environmental simulator

To provide a proof of concept evaluation of the IPSPRT, a
Season Summer
Cloud cover Clear
Wind vector [330] m/s
Terrain Grass
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Fig. 4 provides the results for when the maximum probability of
false alarm is decreased to 0.01. As in Fig. 3, the dotted line and solid
line in Fig. 3 represent the windowed-average test and the IPSPRT,
ig. 3. Probability of miss vs. time-to-decision for probability of false alarm = 0.10.

iscretization (Melman, 1997) is used in conjunction with a Taylor
eries approximation for temporal discretization to generate the
-D CO2 concentration profile over time. For evaluation purposes,
he parameter values in Table 5 are assumed for the CO2 trans-
ort model described above assuming �x = �y = 10 m and �z = 1 m.
ig. 2 presents the simulated CO2 concentrations normalized to
he expected ambient CO2 concentration at times 50, 75, 100, 125,
50, and 175 min, assuming surface leaks become active at 60 min
nd their rates increase linearly until reaching a saturation rate of
00 PPM-meters-per-second at time 120 min. The subplots in Fig. 2

llustrate that before the leak begins, the only difference between
he expected ambient CO2 concentration and actual CO2 concen-
ration is due to the random variations in the photosynthesis and
espiration rates. The subplots in Fig. 2 illustrate the effects of a
eak on the spatial distribution of CO2 concentrations over time.
sing the CO2 transport model developed in this subsection, the

ollowing section evaluates the performance of the IPSPRT.

. Performance evaluation

For comparison, we evaluate the performance of the IPSPRT
nd the windowed-average test described in Section 2 in terms
f time-to-decision, probability of false alarm, and probability of
iss. The CO2 concentration data obtained at each sensor is gen-

rated using the CO2 transport model described in the previous
ection assuming the parameter values in Table 5, with a horizon-
al discretization of 100 m and a vertical discretization of 20 m.  One
housand (1000) Monte Carlo runs of the CO2 transport process are
erformed assuming a single leak exists which starts at a rate of
ero PPM per second and saturates 1 h later with a random rate
rawn from a normal distribution with mean 100 PPM per sec-
nd and standard deviation of 50 PPM per second, where any leaks
esulting in a negative leak rate are discarded. The sensor noise is
ssumed to be zero-mean Gaussian with a standard deviation of

 PPM.
Since an a priori threshold is unknown for the windowed-

verage test, to compare its performance, 8000 different test
hresholds ranging from −4 to 4 and 35 window sizes (time-to-
ecisions) ranging from 1 to 35 time steps are evaluated. A false
larm occurs when, for a specific threshold and time-to-decision,

 leak is incorrectly detected. Similarly, a missed alarm occurs

hen a leak goes undetected. For the IPSPRT, the probability of

alse alarm, ˛, and miss, ˇ, are design parameters and the average
ime-to-decision is calculated for all combinations of ˛,  ̌ ∈ {0.01,
Fig. 4. Probability of miss vs. time-to-decision for probability of false alarm = 0.01.

0.02, 0.05, 0.10, 0.20, 0.50} (using the same Monte Carlo runs as the
windowed-average test).

Fig. 3 shows the expected probability of miss vs. the time-to-
decision for each test when the maximum probability of false alarm
is assumed to be 0.10 (  ̨ = 0.10). In Fig. 3 the dotted line and solid line
represent the windowed-average test and the IPSPRT, respectively.
One test is preferred over the other test if for a given probabil-
ity of miss, it results in the smallest time-to-decision. Under this
criterion, Fig. 3 suggests that if a probability of miss above 0.108
is acceptable, then the windowed-average test is the better option
because it requires fewer time steps to make a decision (as denoted
by the dotted line being below both the dashed and solid line). If the
desired probability of miss is less than 0.108, then the IPSPRT should
be employed. The reason the IPSPRT does not always perform bet-
ter than the windowed-average test is due to the conservative
decision thresholds obtained through Wald’s approximation asso-
ciated with performing the sequential probability ratio test (SPRT)
(Wald, 1947). The results in Fig. 3 illustrate that the complexity of
the IPSPRT test pays dividends as the desired probability of miss
decreases.
Fig. 5. Receiver operator characteristic vs. time-to-decision.
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espectively. Similar to the results in Fig. 3, the results in Fig. 4 indi-
ate the windowed-average test is preferred when the acceptable
robability of miss is above 0.115, otherwise the IPSPRT is pre-
erred. Comparing the results in Fig. 4 to the results in Fig. 3, we find
hat when the maximum probability of false alarm is decreased, the
ange of desired probability of miss where the IPSPRT is preferred
ncreases.

The results in both Figs. 3 and 4 suggest that as the acceptable
robability of miss decreases, the number of time steps required by
he windowed-average test grows exponentially when compared
o the IPSPRT. To illustrate this point, Fig. 5 shows a graph of the
robability of false alarm vs. the probability of miss for each test,
nown as the receiver-operator characteristic (ROC). In Fig. 5, the
nderlying shaded contour plot represents integer values of the
verage time-to-decision for the IPSPRT, ranging from 2 to 17 for
robability of false alarm and probability of miss ranging from 0.01
o 0.50. The color bar on the right and the integer values on the
lot indicate the IPSPRT time-to-decision. The solid lines in Fig. 5
epresent the windowed-average test, where the lines from highest
o lowest denote the time-to-decisions of 4, 16, and 35, respectively.

To relate the results in Fig. 5 to the results in Fig. 3, the mid-
le solid line (corresponding to a time-to-decision of 16 for the
indowed-average test) represents all combinations of probabil-

ty of false alarm and probability of miss where a time-to-decision
f 16 can be achieved for the windowed-average test. When the
robability of false alarm equals 0.10, the minimum probability of
iss that can be achieved is 0.15 for the windowed-average test,

ssuming a window size of 16. In Fig. 3, these values correspond to
he probability of miss attainable by each strategy when the time-
o-decision is 16. A similar relation can be made between the results
n Figs. 5 and 4 when the probability of false alarm equals 0.01 and
he time-to-decision equals 16.

In Fig. 5, the results for a time-to-decision of 35 are plotted to
llustrate the marginal savings in time-to-decision for the IPSPRT

hen compared to the windowed-average test. To achieve a proba-
ility of false alarm of 0.05 while also achieving a probability of miss
f 0.10, the windowed-average test requires a window size (time-
o-decision) of 35 while the IPSPRT averages a time-to-decision of
0. As expected, for both tests, as the probability of false alarm
nd probability of miss decrease, the time-to-decision increases. As
ould be expected, more observations are needed to make a more

ccurate decision. To summarize, despite using only a 2-D model
or the advection–diffusion process in the IPSPRT, the performance
n terms of time-to-decision performs better than a windowed-
verage approach. This suggests that the IPSPRT is robust with
espect to moderate modeling errors.

In this study, only a single sensor density was assumed. Deter-
ining the sensor density that yields a desired detection level

epends on the desired leak rate, environmental dynamics, back-
round CO2 stability, and desired granularity of leak detection.
hile this work does not address the issues of sensor place-
ent, previous work on sensor placement (Weimer et al., 2008;

rivastava et al., 2009; Fox et al., 2007) could be used to estimate
he most cost-effective network that ensures a high probability of
etection.

In this evaluation, we observe that the IPSPRT provides better
erformance than a simple sensor-level approach, despite the use
f a 2-D model and an incorrect assumption that the sources are
onstant. Moreover, the IPSPRT does not require an a priori specifi-
ation of the decision threshold (which may  not be possible), unlike
imple sensor-level approaches. For the CO2 concentration moni-
oring problem, the IPSPRT is shown to be robust to modeling errors

esulting from incorrect leak-rate dynamics in the design model,
here incorporation of such dynamics would only serve to improve

he performance more. A primary shortcoming of the IPSPRT is
hat it requires significantly more computational resources than
Fig. 6. 22 wireless sensor test bed.

sensor-level approaches. This computational requirement forces
the IPSPRT calculations to be performed on a central machine. Addi-
tionally, the IPSPRT is prone to systematic errors occurring from
preemptive decisions occurring before sufficient data has been
received. This result is indicated in Fig. 5 by the fact that when the
average time-to-decision is set low, the resulting test incurs signif-
icant probability of miss, although the corresponding performance
of the naive approach (windowed-average) is shown to suffer much
more. These systematic errors are a direct result of the modeling
errors inherent in both the IPSPRT and naive approaches. However,
it is shown in Fig. 5 that as the expected time to decision increases,
the detector performance improves significantly.

As a final note, we reiterate that the IPSPRT evaluation provided
in this section is intended to be a proof of concept. To meet the strict
EPA guidelines would require (at the very least) an in-depth simu-
lated evaluation using a state-of-the-art environmental simulation
platform such as AERMOD (Cimorelli et al., 2005).

6. Wireless sensor network implementation

This section describes a test bed implementation for evaluat-
ing the robustness of the IPSPRT in the presence of common errors
associated with using a WSN  to collect data. The test bed, shown
in Fig. 6, consists of 22 Firefly sensor nodes (Mangharam et al.,
2007). Each firefly node in Fig. 6 runs the Nano-RK operating sys-
tem (Eswaran et al., 2005), contains a light intensity sensor, and is
connected to a unique programming board that supplies power to
the firefly nodes and allows for quick reprogramming of the entire
network and background monitoring through a wired network.

Fig. 7 shows a flowchart describing the functionality of the
test bed. In addition to the 22 firefly nodes and program-
ming boards, the complete test bed incorporates two computers
(named Ramathorn and Coolstore in Fig. 7), and a light projec-
tor. Coolstore is a Linux machine that operates as a network
manager, and Ramathorn is a Windows XP machine that executes
the IPSPRT routines and simulates the environment, which is pro-
jected onto the 22 firefly nodes as different light intensities ranging
from 0 to 255. The light sensor on each firefly node outputs a light
intensity value ranging from 0 to 1023 corresponding to bright and
dark, respectively. A second-order least squares approximation is
used to convert the firefly light intensity value to the environment
variable used for detection and localization, calibrated using 15
different light intensities.
At each sampling instant, Ramathorn first updates the envi-
ronmental data and projects the corresponding light data onto
the sensor network. The network manager gathers the light sen-
sor observations using the SAMPL data acquisition protocol Rowe



J. Weimer et al. / International Journal of Greenhouse Gas Control 9 (2012) 243–253 251

bed ar

e
a
R
c
a

b
t
m
i
r
a
a
i
m
a

Fig. 7. Test 

t al. (2008).  After data acquisition is complete, the network man-
ger relays the collected light sensor observations to Ramathorn.
amathorn then executes IPSPRT routine. When the IPSPRT routine
ompletes for the current time step, the time step is incremented
nd the procedure repeats.

In the previous section, the IPSPRT is shown to perform much
etter than the windowed-average test for large-scale CO2 seques-
ration site monitoring as the desired probably of false alarm and

iss decrease, despite the fact that the model used by the IPSPRT
s a crude 2D approximation of the 3D CO2 transport process. This
esult suggests that the IPSPRT is robust with respect to moder-
te modeling errors. When a WSN  is used to gather observations,

dditional robustness issues arise. In this subsection, we  further
nvestigate the robustness of the IPSPRT in the presence of com-

on  error/failure scenarios arising when data is gathered using
 WSN, namely, packet loss and sensor failures. In the following

Fig. 8. Sensor and potential leak locations.
chitecture.

evaluation, the environmental CO2 concentrations are generated
using the 2D model assumed by the IPSPRT. The 2D model is used
in place of the 3D model as an attempt to investigate the effect of
potential WSN  errors independent of any modeling errors.

To evaluate the robustness of the IPSPRT with respect to WSN
errors/failures, we  assume a sensor network of 22 sensors and 49
potential leaks, distributed as in Fig. 8, where a square denotes a
sensor location and a dot represents a potential leak location. One
thousand (1000) simulations were performed, each lasting for 1200
time steps with a randomly located single leak becoming active at
time step 600. We  assume the wind is always blowing in the direc-
tion (1,1) and tested six different wind intensities ranging from
0 km/h to 8.5 km/h.

To evaluate sensor failures, we  consider two scenarios. The first
sensor failure considered, and henceforth referred to as sensor fail-
ure 1, assumes that the interior sensors denoted by the filled boxes
in Fig. 9 drop out of the network permanently. Similarly, the sec-
ond sensor death considered, referred to as sensor failure 2, assumes
that the exterior sensors denoted by the filled boxes in Fig. 10 drop
off the network.

To evaluate the robustness of the IPSPRT in the presence of the
sensor failures, we consider four different active leak scenarios

1. Synchronous distributed leaks: Two  leaks located far apart from
one another that become active at the same time.

2. Synchronous clustered leaks: Two  leaks located near one another
that become active at the same time.

3. Asynchronous distributed leaks: Two leaks located far apart from
one another that become active at different times.

4. Asynchronous clustered leaks: Two leaks located near one another
that become active at different times.

In the following, we  assume clustered leaks are located at posi-

tions (0.15 km,  0.25 km)  and (0.2 km,  0.2 km), while distributed
leaks are located at positions (0.15 km,  0.25 km)  and (0.30 km,
0.10 km). Each active leak scenario is evaluated in low wind
(2.8 km/h) and in high wind (8.5 km/h). The test scenarios assume
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Table  6
Average time-to-decision (in sampling periods) for deciding no leaks exist.

Wind speed Packet loss Sensor failure 1 Sensor failure 2

Synchronous distributed leaks Low 6.79 6.89 7.77
High 7.71 7.72 11.68

Synchronous clustered leaks Low 6.81 6.90 7.79
High 7.72 7.74 11.72

Asynchronous distributed leaks Low 6.82 6.92 7.80
High 7.7

Asynchronous clustered leaks Low 6.8
High 7.7

Fig. 9. Sensor failure 1 (interior sensor failure).

Fig. 10. Sensor failure 2 (exterior sensor failure).

Table 7
Average time-to-decision (in sampling periods) for deciding a leak exists.

Wind speed Packet lo

Synchronous distributed leaks Low 1.92 

High 24.82 

Synchronous clustered leaks Low 1.61 

High 12.61 

Asynchronous distributed leaks Low 2.01 

High 24.79 

Asynchronous clustered leaks Low 2.02 

High 26.61 
2 7.75 11.74
1 6.87 7.79
4 7.80 11.78

a spatial discretization of 50 m and the temporal sampling rate
of 10 min. All leak strengths (regardless of position) are scalar
constants and are taken from the Gaussian distribution with an
expected value of 200 parts-per-million (PPM) per second with a
standard deviation of 100 PPM per second. The results are classi-
fied by the IPSPRT’s decision to accept or reject the null hypothesis
(no leaks exist). It is important to consider the IPSPRT’s decision
when evaluating performance because the time-to-decision can
differ significantly between deciding no leaks exist and some leaks
exist.

Table 6 illustrates the average time-to-decision in sampling
steps when the IPSPRT decides that no leaks exist. In Table 6 the
results indicate that the expected time-to-decision when an exte-
rior sensor fails is about 50% greater than if an interior sensor fails or
packet loss occurs. There is no significant difference in the average
time-to-decision for each error between the different leak scenarios
when deciding no leaks are active.

Table 7 illustrates the average time-to-decision in sampling
steps for deciding some leak exists. The results show that an
interior sensor failure has the largest effect on the average time-
to-decision. Observing from Fig. 9 and recalling that clustered leaks
are located at positions (0.15 km,  0.25 km)  and (0.2 km, 0.2 km),
while distributed leaks are located at positions (0.15 km,  0.25 km)
and (0.30 km,  0.10 km), we  note that the interior nodes that failed
were also the closest downwind nodes from the active leaks. Thus,
in high-wind situations, where the concentration of CO2 is small
except for near the leak, having nodes fail in the downwind prox-
imity can cause a significant increase in the time-to-decision.

The results in Table 7 also illustrate that in low-wind situations,
leaks are detected quickly, and in high-wind situations leaks are
detected slowly. It is intuitive that when sensors observe a sig-
nificant increase in the the CO2 concentration level, a detection
occurs quickly. As the CO2 concentration decreases (due to either a
decrease in the leak magnitude or an increase in the wind speed),
the time-to-decision increases. Based on the results for deciding no
leaks exists in Table 6 and deciding some leak exists in Table 7, one
could institute a preemptive detection scheme based on the dura-
tion of the monitoring period. As the time-to-decision increases, it
becomes more likely (based on the empirical data) that leaks exist,

but can’t be accurately detected yet using the IPSPRT.

We observe in Table 7 that when two  leaks become active at the
same time and are near one another, the time-to-decision is smaller

ss (packet loss) Sensor failure 1 Sensor failure 2

3.76 2.61
31.05 25.60

2.78 2.01
20.10 12.79

3.91 2.83
31.11 25.52

4.01 2.96
34.58 26.91
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han in any other corresponding leak scenario. This is due to the
verall increase in the CO2 concentration at each of the down-wind
ensor nodes. When multiple leaks are active in the same proxim-
ty, the results are similar to a single leak with a larger leak rate.
hese multiple proximate active leak scenarios improve the time
o detection. When comparing the time-to-decision for deciding no
eaks exist (Table 6) vs. some leak occurs (Table 7), we observe that
n exterior node sensor failure significantly increases the time-to-
ecision for deciding no leaks exist, while a failure of down-wind
odes close to the leak has a similar effect when claiming a leak
xists. These observations lead us to believe that sensor failures
nodes dropping out of the network) are of a key concern when a

SN  is used to perform leak detection.

. Discussion and future work

In this paper, the problem of large-scale multiple-leak detec-
ion using a WSN  at CO2 sequestration sites is addressed. Using a
implified 2-D model for a 3-D atmospheric CO2 transport process,
he IPSPRT can be applied for the purposes of identifying leaks. It is
hown that even though the 2-D model is known to be only a basic
epresentation of the atmospheric CO2 transport, the improvement
n performance from implementing such a strategy increases as
ompared to a windowed-average approach as the desired accuracy
f detection increases. A test bed implementation is presented and
mployed to evaluate the robustness of the IPSPRT in the presence
f common WSN  errors and failures.

Future work on this problem includes improved model parame-
er identification and ambient CO2 concentration characterization.
he more accurate the ambient CO2 concentration characterization,
he better the detector’s performance will be. In this light, further
nvestigation into the effects of model parameter errors and WSN
rrors on detection performance is also warranted. Additionally,
tudies into the distribution of leak rates is warranted to deter-
ine whether the leaks are Gaussian, bi-Gaussian, etc. Lastly, this

tudy illustrates that the IPSPRT shows promise for CO2 seques-
ration site surface monitoring. A next step would be to further
valuate the IPSPRT using state-of-the-art atmospheric simulation
nvironments and to commence preliminary field testing.
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