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Abstract. This paper introduces a robust method for performing active
actuator fault detection and diagnostics (FDD) in heating ventilation and
air conditioning (HVAC) systems. The proposed actuator FDD strategy,
for testing whether an actuator is stuck in a given position, is designed on
using an invariant hypothesis testing approach and is an improvement
of a previous strategy that employed an adaptive detection strategy.
The parameter-invariant detector is formulated to provide a constant
detection performance, invariant to unknown building parameters, and
it is described how this approach can replace the adaptive detector in
the previous work. A closed-loop experimental HVAC testbed at the
KTH Royal Institute of Technology campus in Stockholm, Sweden is
introduced and employed to evaluate the parameter-invariant detector.
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1 Introduction

Heating, ventilation and cooling (HVAC) are known to be the largest consumer of
energy in buildings, accounting for 43% of U.S. residential energy consumption.
The design of energy-efficient HVAC systems has therefore become a worldwide
research priority. In the U.S. and U.K., buildings consume nearly 40% and 47%
of the national energy, respectively [28, 27]. Due to this high usage, there exists
a high potential for energy consumption improvement, which has thrust HVAC
system operations to the forefront of world-wide research agendas. Recently,
several researchers have studied how to improve the control of HVAC systems by
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deploying more embedded sensors to monitor temperature, humidity, and CO2

levels [17], using information about occupant behavior [18, 11, 4], and improving
the modeling and control approaches [21, 19, 25, 20, 24, 23, 5].

To achieve an increase in building efficiency requires an increase in the num-
ber of sensors and actuators deployed. While the inclusion of these smart devices
enables low cost and environmentally friendly building energy management sys-
tems, undetected sensor and actuator failures can result in poor temperature
and air quality management. Moreover, HVAC Fault Detection and Diagnostic
(FDD) schemes which result in unpredictable or erratic performance can deter
building managers from investigating potential failures. For these reasons, tech-
nological development of FDD schemes tailored for HVAC systems is paramount
and has received much research interest in the recent years [16, 12, 10, 14].

The study of HVAC FDD systems has only been investigated since the late
1980s, with a particular interest in identifying low-cost, timely, and accurate
methods for detecting actuator faults. A thorough review of approaches to HVAC
actuator fault detection, diagnostics, and prognostics prior to 2006 is provided
in [16, 15]. In general, approaches to HVAC actuator fault detection can be clas-
sified as either hardware-based or software-based solutions [16]. The hardware-
based solutions introduce additional smart components strictly for the purposes
of actuator fault detection and provide accurate detection capabilities; however,
hardware solutions are far more expensive to both deploy and maintain than
software-based approaches, and are much more difficult to reconfigure with the
introduction of additional smart-actuator devices [15]. Moreover, the inclusion
of additional hardware has the added drawback of further increasing the com-
plexity of the HVAC system itself. Software-based actuator FDD approaches are
attractive in theory, but suffer from either a reliance on unknown (and difficult
to learn) physical models or system-specific detector design specifications [12,
16, 15, 14].

Modern building energy management systems require accurate HVAC control
to minimize energy usage while maintaining an acceptable level of comfort for
the building occupants. Thus, actuator fault detection is necessary to ensure
proper building operation as HVAC systems are subject to various aging and
operation errors which can lead to hardware malfunction. A common failure in
HVAC systems occurs when the actuator "sticks" and no longer changes its set
point, despite controller requests. This type of actuator failure can occur in any
position. For example, a valve can be stuck fully open, fully shut, or at any
intermediate setting. Additionally, being able to isolate specific actuator failures
is paramount to performing timely maintenance.

In [1], an HVAC FDD architecture is introduced that utilizes a fast-deciding
steady-state detector and an adaptive model-based detector that are applied
to a cooling vent fault detection. The primary difference between the previous
approaches, and other model-based software approaches described in [16, 15] is
the use of a two-tiered detection approach containing a distributed quantitative
model-based approach and a distributed qualitative model-based approach to
provide quick inference when an actuator is working and provide accurate de-
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tection when an actuator has failed. Logic indicates that in the event that an
actuator is working, applying a significant change in the actuation input results
in a measurable change in the temperature. Under this reasoning, the steady-
state detector quickly identifies operational actuators, but it tends to result in
a high probability of false alarm when the actuator is operational, but its effect
on the temperature is dampened (i.e. a window is open such that the tempera-
ture is not significantly affected through actuation). To reduce the probability
of false alarm in the HVAC FDD strategy, an adaptive model-based detector is
employed based on a first-order building thermal dynamic model. The model-
based detector utilizes a history of measurements to estimate the unknown model
parameters, then employs the estimated model to detect faults. While the adap-
tive model-based detector was shown to have a significantly lower probability of
false alarm in comparison to the steady-state detector, the resulting performance
was highly variant depending on the environmental variables (windows open vs.
closed, outside air temperature, etc.) which directly affected the underlying pa-
rameter estimation. This sporadic false alarm behavior is undesirable in HVAC
FDD schemes as it leads to mistrust by building managers.

In this work, the primary contribution is a parameter-invariant detector (to
replace the previously developed model-based detector [1]) that maintains a
constant probability of miss across all operating conditions of the HVAC FDD
strategy. Additionally, the parameter-invariant detector does not require full
model knowledge as it only relies on the structure of a simplified thermodynamic
model. The fact that the detector not only detects, but also isolates individual
actuator failures is an added contribution. A second contribution of this work is
the introduction and description of a closed-loop HVAC monitoring and control
system that interfaces directly with the KTH Royal Institute of Technology
HVAC system, located in Stockholm, Sweden. An evaluation of the system is
provided using the experimental testbed that illustrates the performance of the
parameter-invariant detector.

In terms of notation, we use plain lower case italic fonts to indicate scalars
or functions with scalar range, bold lower case italic fonts to indicate vectors or
functions with vector range, and plain upper case italic fonts to indicate matrices.
We also use ⊗ to denote Kronecker products, and ei,j to denote the elementary
vector of dimension i consisting of all zeros with a single unit entry in the j-th
position.

In the following section, we motivate and formulate the actuator FDD prob-
lem for building automation. Section 3 introduces the parameter-invariant detec-
tor and a novel diagnostic input design. The KTH Royal Institute of Technology
HVAC test bed is described in section 4 and an evaluation of the parameter-
invariant detector is provided in section 5. The concluding section provides dis-
cussion and insight into future work.
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2 Problem Formulation

In this section, we formulate a distributed actuator fault detection problem for
HVAC systems. While precise thermal modeling of buildings is an ongoing science
[6, 8], it has repeatedly been experimentally demonstrated that a first principle
of the thermal dynamics model is accurate for zone-level temperature evolution
in buildings [26, 13, 9, 3]. We consider a building with M interconnected temper-
ature zones for which there exists an underlying interconnection graph, G(V , E),
between the M zones, where V := {1, . . . ,M} is the vertex set, with i ∈ V
corresponding to zone i, and E ⊆ V × V is the edge set of the graph. The undi-
rected edge {i, j} is incident on vertices i and j if zones i and j interact. The
neighborhood of zone i, Ni, is defined as

Ni :=
{

j ∈ V
∣

∣ {i, j} ∈ E
}

(1)

A generic thermodynamic model of the zone interactions is provided through a
spatial and temporal discretization of the first-order heat equation as

xj(k + 1) = xj(k) +mj

∑

i∈Nj

aji

(

xi(k)− xj(k)
)

+ bjdj(k) + wj(k)

yj(k) = xj(k) + vj(k)

(2)

where:

– k = 0, . . . , T is the time index (T even for notational simplicity3);
– j = 1, . . . ,M is the zone index;
– the temperature xj(k)’s, measurements yj(k)’s and actuator inputs dj(k)’s

are scalar;
– mj is the volume of air contained in zone j;
– aji = aij ∈ R and bj ∈ R denote respectively the gains between xi(k) and

xj(k + 1), and between dj(k) and xj(k + 1);
– wj(k), vj(k) ∈ R are uncorrelated i.i.d. Gaussian process noise and measure-

ment noise with moments

E [wj(k)] = χj,w E [vj(k)] = χj,v = 0,

E

[

(

wj(k)− χj,w

)2
]

= σ2
j,w E

[

(

vj(k)− χj,v

)2
]

= σ2
j,v.

We note that in the event of a zone containing multiple actuators and a single
sensor, actuator FDD can be performed by allowing only a single actuator to
vary. In doing this, the stationary actuators are effectively lumped into the pro-
cess noise mean since it is a constant input into the thermal model. To compact

3 For ease of notation and without loss of generality we assume that the available
measurements are over a given period whose length is fixed ex ante.
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the notation we let, for j = 1, . . . ,M ,

A :=
[

αij

]

αij :=















1−mj

∑

n∈Nj

anj if i = j

mjaij if i ∈ Nj , i 6= j

0 otherwise

B := diag [b1, . . . , bM ]

yj := [yj(0), . . . , yj(T )]
⊤

dj := [dj(0), . . . , dj(T )]
⊤
.

Additionally, we consider the following quantities, assuming Nj = {i1, . . . , iJ} is
the sorted list of neighboring zones of zone j. Then

~αj := [αi1j , . . . , αiJ j ]
⊤
,

~yj(k) := [yi1(k), . . . , yiJ (k)]
⊤
,

~yj :=
[

yT
i1
, . . . ,yT

iJ

]⊤
,

where, ~yj(k) is the set of the measurements of agent j and its neighbors (sorted
lexicographically) at time k, while ~yj is the set of all the measurements of agent
j and its neighbors (again sorted lexicographically).

Consider then a specific zone ℓ ∈ {1, . . . ,M}, containing an actuator. The
structure of the actual actuator input dℓ is assumed to be as follows:

– uℓ :=
[

uℓ(0), . . . , uℓ(T )
]⊤

is a desired and known actuation signal;
– θℓ ∈ R is an unknown (but constant) input.

Then
dℓ = θℓ1+ µℓuℓ (3)

where the binary scalar µℓ ∈ {0, 1} is an unknown test parameter indicating
whether the actuation signal is present (µℓ = 1) or absent (µℓ = 0).

We summarize the available information for detecting an actuator failure in
zone ℓ as follows:

Assumption 1 Available information:

– the time-series measurements ~yℓ

– the local desired actuation signal uℓ;
– the local zone air-volume weight mℓ;
– when an actuator fails, its input to the system remains constant;
– the fact that the state dynamics are LTI-Gaussian, constant in time, and

with bℓ 6= 0.

For completeness, we summarize the unavailable information as:
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Assumption 2 Unavailable information:

– all the time-series measurements except ~yℓ

– all the local desired input signals except uℓ;
– all the local weights except mℓ;
– the weights A and B;
– the moments of the process and measurement noises χj,w, σ2

j,w, σ2
j,v, for all

j = 1, . . . ,M ;
– the actuation parameters θj and µj for all j = 1, . . . ,M ;
– the initial conditions x1(0), . . . , xM (0);
– the input signals d1, . . . ,dM .

We then assume the unknown µℓ to be either 0 (actuator ℓ is at fault) or
1 (actuator ℓ not at fault) and pose the following binary hypothesis testing
problem:

Assumption 3 Structure of the actuator fault µℓ satisfies either one of
the two following hypotheses:

H0 (null hypothesis): µℓ = 1 (no fault)
H1 (alternative hypothesis): µℓ = 0 (fault)

In words, both hypotheses assume the actual dℓ to be unknown, since θℓ
is unknown, but with a fixed and known functional structure. H0 additionally
assumes the presence of the known actuation input uℓ. Our aim is the following:
develop a distributed test that considers a specific zone ℓ ∈ {1, . . . ,M}, and
decides among the hypotheses H0 vs. H1 in Assumption 3 using only the infor-
mation in Assumption 1 and, at the same time, being invariant to the unavailable
information in Assumption 2. Thus, we state the following problem:

Problem 4
Find a test that detects whether zone ℓ has an actuator fault independently

of whether a fault exists at any other zone j 6= ℓ (fault isolation) and mini-
mizes the probability of false alarm while maintaining a constant probability
of detection.

The following section presents a solution to the problem introduced in this
section.
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3 Parameter-Invariant Actuator FDD

In this section, we introduce a distributed HVAC actuator FDD strategy, tailored
for detecting and isolating whether actuators are stuck in an unknown position
such that a constant level of detection is maintained. To achieve this goal, the
following subsections introduces a parameter-invariant detector and an actuator
diagnostic input, respectively.

3.1 Parameter-Invariant Detector

In this section, we recall the test developed for distributed detection of inputs
in networked systems in [2]. This test, in the context of the HVAC detection
problem, is designed to minimize the probability of false alarm, subject to a
constraint on the probability of detection. We state the primary result of [2],
augmented for the actuation detection problem, in the following lemma:

Lemma 5 A maximally invariant statistic for Problem 4 is

T [zℓ] =
z⊤
ℓ Pℓzℓ

1

Nℓ − 1
z⊤
ℓ

(

INℓ
− Pℓ

)

zℓ

(4)

with

zℓ := FℓQyℓ

Pℓ :=
FℓQuℓu

⊤
ℓ Q

⊤F⊤
ℓ

u⊤
ℓ Q

⊤F⊤
ℓ FℓQuℓ

Nℓ :=
T

2
− ‖Nℓ‖0 − 1

(5)

and where the exploited quantities satisfy

F⊤
ℓ Fℓ = IT

2

− ~Yℓ(~Y
⊤
ℓ
~Yℓ)

−1~Y ⊤
ℓ

Q = IT
2

⊗ [ 0 1 ]

~Yℓ =















~y⊤ℓ (0) 1
~y⊤ℓ (2) 1
~y⊤ℓ (4) 1

...
...

~y⊤ℓ (T ) 1















(6)

Applying the maximally invariant statistic, and following the same reasoning
as in [2], we write the test for detecting actuator failures as:
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Corollary 6 A distributed test minimizing the probability of false alarm and
providing a constant probability of missed detection of α for Problem 4 is

φℓ(zℓ) =

{

H0 if Tℓ[zℓ] > F−1

1,Nℓ−1
(α)

H1 otherwise
(7)

where F−1
n,m(α) is the inverse central cumulative F -distribution of dimensions

n and m.

We remark that test (7) can be performed in simultaneously across multiple
zones and it is invariant to the non-local measurements. This comes with a price,
namely, the test exploits half the measurements for testing (the other half are
used to establish invariance). To maximize the performance across this reduced
data set, the following subsection introduces an adaptive actuator diagnostic
signal.

3.2 Diagnostic Input Design

The performance of the detector is significantly affected by the actuation input
driving the test. In this subsection, and motivated by the performance of the
adaptive model-based detector in [1], we design a diagnostic input that attempts
to maximize the divergence of test.

To design the diagnostic actuation input, we observe that the discrete-time
dynamics for measurement of the j-th zone can be written as

zj(k) = Gkzj(k) + nj(k)

yj(k) = Czj(k) + vj(k)
(8)

where

zj(k) =
[

xj(k), mjα
T
j , bj , χj,w + bjθj

]T

Gk =









1 ~y⊤
j (k)− 1

⊤yj(k) µjuj(k) 1
0 I 0 0
0 0

⊤ 1 0
0 0

⊤ 0 1









nj(k) =
[

wj(k) +
∑

i∈Nj
αijvi(k), 0

⊤, 0, 0
]T

C =
[

1 0
⊤ 0 0

]

(9)

As a heuristic, we assume (strictly for the purpose of designing an actuation
input) that the true values of αij are equal to the corresponding values pro-
vided through zj(k). Under this assumption, the measurements have a Gaussian
distribution, parameterized by µj , written as

fj(yj(k)) =
1

√

2π
(

CΣk,jC⊤ + σ2
j,v

)

exp

{

−
1

2

(yj(k)−Cmk,j)
2

(CΣk,jCT + σ2
j,v)

}

(10)
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where, assuming Σj,n = E

[

nk,jn
⊤
k,j

]

mk+1,j = (G(k)−Kk,jC)mk,j +Kk,jyj(k)

Σk+1,j = (G(k)−Kk,jC)Σk,jG
⊤(k) +Σj,n

Kk,j = G(k)Σk,jC
⊤
(

CΣk,jC
⊤ + σ2

j,v

)−1

(11)

are the mean and covariance of zj(k) and the observer gain, respectively.
To identify the actuator input for evaluating the detection problem, we utilize

an information-theoretic approach and choose the actuator input to maximize
the next step Kulbach-Liebner [7] divergence according to

uk = arg max
0≤u≤1

−E [lj(yk)] (12)

where lj(yk) is the log-likelihood ratio,

lj(k) = lj(k − 1) + ln
fj(yj(k)|µj = 0)

fj(yj(k)|µj = 1)
. (13)

This approach is common in information theory as it results in the control se-
quence that maximizes the next step log-likelihood ratio. Since the log-likelihood
is a convex function of the control sequence, it is maximized at the extreme points
of the range of the control sequence as denoted as follows

uk =

{

1 if E [lj(k + 1|uj(k) = 1)] > E [lj(k + 1|uj(k) = 0)]
0 if E [lj(k + 1|uj(k) = 1)] ≤ E [lj(k + 1|uj(k) = 0)]

(14)

In an HVAC system this equates to either turning the HVAC actuator completely
on or completely off. While this control input is advantageous for fault detection
and diagnostics, it comes at a trade-off with the performance of the HVAC system
since the control input does not correspond to the optimal building operation
set-point.

It will be shown in the experimental evaluation section that the parameter-
invariant detector requires significant monitoring periods to accurately determine
whether an actuator has failed. Moreover, fault detection schemes that require
long monitoring periods may not be necessary to identify a working actuator
if the actuator has a significant effect on the temperature. For this reason, the
parameter-invariant detector is best suited to replace the model-based adaptive
detector in the previous work.

4 Experimental Testbed

The KTH Royal Institute of Technology main campus in Stockholm, Sweden
consists of over 45 buildings which house roughly 559 laboratories, 2569 office
rooms and 87 lecture halls. The campus has an HVAC system managed by a
centralized SCADA system. The SCADA map of the KTH campus is depicted
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Fig. 1. KTH Royal Institute of Technology campus view from the SCADA system map.

in Fig. 1. Each building is contains at least one Programming Logic Controller
(PLC) units which measure and control the local HVAC system components.
Each of the PLC units in the campus communicates to the SCADA system
through an OPC client/server interface. The KTH HVAC test bed is currently
deployed in the Q-building (denoted by the black circle in Fig. 1). The Q-building
is a multi-story building housing the School of Electrical Engineering with mul-
tiple academic departments, lecture rooms, and laboratories. This building is
equipped with three separate ventilation units for fresh air supply and relies on
a district-managed water supply for induction-based heating and cooling. The
fresh air supply takes place from 7 : 00 AM to 4 : 00 PM, and can be set manually
by demand at other times of the day and weekends.

The HVAC testbed is currently comprised of the second floor of the Q-
building and is depicted in Fig. 2. This floor houses four laboratories (rooms
A225, A213, B230 and the PCB Lab), an office room (A235), the Q2 lecture
hall, one storage room and a boiler room.

Each room in the testbed is considered to be a thermal zone and has a set of
sensors and actuators that can be individually controlled. In the figure, the red
circles depict sensor locations, the green circles illustrate the actuator locations
and the blue circle denotes the external temperature sensor. The available sensors
are temperature (GQ101) and CO2 sensors (GT101)4. The actuators are the flow
valve of the heating radiator (SV201), the flow valve for the air conditioning
system (SV401), the air vent for fresh air flow at constant temperature of 21 ◦C

4 In this section we note, in parentheses, the PLC tags corresponding to each sensor
and actuator such that they can be referenced in the downloaded KTH HVAC testbed
data.
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S7

A1

A225

A235

A213

B230 Boiler Room

Q2

PCBStorage
Room Lab

Fig. 2. KTH HVAC testbed at the second floor of the Q-building at KTH. Each of the
five rooms considered contain sensors and actuators used for HVAC control. Additional
sensors are located in the corridor and outside of the building.

(ST901) and the air vent for air exhaust to the corridor (ST902). Each actuator
can be set between 0% and 100%. As an illustration, the HVAC system in room
A225 is depicted in Fig. 3.

The HVAC testbed is developed in LabVIEW and is comprised of two sepa-
rate components: the experimental application and a database/web server sys-
tem. The database is responsible for logging the data from all HVAC com-
ponents in real-time, which is publicly available through a web server (http:
//hvac.ee.kth.se). Additionally, the experimental application is developed by
each user and interacts with the Data-logging and Supervisory Control (DSC)
module in the HVAC Testbed Server, which connects to the PLC through and
OPC client/server. This component allows for real-time sensing, computation
and actuation. Even though the application is developed in LabVIEW, MATLAB
code is integrated in the application through a Mathscript zone. An overview of
the testbed architecture is shown in Fig. 4.

5 Experimental Results

The evaluation of the actuator fault detector was performed in the KTH HVAC
testbed. To evaluate the parameter-invariant detector performance, multiple ex-
periments were performed utilizing room A225 in Figs. 2 and 3 as the test room.
The air mass of room A225 interacts with the outdoor and corridor air masses
as well as the adjacent rooms, the PCB lab and the storage room (each repre-
senting a unique thermal zone). Since the PCB Lab and Storage room do not
have sensors, we neglect their effect on room A225’s temperature. The effect of
ignoring the potential thermal contribution of these unobservable air masses is
minimized by including room A235 and room A213 as adjacent rooms (or zones).
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Fig. 3. The HVAC system components in room A225, the Automatic Control exper-
imental lab. Various sensors and actuators are available allowing for the control of
ventilation and heating.

Sensors Actuators

PLC

DSC Module

Database

C
o
n
tr
o
l
in
te
rf
a
ce

W
eb

se
rv
er

in
te
rf
a
ce

HVAC Testbed Server

Application

Web browser

Fig. 4. The HVAC system architecture. Users are able to design experiments through a
Labview application and remotely connect to the HVAC testbed. Additionally, through
a web browser any user can download experimental data from the testbed database.

We note that room A225 has four exterior windows and one door connecting to
the common corridor.

To evaluate the actuator fault detector, we attempt to detect an actuator
failure in the air conditioning system, namely whether the fresh air vent, actuator
ST901 in Fig. 3, is stuck in a given position. The system is set to measure the
temperature at five minute intervals. In the following experiments, we neglect
the tests using measurements gathered for less than 30 minutes (6 sampling



Title Suppressed Due to Excessive Length 13

periods), as these tests yield irrelevant results since it requires at least 6 sets of
measurements to calculate the test statistic for the parameter-invariant detector.

To emulate an actuator failure, we simply do not apply the control value given
by the diagnostic input mechanism and leave the air vent closed (as opposed to
physically breaking the actuator). The cooling actuator SV401, the radiator valve
SV201, and the exhaust air vent ST902 were kept at constant values throughout
each experiment. Additionally, the actuators in the adjacent rooms were allowed
to operate normally, as in a normal operating scenario where we wish to not only
detect the actuator failure, but do so in a distributed manner without PLC co-
ordination. Under these testing conditions, the parameter-invariant detector was
evaluated for the scenarios which exhibited erratic performance in [1]. Specifi-
cally, these scenarios are (1) detecting an actuator fault when the windows are
open/closed and (2) detecting there is not an actuator fault when the windows
are open. The reason for not evaluating the parameter-invariant detector when
the actuator is working and the windows are closed is because the steady-state
detector in [1] is very accurate under this scenario, thus the parameter-invariant
detector is unlikely to be utilized.

To evaluate the parameter-invariant detector when an actuator is in fault and
the windows are closed, 100 unique experiments were performed, each lasting
three hours. For the parameter-invariant detector, we specify a probability of
miss (probability of deciding there was no fault when there actually was a fault)
of 0.10. The statistical results of these tests are shown in Fig. 5, where the upper
subplot illustrates the average value of the test statistic (solid black line) versus
the maximum and minimum value of the test statistic (dotted black lines) and
the test decision threshold (dashed red line) for the tests, while the lower subplot
illustrates the actual rate of miss by the black x’s and the specified probability
of miss of 0.10. When a test statistic is above the the threshold, then the test
decides there was no fault (which is incorrect in these experiments), and by
specification should happen with a probability of 0.10, regardless of the test
time. From Fig. 5, we observe that, the actual rate of missed detection varies
between 0.06 to 0.16, which is very near the specified rate of 0.10, for all time.
Averaging the miss rate over the three hours yields a rate of 0.101, which is
nearly identical to the probability of miss specification. These results illustrate
that when the windows are closed, the parameter-invariant detector accurately
detects actuator faults as specified by the probability of miss.

Consistent with previous experiments, to evaluate the parameter-invariant
detector when an actuator is in fault and the windows are open, 100 unique ex-
periments were performed, each lasting three hours and employed the same spec-
ified probability of miss (0.10). The statistical results of these tests are shown in
Fig. 6, where the plots follow the same structure as in Fig. 5. In Fig. 6, we observe
very similar performance as in Fig. 5. This similarity is expected since by chang-
ing the state of the window (opening the window), we have merely changed the
interaction between room A225 with the outside. Since the parameter-invariant
detector is designed to be invariant to different thermal zone interactions, the
performance (in terms of the probability of miss) should be unaffected. In com-
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Fig. 5. Experimental parameter-invariant detector results when the actuator is at fault
and the window is closed.
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Fig. 6. Experimental parameter-invariant detector results when the actuator is at fault
and the window is open.



Title Suppressed Due to Excessive Length 15

parison to the performance of the model-based detector in [1], we observe that
the parameter-invariant detector has nearly constant performance (in terms of
probability of miss) with both the state of the window and with time, while the
model-based detector exhibits varying performance with both the state of the
window and with time. Having near-constant performance (which matches the
specification) is preferred as it allows a building manager to reliable select the
probability of missed detection of actuator fault.

To evaluate the parameter-invariant detector when an actuator is working
properly and the windows are open, 25 experiments were performed, each last-
ing three hours. For the parameter-invariant detector, and consistent with the
previous experiments, we specify a probability of miss to be 0.10. The statistical
results of these tests are shown in Fig. 7, where the upper subplot follows the
same structure as in Figs. 5 and 6. The lower subplot illustrates the rate of false
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Fig. 7. Experimental parameter-invariant detector results when the actuator is working
and the window is open.

alarm (deciding there is an actuator fault when in reality there is not a fault)
versus time. In these experiments (and opposite of the previous experiments) a
false alarm occurs when the test statistic is below the threshold. In Fig. 7, we
immediately observe that the test statistic is (in general) increasing as the test
time increases. This is desirable since the larger the test statistic, the more likely
it is to claim no fault (which is true in these experiments). As time increases,
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we observe from the lower subplot that the rate of miss is (in general) decreas-
ing. The reason for non-monotonic performance is explained by the fact only 25
experiments were used to evaluate the parameter-invariant detector when the
actuator is working and the windows are open. These results illustrate that per-
formance (in terms of false alarm rate) can be improved (decreased) by allowing
the parameter-invariant detector to run for longer time periods. For this room
and configuration, a false alarm rate of 0.05 can be achieved by allowing the
parameter-invariant detector to run for 3 hours. Depending on the zone (room)
and its interactions with the adjacent zones, the probability of false alarm will
vary. However, this variance is generally acceptable in practice so long as the
probability of miss remains constant since it implies that by simply letting the
test run longer will yield improved performance.

6 Discussion and Future Work

The parameter-invariant detector introduced in this work for building HVAC
systems is based on a previously designed CFAR detector for networked systems,
where the parameter-invariant detector with constant performance is designed
to replace the model-based detector with unpredictably varying performance in
the HVAC FDD scheme previously developed. The parameter-invariant detector
is designed to maintain a constant probability of missing a fault, invariant to the
unknown and time-varying building parameters. An experimental testbed using
a real HVAC system is described that allows automatic sensing and actuation of
several HVAC components. Future work includes a full evaluation of the two-tier
fault detection strategy on the KTH HVAC testbed and extending the detection
theory to handle the detection of faulty sensors and imminent actuator failure
(i.e. detecting whether the actuator range of motion has decreased).
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