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ABSTRACT
This work considers hypothesis testing in networked sys-
tems under severe lack of prior knowledge. In previous work
we derived a centralized Uniformly Most Powerful Invari-
ant (UMPI) approach to testing unknown inputs in un-
known Linear Time Invariant (LTI) networked dynamics
subject to unknown Gaussian noise. The detector was also
shown to have Constant False Alarm Rate (CFAR) proper-
ties. Nonetheless, in large-scale systems, centralized testing
may be infeasible or undesirable. Thus, we develop a di-
stributed testing version of our previous work that utilizes a
statistic that is maximally invariant to the unknown param-
eters and the non-local/neighboring measurements. Similar
to the centralized approach, the distributed test is shown to
have CFAR properties and to have performance that asymp-
totically approaches that of the centralized test. Simulation
results illustrate that the performance of the distributed ap-
proach suffers marginal performance degradation in compar-
ison to the centralized approach. Insight to this phenomena
is provided through a discussion.
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1. INTRODUCTION
Driven by the possibility of augmenting the flexibility and

the reconfiguration capabilities of very complex systems, in
many applications the current trend is to exploit multitudes
of sensors and actuators, as in environmental monitoring [1],
building energy management [2, 3], wireless communica-
tions [4] and power grids [5, 6]. The trend, however, comes
with drawbacks: the high number of devices induces an in-
creased possibility of faults with potentially disruptive rip-
ple effects, like extended blackouts in power systems. There
is thus a factual need for distributed fault detection algo-
rithms.

We then consider that in every system, including dynam-
ically networked ones such as the smart grid and building
thermal dynamics, fault detection algorithms undoubtedly
benefit from the knowledge of accurate models [6, 1, 3].
However, obtaining accurate models is often difficult or un-
realistic due to the complexity of the system itself or the
effects of environmental disturbances. For instance, in the
smart grid security domain, it is common to assume the ad-
mittance of a transmission line is known [6]; however, the
power line admittance is known to change with the temper-
ature, humidity, and power flow, which leads to inaccurate
models. Similarly, in building thermal dynamic modeling,
even the simplest first-order heat equation model requires
the knowledge of inter air-mass interactions, which change
with the state of windows and doors (open or closed), the
prevailing winds, the temperature, and the humidity. Thus,
it is necessary to design fault detection schemes robust to
these complex interactions.

If one were to consider large-scale networked systems, cen-
tralized approaches which apply model identification tech-
niques in cascade with hypothesis testing may not be feasi-
ble. Similarly, when there are limited measurements, these
identification and testing approaches tend to yield unex-
pected results, primarily due to the lack of information suit-
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able for accurate parameter identification, see, e.g., [7, Ex-
ample 1, page 46]. In this situation, distributed testing
approaches that are designed to be invariant to the actual
model parameters can result in better performance. In this
paper we thus analyze if it is possible to derive distributed
decision rules that do not depend on the model parameters
and that are, in some sense to be defined, optimal with re-
spect to the available information.

Literature review. Centralized classical hypothesis testing
approaches usually use Generalized Likelihood Ratio (GLR)
strategies, relying on obtaining Maximum Likelihood (ML)
estimates of the unknown parameters under the various hy-
potheses and then testing their likelihood ratios. Maximally
Invariant (MI) tests [8, Sec. 4.8] instead perform some ad-
ditional preliminary operations so that the test is not in-
fluenced by the nuisance parameters. If MI tests are Uni-
formly Most Powerful Invariant (UMPI), then when the
Signal to Noise Ratio (SNR) tends to infinity (e.g., when
the number of measurements approaches infinity, see [9]),
Generalized Likelihood Ratio (GLR) and UMPI strategies
are asymptotically equivalent. When small datasets are
available, nonetheless, MI tests can outperform GLR ap-
proaches [10].

Invariant strategies have been used in several applications,
like detection of structural changes in linear regression mod-
els [11] or in spectral properties of disturbances [12]. The
literature focuses mainly on finding invariant methods in
linear models with unknown or partially known covariance
matrices [13, 14, 15, 16, 17], with efforts specially in find-
ing tests that exploit maximally invariant statistics and that
have Constant False Alarm Rate (CFAR) properties.

Recently, there has been substantial research in distri-
buted GLR tests for networked systems, e.g., in environ-
mental monitoring, smart grid fault detection, and building
HVAC failure detection and diagnostics applications. While
all these approaches yield asymptotically accurate results as
the number of measurements increases, their performance
under limited measurements is sporadic and unpredictable.
This motivates the need for distributed testing techniques
which have predictable performance regardless of the num-
ber of measurements.

In our previous work [18], we considered the centralized
detection of unknown inputs in unknown dynamically net-
worked Linear Time Invariant (LTI) Gaussian systems and
developed a UMPI test with CFAR properties. This work
not only showed the existence on a UMPI test, but also
established an upper bound on the performance of any di-
stributed detection scheme.

Statement of contributions. here we again focus on LTI-
Gaussian models, but reduce the prior information to be
the smallest possible. More precisely, we assume the knowl-
edge of just the fact that the system dynamics is networked,
LTI with Gaussian driving noises and, furthermore, a weak
knowledge on the structure of the input fault. We thus de-
velop a distributed CFAR test that is invariant to the un-
known parameters and the non-local/neighboring measure-
ments describing the system. The distributed test is then
numerically evaluated against the centralized test developed
in [18] as well as the best case (assuming a known model)
and the worst case (assuming no model) scenarios, where

it is shown empirically that the distributed test approaches
the performance of the centralized UMPI test.

Structure of the paper. Section 2 reports the needed ba-
sic results and definitions on invariant hypothesis testing.
Section 3 formulates precisely the problem considered. We
propose our testing technique along with its statistical char-
acterization in Section 4. Section 5 numerically compares
the performance of the distributed detector against the per-
formance of the centralized UMPI detector in [18] and strate-
gies endowed with more prior information and no prior infor-
mation for different operating points and systems. Finally,
Section 6 reports some concluding remarks and proposes fu-
ture extensions.

Notation. we use plain lower case italic fonts to indicate
scalars or functions with scalar range, bold lower case italic
fonts to indicate vectors or functions with vector range, and
plain upper case italic fonts to indicate matrices. We also
use ⊗ to denote Kronecker products, and ei,j to denote the
elementary vector of dimension i consisting of all zeros with
a single unit entry in the j-th position.

2. HYPOTHESIS TESTING
PRELIMINARIES

Commiserate with [8], we recall definitions and methodol-
ogy employed in designing UMPI tests. Let y be a r.v. with
probability density f(y ; d, δ) parametrized in d, δ. We de-
fine d to be the set of parameters of interest, and thus δ to
be the set of nuisance parameters, which induce a transfor-
mation group G, i.e., a set of endomorphisms g on the space
of the realizations y [8, Sec. 4.8]. This group of transfor-
mations partitions the measurement space into equivalence
classes (or orbits) where points are considered equal if there
exist g, g′ ∈ G mapping the first into the second and vice
versa.

Definition 1 (Maximally Invariant Statistic [8]) A
statistic T [y] is said to be maximally invariant w.r.t. a
transformation group G if it is:

invariant: T [g(y)] = T [y], ∀g ∈ G

maximal: T [y′] = T [y′′] ⇒ ∃g ∈ G s.t. y′′ = g(y′).

A statistical test, φ, based on an invariant statistic is said
to be an invariant test:

Definition 2 (Invariant Test [8, Sec. 4.8]) Let G be a
transformation group, T [y] a statistic and φ(·) a hypothesis
test. φ is said to be invariant w.r.t. G if

φ
(
T [g(y)]

)
= φ
(
T [y]

)
(1)

for every g ∈ G.

The statistical performance of an invariant test φ is mea-
sured in terms of its size and power, where an invariant test
is desired to be Uniformly Most Powerful Invariant (UMPI):
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Definition 3 (Uniformly Most Powerful Invariant
(UMPI) Test [8, Sec. 4.8]) Let G be a transformation
group, T [y] a statistic and φ(·) a test for deciding between
H0 and H1 that is invariant w.r.t. G. Then φ

(
T [y]

)
is said

to be an uniformly most powerful invariant (UMPI) test
of size α if for every competing invariant test φ′(T [y]) it
holds that

(size) sup
d,δ under H0

Pr
[
φ
(
T [y]

)
= H1

∣∣ d, δ] = α;

sup
d,δ under H0

Pr
[
φ′(T [y]) = H1

∣∣ d, δ] ≤ α;
(2)

(power) Pr
[
φ
(
T [y]

)
= H1

∣∣ d, δ under H1

]
≥

Pr
[
φ′(T [y]) = H1

∣∣ d, δ under H1

]
.

(3)

As a remark, thanks to the Karlin-Rubin theorem [8,
Sec. 4.7, page 124], a scalar maximally invariant statistic
whose likelihood ratio is monotone can be used to construct
an UMPI test.

3. PROBLEM FORMULATION
AND NOTATION

This section introduces a distributed hypothesis testing
problem for deciding whether a signal, driven by unknown
LTI networked Gaussian dynamics, lies also in a given sub-
space. Specifically, we consider a system of M intercon-
nected nodes for which there exists an underlying inter-
connection graph, G(V, E), between the M nodes, where
V := {1, . . . ,M} is the vertex set, with i ∈ V corresponding
to node i, and E ⊆ V × V is the edge set of the graph. The
undirected edge {i, j} is incident on vertices i and j if nodes i
and j share an interconnection, such that the neighborhood
of node i, Ni, is defined as

Ni :=
{
j ∈ V ∣∣ {i, j} ∈ E} (4)

The inter-node dynamics are governed by discrete-time
LTI-Gaussian dynamics

xj(k + 1) = xj(k) +mj

∑
i∈Nj

aji

(
xi(k)− xj(k)

)

+ bjdj(k) + wj(k)

yj(k) = xj(k) + vj(k)

(5)

where:

• k = 0, . . . , T is the time index (T even for notational
simplicity1);

• j = 1, . . . ,M is the agent index;

• the states xj(k)’s, measurements yj(k)’s and inputs
dj(k)’s are scalar;

1For ease of notation and without loss of generality we as-
sume that the available measurements are over a given pe-
riod whose length is fixed ex ante.

• mjaji = mjaij ∈ R and bj ∈ R denote respectively the
gains between xi(k) and xj(k+ 1), and between dj(k)
and xj(k + 1);

• wj(k), vj(k) ∈ R are uncorrelated i.i.d. Gaussian pro-
cess noise and measurement noise with moments

E [wj(k)] = χj,w E [vj(k)] = χj,v,

E

[(
wj(k)− wj

)2]
= σ2

j,w E

[(
vj(k)− vj

)2]
= σ2

j,v.

To compact the notation we let, for j = 1, . . . ,M ,

A :=
[
αij

]

αij :=

⎧⎪⎪⎨
⎪⎪⎩

1−mj

∑
n∈Nj

anj if i = j

mjaij if i ∈ Nj , i �= j
0 otherwise

B := diag [b1, . . . , bM ]

yj := [yj(0), . . . , yj(T )]
�

dj := [dj(0), . . . , dj(T )]
� .

Additionally, we consider the following quantities: let Nj =
{i1, . . . , iJ} be the sorted list of neighbors of agent j. Then

�αj := [αi1j , . . . , αiJ j ]
�

�yj(k) := [yi1(k), . . . , yiJ (k)]
�

�yj :=
[
yT
i1 , . . . ,y

T
iJ

]�
,

i.e., �yj(k) is the set of the measurements of agent j and its
neighbors (sorted lexicographically) at time k, while �yj is
the set of all the measurements of agent j and its neighbors
(again sorted lexicographically).

Consider then a specific agent � ∈ {1, . . . ,M}. The struc-
ture of the input d� is assumed to be as follows:

• u� :=
[
u�(0), . . . , u�(T )

]�
is a desired and known input

signal;

• sf
� :=

[
sf� (0), . . . , s

f
� (T )

]�
, f = 1, . . . , N� are some

known signals defining the space of signals

span
〈
s1
� , . . . , s

N�
�

〉
(with S� :=

[
s1
� , . . . , s

N�
�

]
being a shorthand for the

sf
� ’s);

• θ� ∈ R
N� is an unknown (but constant) signal selection

parameter.

Then

d� = S�θ� + μ�u� (6)

where the scalar μ� is an unknown parameter.
Summarizing, the information owned by agent � is either

available or unavailable as follows:

Assumption 4 Available information:

• the time-series measurements �y�

• the local desired input signal u�;
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• the local nuisance subspace S�;

• the local weight m�;

• the fact that the state dynamics are LTI-Gaussian,
constant in time, and with b� �= 0.

Assumption 5 Unavailable information:

• all the time-series measurements but �yj ;

• all the local desired input signals but u�;

• all the local nuisance subspaces but S�;

• all the local weights but m�;

• the weights A and B;

• the moments of the process and measurement noises
χj,w, χj,v, σ

2
j,w, σ

2
j,v, j = 1, . . . ,M ;

• the parameters θj and μj ;

• the initial conditions x1(0), . . . , xM (0);

• the input signals d1, . . . ,dM .

We then assume the unknown μ� to be either 0 or 1 and
pose the following binary hypothesis testing problem:

Assumption 6 Structure of the fault μ� satisfies ei-
ther one of the two following hypotheses:

H0 (null hypothesis): μ� = 0

H1 (alternative hypothesis): μ� = 1

In words, both hypotheses assume the actual d� to be
unknown, since θ� is unknown, but with a fixed and known
functional structure. H1 additionally assumes the presence
of a known input u�.

Our aim is thus: develop a distributed test that consid-
ers a specific agent � ∈ {1, . . . ,M}, and decides among
the hypotheses H0 vs. H1 in Assumption 6 using only the
information in Assumption 4 and, at the same time, being
invariant to the unavailable information in Assumption 5.

We note that the problem formulated in this section is
fundamentally different from the problem formulated in [18].
Indeed, the novel test should be computable distributedly
and should be invariant also to the non-local measurements
(in addition to all the unavailable information in [18]).

We thus aim to find a test that detects whether node � has
a fault independently of whether a fault exists at any other
node j �= � (fault isolation) and maximizes the probability
of detection (power) for any probability of false alarm (size),
i.e., we require the detector to be UMPI. Formally, thus, we
aim to solve the following:

Problem 7

1. find a statistic T
[
�y�

]
that satisfies Definition 1 (max-

imal invariance) w.r.t. the transformation group in-
duced by nuisance parameters in Assumption 5;

2. find a test φ
(
T
[
�y�

])
that satisfies Definition 3

(UMPI test) w.r.t. to the class of tests based on
the previously introduced maximal invariant statis-
tic T

[
�y�

]
.

4. DISTRIBUTED INVARIANT TESTING
In this section we solve the previously posed problem and

develop a distributed UMPI test that uses only local and
neighboring measurements. The algorithm is based on the
following novel result, solving the first part of Problem 7:

Theorem 8 A maximally invariant statistic that solves
Problem 7-1 is

T [z�] =
z�
� P�z�

1

N� − 1
z�
�

(
IN� − P�

)
z�

(7)

with

z� := F�Qy�

P� :=
F�Qu�u

�
� Q

�F�
�

u�
� Q

�F�
� F�Qu�

N� :=
k

2
− ‖N�‖0

(8)

and where the exploited quantities satisfy

F�
� F� = I k

2
− �Y�(�Y

�
�

�Y�)
−1�Y �

�

Q = I k
2
⊗ [ 0 1 ]

�Y� =

⎡
⎢⎢⎢⎢⎢⎢⎣

�y�� (0) (sf� (0))
� 1

�y�
� (2) (sf� (2))

� 1

�y�
� (4) (sf� (4))

� 1
...

...
...

�y�
� (T ) (sf� (T ))

� 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(9)

Proof. The proof for Theorem 8 is provided in the ap-
pendix.

We observe that the maximally invariant statistic in (7) can
be equivalently written as a ratio of independent chi-square
random variables. This particular ratio is known to follow
an F -distribution, which has a monotone likelihood ratio [8].
Thus we solve the second part of Problem 7 by applying the
Karlin-Rubin theorem, obtaining directly the following:
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Corollary 9 A distributed UMPI test of size α for Prob-
lem 7-2 is

φ�(z�) =

{
H0 if T�[z�] < F−1

1,N�−1(α)

H1 otherwise.
(10)

where F−1
n,m(α) is the inverse central cumulative

F -distribution of dimensions n and m.

We remark that, w.r.t. the algorithm proposed in [18],
test (10) can be performed in parallel and it is invariant to
the non-local measurements. This comes with a price: the
test exploits only about half of the available measurements
(either local or from neighbors). The remaining local and
neighbors’ measurements are in fact lost in the attempt of
obtaining invariance. Since the data set is smaller than the
one exploited in [18], it is expected that the novel test will
perform worse. In the following section we then numerically
evaluate this loss.

5. NUMERICAL EXAMPLES
We perform three Monte-Carlo characterizations as fol-

lows:

1. we fix a desired probability of false alarms α (0.01, 0.1
and 0.25);

2. we randomly generate 500 stable networked systems
of 10 agents like (5) as described in Table 1 (i.e., we
discarded the unstable realizations);

3. for each of the 500 systems (5) we generated exactly
one realization yj(1), . . . , yj(500), j = 1, . . . , 10;

4. for each T = 1, . . . , 500 and each of the 500 systems (5)
we executed the following four tests, all with the same
desired probability of false alarms α:

(a) full information test: assume the perfect knowl-
edge of the weights A and B; the moments of
the process and measurement noises χj,w, χj,v,
σ2
j,w, σ2

j,v; the parameters θj ; the initial condi-
tions x1(j) (j = 1, . . . , 10). Then design the Uni-
formly Most Powerful (UMP) test for testing H0

vs. H1 given all this information;

(b) centralized UMPI test: the UMPI test developed
in [18], which is provided in the appendix using
the notation introduced within this work;

(c) distributed UMPI test (DUMPI): our test (10);

(d) no information test: perform a weighted coin flip
s.t. the desired probability of false alarms α is
met.

The outcomes are then summarized in the following Fig-
ures 1, 2 and 3, that plot for each test and each T the av-
erage correct detection rate reached over the 500 considered
realizations of system 5.

From the previous graphics we draw the following conclu-
sions. Before the number of measurements (proportional to
T ) passes the threshold T

2
−N�−M +1 (independent of the

chosen α), both the centralized and distributed UMPI tests

aj , bj ∼ U [−0.5, 0.5] mj ∼ U [1, 2]
χj,w, χj,v ∼ N (0, 1) σ2

j,w, σ
2
j,v ∼ U [0.1, 1]

Table 1: Random extraction mechanisms for the
generation of the systems (5). N indicates Gaus-
sian distributions, U uniform distributions. All the
quantities are extracted independently.
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Figure 1: Monte-Carlo characterization of the de-
tection tests given α = 0.01.
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Figure 2: Monte-Carlo characterization of the de-
tection tests given α = 0.1. Legend as in Figure 1.
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Figure 3: Monte-Carlo characterization of the de-
tection tests given α = 0.25. Legend as in Figure 1.
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are equivalent to a coin flipping (since the amount of infor-
mation is insufficient to take meaningful decisions). After
that threshold, instead, the two test start increasing their
correct detection rates (with different speeds, depending on
the selected probability of false alarms), discerning better
and better. Eventually they reach the same performance
of the full information-based test, i.e., the best one might
desire. We then notice that the difference in the correct
detection rates between the centralized and distributed ap-
proaches starts small and vanishes quickly. This indicates
that, from practical purposes, the distributed strategy per-
forms well. The reason for such a similar performance be-
tween the centralized and distributed approaches lies in that
the centralized approach from [18] (also provided in the ap-
pendix of this extended abstract), effectively disregards half
of the measurements to achieve maximal invariance. In the
distributed approach, the same measurements that are dis-
carded by the centralized approach are employed to provide
invariance to the local inter-node dynamics.

6. DISCUSSION AND FUTURE WORKS
We considered fault detection in networked Linear Time

Invariant-Gaussian systems. More precisely, we defined a
hypothesis testing problem over the structure of the inputs
of the agents, and then derived a distributed Uniformly Most
Powerful Invariant detector with Constant False Alarm Rate
properties that is invariant to most of the parameters of the
systems. We address the situation where there is little prior
information available, and develop a distributed test starting
from our previous centralized results described in [18]. ‘Re-
markably we obtain a distributed algorithm that has some
capability of detecting faults even if knowledge of the overall
system is really uncertain and the number of measurements
is limited.

As in the centralized case, tests that exploit information
of the system have better performance in terms of false posi-
tives / negatives rates. Nonetheless, the more measurements
that are taken the more the distributed detector is shown to
be perform better, achieving performance of its centralized
counterpart quickly.

The value of the proposed strategy relies in its optimal-
ity properties, being in fact based on a maximally invariant
statistic and being uniformly most powerful. This implies
that in a certain sense it characterizes the performance that
can be achieved when testing the posed hypotheses under
the severe lack of knowledge assumed here.

The main future direction is thus to compare the devel-
oped strategy, both from practical and theoretical aspects,
with the distributed fault detection algorithm that are based
on dynamically identified systems. It is in fact necessary
to understand if there are conditions s.t. the invariant test
developed here is guaranteed to perform better than algo-
rithms that start identifying the test and then perform tests
on the identified model. Additionally, extensions of this
work to feedback control applications where stabilizing con-
trol is desired in the presence of unknown parameters and
disturbances is planned.
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Appendix
This appendix provides a proof for Theorem 8. To identify
a maximally invariant statistic requires identifying the the
group of transformations induced by the unknown parame-
ters. Identifying this group is achieved writing the measure-
ment dynamics for node � in 5 as

y�(k + 1) = y�(k) +m�

∑
i∈N�

a�i

(
yi(k)− y�(k)

)
+ b�d�(k) + n�(k)

(11)

where

n�(k) = w�(k) + v�(k + 1)−
⎛
⎝1−m�

∑
i∈N�

a�i

⎞
⎠ v�(k)

−m�

∑
i∈N�

a�ivi(k).

(12)

We write the time-series concatenation of the measurements
as

y� = �H�ρ+ b�μ�u� + n� (13)

where

�H� =

⎡
⎢⎢⎢⎣

�y�� (0) (sf� (0))
� 1

�y�
� (1) (sf� (1))

� 1
...

...
...

�y�
� (T ) (sf� (T ))

� 1

⎤
⎥⎥⎥⎦

n� = [n�(0), n�(1), . . . , n�(T )]
�

Cov [n�] =σ2
0I + σ2

1

T
2∑

i=0

(
e2ie

�
2i+1 + e2i+1e

�
2i

)
(14)

and ρ is a vector of unknown parameters such that each
row of the time-series measurements is equivalent to the dy-
namics in (11). The unknown parameters induce a group of
transformations on the measurements

G =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g
∣∣∣ g(y�) =σ0

⎛
⎝I −

T
2∑

i=0

cie2ie
�
2i+1

⎞
⎠y�

+ �H�ρ+ μ�b�u�

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (15)

where ci ∈ R is an unknown gain induced by the unknown
correlation and noise realization (which varies with time). It
then follows that Theorem 8 is maximally invariant to the
transformation group induced by the unknown parameters.

Proof. Invariance: Observing the following:

Q

⎡
⎣σ0

⎛
⎝I −

T
2∑

i=0

cie2ie
�
2i+1

⎞
⎠y� + �H�ρ+ μ�b�u�

⎤
⎦

=σ0Qy� + �Y�ρ+ μ�b�Qu�

(16)

and

F�

(
σ0Qy� + �Y�ρ+ μ�b�Qu�

)
= σ0z� + μ�b�F�Qu� (17)

then

T
[
g(y�)

]
=

σ2
0z�P�z�

σ2
0

1
N�−1

z� (IN� − P�) z�

=
z�P�z�

1
N�−1

z� (IN� − P�) z�

=T
[
y�

]
(18)

Maximality: We observe that

T
[
ẑ�

]
= T [z�]

−→ z�
� P�z�

z�
�

(
I − P�

)
z�

=
ẑ�
� P�ẑ�

ẑ�
�

(
I − P�

)
ẑ�

−→ẑ�
�

(
P� − I

z�
� Pz�

z�
� z�

)
ẑ� = 0

−→u�
� Q

�F�
� ẑ� = cu�

� Q
�F�

� z�, ∃c ∈ R.

(19)

and complete the proof for maximality as

u�
� Q

�F�
� ẑ� = cu�

� Q
�F�

� z�

−→ŷ� = cy� + (I − P�) (cy� − ŷ�)

−→ŷ� = g(y�), ∃g ∈ G

(20)
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