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Abstract— This work addresses the design of resilient esti-
mators for stochastic systems. To this end, we introduce a
minimum mean-squared error resilient (MMSE-R) estimator
whose conditional mean squared error from the state remains
finitely bounded and is independent of additive measurement
attacks. An implementation of the MMSE-R estimator is
presented and is shown as the solution of a semidefinite
programming problem, which can be implemented efficiently
using convex optimization techniques. The MMSE-R strategy
is evaluated against other competing strategies representing
other estimation approaches in the presence of small and large
measurement attacks. The results indicate that the MMSE-R
estimator significantly outperforms (in terms of mean-squared
error) other realizable resilient (and non-resilient) estimators.

I. INTRODUCTION

As cyber physical systems become more integrated into
safety critical systems, malicious attacks on sensory informa-
tion can have catastrophic effects. The fusion of additional
sensory information offers a potential for increased security
in these systems. For instance, in modern vehicular cruise
control systems the fusion of velocity estimates from wheel
encoders, inertial measurements units, and GPS information
can be incorporated to not only improve the estimate of the
vehicle velocity, but may also be used to determine whether
any specific sensor measurement has been altered. Thus,
establishing techniques for defending against sensor attacks
that maliciously alter the measurements can significantly
improve both performance and safety in today’s critical
systems.

While there exists a multitude of methods for securing
measurements internally (i.e. encryption), defenses against
attacks on the process the sensors are measuring are rel-
atively weak. Such attacks include spoofing of the GPS
signal, attaching magnetic wave altering devices to the anti-
lock brake sensors of vehicles, and placing a heating coils
near temperature sensors. Thus, to ensure the safe operation
of systems whose sensory environments can be altered re-
quires attack defenses beyond sensor encryption. To address
these issues, we have introduced a design framework for
development of high-confidence control systems that can
be used in adversarial environments [6]. The framework
employs system design techniques that guarantee that the
system will maintain a minimum performance, possibly at a
reduced efficiency, under several classes of attacks. Specific
to this work, we consider the design of estimators which are
resilient to maliciously altered sensor measurements.
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Literature review: The design of estimators which are
resilient against faults have been addressed from many points
of view, including fault detection [15], robust control [8],
adaptive control [1], and more generally from estimation
and hypothesis testing [12]. In general, these approaches
address the issue of maximizing some performance measure
with respect to a known or bounded disturbances. In the
context of security against malicious attacks, many of these
approaches are not applicable because of their assumption
that the attack is either known or bounded, with notable
exceptions being approaches which ask for invariance to the
unknown parameters (or attacks) [9]. The remainder of this
literature review focuses on secure estimation.

Secure estimation and control system design in the pres-
ence of disturbances or attacks has received increasing re-
search interest [10], [5], [7], [11], [14], [13]. Most closely
related to the work presented herein is [3], which addresses
the secure estimation and control of linear deterministic
systems under malicious sensor attacks. While the approach
in [3] is shown to stabilize the systems under consideration,
their approach does not consider any statistical properties of
the measurements.

Statement of contributions: Beyond the previous ap-
proaches, this work focuses on the design of resilient estima-
tors for stochastic systems. The primary technical contribu-
tions of this work are: (a) a mathematical formulation of the
design problem for minimum mean-squared error resilient
estimation in stochastic systems; (b) a resilient estimator that
achieves the minimum variance; (c) an implementation of the
minimum mean-squared error resilient estimator using semi-
definite programming; (d) an evaluation of the minimum
variance resilient estimator against other resilient estimation
strategies.

Structure of the paper: Section II identifies notation
and preliminary definitions that will be utilized throughout
the paper. Section III formulates the minimum variance
resilient estimator design problem. A discussion regarding
classical fault-tolerant estimation is provided in sectionIV
while section V presents a candidate minimum mean-squared
error resilient estimator, proves the candidate satisfies the
design problem, and provides a semi-definite programming
implementation. A simulated comparison against other es-
timation strategies is included in section VI, and the final
section provides discussion and future research directions.

II. NOTATION AND PRELIMINARIES

This section introduces notation and preliminaries that
prove useful in this work. We use E [y | z] and Cov [y | z]
to denote the expected value and covariance, respectively,
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of y conditioned on z. For a matrix X , we write ~X to
denote the vector of the concatenated columns of X , and
we write diag (X) to denote the vector formed from the
diagonal elements of X . We employ this notation to recall
the definition of a minimum variance unbiased (MVUB)
estimator [12]

Definition 1 Minimum Variance Unbiased (MVUB) Es-
timator:
Given stochastic measurements y, a stochastic parameter
(or state) x, and an estimator, x̂(y), the estimator x̂ is said
to be unbiased if

E [x̂(y)] = E [x]

and, assuming T := {t | E [t(y)] = E [x]}, have minimum
variance if

∀t ∈ T , E
[
‖x− x̂(y)‖2

]
≤ E

[
‖x− t(y)‖2

]
.

Assuming the first two central moments of x and y are

E
[
x
y

]
=

[
m̃x

m̃y

]
, Cov

[
x
y

]
=

[
Σx Σxy

Σ>xy Σy

]
then the minimum variance unbiased estimator, x̃(y), and its
corresponding covariance, Σ̃, of x, as a function of y, is

x̃(y) = m̃x + ΣxyΣ
−1
y (y − m̃y)

Σ̃x = Σx −ΣxyΣ
−1
y Σ>xy.

(1)

The notation and definitions introduced in this section are
used in the following to motivate and formulate the minimum
mean-squared error (MMSE) estimator.

III. PROBLEM FORMULATION

In this work, we consider the problem of designing re-
silient estimators when an unknown subset of the measure-
ments are altered by unmodeled additive attacks (possibly
malicious in nature). Abstractly, we wish to solve the prob-
lem of finding an estimator, restricted to the class of potential
attack-resilient estimators, that generates a minimum mean-
squared error estimate of the parameter (or state).

We assume there exists a signal s ∈ S ⊆ RN , a zero-mean
noise n ∈ N ⊆ RM having covariance Σn, an unmodeled
sparse attack vector d ∈ D ⊂ RN , an observable state, x ∈
X ⊆ RN , and measurements, y ∈ Y ⊆ RM , linearly related
as [

x
y

]
=

[
F xs F xn 0
F ys (I − Γ)F yn Γ

] s
n
d

 (2)

where F xs ∈ RN×N , F xn ∈ RN×M , F ys ∈ RM×N and
F yn ∈ RM×M denote the linear mapping of the signal and
noise, (s,n), into the observable state and measurements,
(x,y) and Γ ∈ diag

(
{0, 1}M

)
is the attack matrix denoting

the elements of d which are non-zero, such that

d = Γd and 0 = (I − Γ)d.

We assume that J sensors are used to collect the M mea-
surements such that the non-zero entries of d (or equivalently
the unit entries of Γ) equates to whether the correspond-
ing sensor used to collect the measurement was attacked.
Mathematically, we represent this by assuming an attack
vector , θ = [θ1, . . . , θJ ]> ∈ Θ ⊆ {0, 1}J , exists where
θj = 1 (θj = 0) if sensor j is attacked (not attacked), such
that by claiming1 y =

[
y>1 , . . . ,y

>
J

]>
, where yj denotes

the measurements corresponding to sensor j, and Γ can be
defined by θ as

Γ =

 θ1I
. . .

θJI

 . (3)

In the work, we assume that the attack, d, is stealthy:

Definition 2 Stealthy attack: An attack is considered
stealthy if:

∀θ ∈ Θ, Pr [θ|y] < 1 (4)

where, in words, an attack is stealthy if, after sampling, there
is more than one attack vector, θ ∈ Θ, with a non-zero
probability.

We aim to design an estimator for x of the form,

x̂(L) = (F xs −LF ys) s+Ly (5)

where L ∈ L ⊆ RN×M denotes the estimator gain, selected
such that the estimate x̂(L) is:
• Resilient: ∀θ ∈ Θ,

E
[
‖x− x̂(L̂)‖2|θ

]
≤ E

[
‖x− x̂(L̂)‖2|θ̂

]
• Minimum Variance: ∀L ∈ L,

E
[
‖x− x̂(L̂)‖2|θ̂

]
≤ E

[
‖x− x̂(L)‖2|θ̂

]
.

The resilient requirement specifies that the minimum mean-
squared error (MMSE) of the estimate is maximized at
θ̂, while the minimum variance requirement enforces that
the MMSE of the estimate is minimized at L̂. Thus, the
problem of finding the minimum mean-squared error resilient
(MMSE-R) estimator can be stated as

Problem 1 Design a Minimum Mean-Squared
Error Resilient (MMSE-R) Estimator: Minimize
E
[
‖x− x̂(L̂)‖2|θ̂

]
subject to the constraint:

θ̂, L̂ = arg max
θ∈Θ

min
L∈L

E
[
‖x− x̂(L)‖2|θ

]
.

1We note that the structured claim on y does not limit the generality of
this formulation since it can always be satisfied through a re-ordering of
the elements of y, which is equivalent to a rotation in Y (known to be an
information preserving one-to-one mapping).
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The problem in 1 is a maximin (or minimax) problem,
where the solution for the resilient estimator gain, L, occurs
at the saddle point of the mean-squared error function. We
note that problem 1 represents a statistical game, where the
defender first chooses the estimator gain, L, conservatively
such that the attackers best option is to select the attack
vector, θ, equal to θ̂. Before deriving the MMSE-R estimator
in section V, the following section discusses the classical ap-
proach to fault tolerant estimation typically used to determine
whether sensors are faulty.

IV. CLASSICAL FAULT-TOLERANT ESTIMATION

In this section we review the classical fault-tolerant es-
timation approach employed for detecting, identifying, and
removing faulty sensor measurements. The classical fault
tolerant estimator consists of two sequential steps: (a) fault-
detection and isolation and (b) MMSE estimator design. The
fault-detection and isolation scheme is employed to identify
the subset of sensors functioning properly (i.e. not attacked).
Once a subset of sensors are identified as functioning, then
a MMSE estimator is designed. There are a multitude of
approaches to fault-tolerant estimation [15], [10], [5], [7],
[11], where some strategies employ temporal reasoning to
correct incorrect decisions. In the most general of senses, a
fault-tolerant estimator can be expressed mathematically as:

• Fault-Detection and Identification: Given ŷ ∈ Y ,

θ̂ = arg max
θ∈Θ

Pr [θ|ŷ] (6)

• MMSE Estimator Design: Given θ̂ ∈ Θ,

L̂ = arg min
L̂∈L

E
[
‖x− x̂(L)‖2|θ̂

]
(7)

The advantage of the fault-tolerant estimator design is that
once θ̂ is identified, the MMSE estimator can be designed
similar to the MVUB estimator in section II by assuming θ =
θ̂ (i.e. θ̂j = 0 ↔ dj = 0) and using only the safe sensors
to estimate x [15]. Moreover, as Pr

[
θ̂|ŷ
]

approaches one,
the fault-tolerant estimator becomes MVUB

A disadvantage of the fault-tolerant estimator, and one
of the primary contributions of this work, is given in the
following proposition:

Proposition 1 The fault-tolerant estimator in (6) and (7)
is not a minimum mean-squared error resilient (MMSE-R)
estimator.

Proof: To be an MMSE-R estimator requires θ̂ and L̂
to be chosen according to the constraint in (1). Thus. the
fault-tolerant estimator can only be MMSE-R if there exists
a θ̂ ∈ Θ such that

min
L̂∈L

E
[
‖x− x̂(L)‖2|θ̂

]
= max
θ∈Θ

min
L∈L

E
[
‖x− x̂(L)‖2|θ

]
(8)

implying that Θ = {θ̂}, or equivalently,

Pr
[
θ̂|y
]

= 1. (9)

This is contradicted by the assumption that the attack, d, is
stealthy in definition 2
The above proposition illustrates that as the probability of
error for the fault-detection and identification portion of the
fault-tolerant estimator increases, it is less likely to be a
resilient estimate. When d represents a non-malicious dis-
turbance, it may be likely that the probability of identifying
the faulty sensors is high and the fault-tolerant estimate will
yield satisfactory results (this is consistent with its over-
whelming use in real-world applications). However, when
d is malicious in nature, one goal of the attacker is to
remain undetected (i.e. maximize the probability that the
fault-detector will yield an incorrect result). In the presence
of potential malicious attacks, an estimator that minimizes
the worst case scenario (such as the MMSE-R estimator), is
likely to yield more accurate estimates. This point will be
emphasized through a case study in section VI.

V. MINIMUM MEAN-SQUARED ERROR RESILIENT
ESTIMATION

This section formulates the minimum mean-squared error
resilient (MMSE-R) estimator and presents a semidefinite-
programming implementation. We begin by presenting the
MMSE-R estimator, a primary contribution of this work, in
the following proposition.

Proposition 2 MMSE-R Estimator : The MMSE-R
estimator is x̂ = mx + L̂(y −my), where

L̂, σ̂ = arg min
L,σ

σ

s.t. σ ≥ ~L
>
Aθ~L− 2~B

>
θ
~L+ Tr [Σx] , ∀θ ∈ Θ

assuming

Aθ =
(
(I − Γθ) Σy (I − Γθ) + Γθrr

>Γθ
)
⊗ IN

Bθ =Σxy (I − Γ) ,

Σx =F xnΣnF
>
xn, r = ŷ − F yss

Σy =F ynΣnF
>
yn Σxy = F xnΣnF

>
yn.

Proof: The proof is provided in the appendix.
The minimization problem used to determine the MMSE-R
estimator is a convex quadratically constrained optimization
problem which can be evaluated efficiently using convex
optimization techniques.

Different from the fault-tolerant estimator discussed in
the previous section, the MMSE-R estimator minimizes a
worst case bounds on the mean-squared error. This results
in an estimate that simultaneously minimizes the expected
deviation for all attack vectors, θ ∈ Θ. The MMSE-R
estimator only accepts measurements when they are likely
to improve the mean-squared error of the estimate. For
this reason, and unlike other approaches to estimation, the
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MMSE-R is likely to reject all the sensors if the prior signal,
s, is biased. In this work, we focus only on the condition
when the prior signal is known, and leave the design of
resilient statistical estimators for unknown priors as a subject
of future work. The remainder of this section discusses the
robustness of the MVR estimator.

While the MMSE-R estimator ensures the estimate is
resilient to measurement attacks, a quantitative measure of
its resilience is preferable. Since the MMSE-R estimator
was designed to minimize the worst case mean-squared
error, the following lemma provides an upper bounds for
the probability of the state estimate diverging:

Lemma 1 Robustness of the MMSE Estimator : For any
positive threshold η, the probability that the MVR estimator
error exceeds η is:

Pr
[
‖x− x̂(L̂)‖2 ≥ η|θ

]
≤ σ̂

η

Proof: A direct consequence of the Markov inequality
[2].
The robustness of the MMSE-R estimator identifies an upper
bound on the probability that the estimated state diverges
from the true state for a given measurement, ŷ. While a
runtime evaluation of the robustness is useful to identify
when the MMSE-R estimator is inaccurate, a worst-case
evaluation of the estimator robustness is preferred to ensure
the state estimate remains accurate for all attacks. For the
MMSE-R estimator, the worst case robustness is provided
by solving the following minimization problem

max
y∈Y

min
L,σ

σ

s.t. σ ≥ ~L
>
Aθ~L− 2~B

>
θ
~L+ Tr [Σx] , ∀θ ∈ Θ

Similar to the MMSE-R design problem in 1, solving the
worst-case robustness problem requires solving a maximin
optimization problem. Since the set of potential measure-
ments Y is not countable, the maximin problem can not be
solved in the same manner as the MMSE-R design problem
(i.e. by generating a constraint for each element of the set).
Thus, we leave the problem of finding the worst-case mean-
squared error as a subject of future work.

VI. SIMULATION RESULTS

In this section, we present a case study to illustrate the
performance of the MMSE-R estimator. For comparison, we
compare the MMSE-R estimator to two other approaches,
namely:
• Non-Resilient Estimator: The minimum variance un-

biased estimator from section II,
• Optimal Fault Tolerant Estimator: The fault tolerate

detector described in section IV where the detector
exactly removes the attack (i.e. no errors in the fault
detection and identification step).

Each table below represents different attacks scenarios.
Specifically, each entry of the table contains two values:

the upper number represents the Mean Square Error (MSE)
while the lower number is the ratio between the MSE of the
specific state estimator under analysis and the MSE of an
optimal estimator which has full knowledge of the attack. In
the tables, we denote the optimal detector-estimator approach
as ODE, the minimum mean-squared error resilient estimator
as MMSE-R, and the non-resilient estimator as N-R. In this
evaluation, we consider the following linear system

x(k + 1) = .8x(k) + 1 + w(k)

y(k) = 1x(k) + v(k)
(10)

where y ∈ R5, x ∈ R, and w and v are the zero-
mean i.i.d. process and measurement noises, respectively. We
consider different combinations of the process covariance,
σw ∈ {σw(1), σw(2)}, and measurement covariance, Σv ∈
{Σv(1),Σv(2)}, namely

σw(1) =0.1

σw(2) =1.0

Σv(1) =diag ([1, 1, 1, 1, 1, ])

Σv(2) =diag ([10, 1, 10, 1, 10])

(11)

This system is evaluated assuming a window of 6 samples for
the MVR and DR strategies under 5 sensor attack scenarios,
namely : no attacks, 1 small attack, 2 small attacks, 1 large
attack, and 2 large attacks, where a small attack is assumed
to have a magnitude of less than 1 while a large attack has a
magnitude of 10. The results of those evaluations are shown
in the following tables.

TABLE I
MEAN SQUARED ERROR OF STATE ESTIMATE ASSUMING NO ATTACKS

σw(1) σw(2) σw(1) σw(2)Approach
Σv(1) Σv(1) Σv(2) Σv(2)

0.0540 0.1044 0.0947 0.2443ODE
1.00 1.00 1.00 1.00

0.0995 0.2895 0.1518 0.4424MMSE-R
1.84 2.77 1.60 1.81

0.0540 0.1044 0.0947 0.2443N-R E
1.00 1.00 1.00 1.00

In Table I, we consider the case of no attacks and observe
that the ODE and N-R estimators performs better than the
MMSE-R estimator obtaining the same MSE for all different
noise profile combinations. This is a direct result of the fact
that the ODE and N-R estimators being optimal when no
attack is present, while the MMSE-R estimator occasionally
rejects information that was actually non-attacked. We ob-
serve that the MMSE-R has a worst case performance that
is within a factor of 2.77 of the optimal strategies.

When one small attack on one sensor is considered, as in
Table II, we notice that both ODE and MMSE-R estimators
have a small difference. Recalling the ODE approach is the
optimal detector-estimator, the proximity of the MMSE-R
to the ODE approach suggests that it may be better than

1117



TABLE II
MEAN SQUARED ERROR OF STATE ESTIMATE ASSUMING ONE SMALL

ATTACK

σw(1) σw(2) σw(1) σw(2)Approach
Σv(1) Σv(1) Σv(2) Σv(2)

0.0632 0.1587 0.0952 0.2884ODE
1.17 1.52 1.01 1.18

0.0651 0.1612 0.0953 0.2932MMSE-R
1.21 1.54 1.01 1.20

0.1154 0.2124 0.1214 0.3172N-R E
2.14 2.03 1.28 1.29

a realizable ODE. Studying when the MMSE-R provides a
better MSE than a detector-estimator approach is a subject
of future work and will be evaluated on an application-by-
application basis. The non-resilient estimator has about a
factor of 2 worse performance than the MMSE-R approach.

TABLE III
MEAN SQUARED ERROR OF STATE ESTIMATE ASSUMING TWO SMALL

ATTACKS

σw(1) σw(2) σw(1) σw(2)Approach
Σv(1) Σv(1) Σv(2) Σv(2)

0.0729 0.1077 0.2520 0.4369ODE
1.35 1.03 2.66 1.79

0.0998 0.2899 0.3366 0.6271MMSE-R
1.85 2.78 3.55 2.57

0.3768 0.6186 0.3692 0.6688N-R E
6.98 5.93 3.90 2.74

When we increase the number of small attacks, as in
Table III, we notice that the relative performance of the
MMSE-R strategy to the ODE is about the same as when
considering only a single attack; however, the non-resilient
and deterministic performance degrades significantly. We
notice that the relative performance decrease of the non-
resilient estimator is significantly greater when Σv = Σv(1)
as opposed to when Σv = Σv(2). This is a direct result of
the fact that the non-resilient estimator places greater faith
in sensor 2 (assumed under attack in this scenario) when
assuming Σv(1) as opposed to Σv(2). This illustrates the
importance of ensuring that the most reliable sensors are
secure prior to including them in the state estimate.

Table IV shows the performance of the three estimators
when one large attack is injected in one of the sensors.
Consistent with the previous results, we observe that the
MMSE-R and ODE approaches have much better relative
performance than the non-resilient approaches. In compari-
son to the results when one small attack is assumed (i.e. Table
II), we notice that the MMSE-R and oracle have identical
performances under both scenarios.

TABLE IV
MEAN SQUARED ERROR OF STATE ESTIMATE ASSUMING ONE LARGE

ATTACK

σw(1) σw(2) σw(1) σw(2)Approach
Σv(1) Σv(1) Σv(2) Σv(2)

0.0632 0.1587 0.0952 0.2844ODE
1.17 1.52 1.01 1.16

0.0745 0.2798 0.1353 0.3081MMSE-R
1.38 2.68 1.43 1.26
2.362 3.6254 0.2071 0.9257N-R E
43.74 34.72 2.19 3.80

TABLE V
MEAN SQUARED ERROR OF STATE ESTIMATE ASSUMING TWO LARGE

ATTACKS

σw(1) σw(2) σw(1) σw(2)Approach
Σv(1) Σv(1) Σv(2) Σv(2)

0.0629 0.1077 0.1243 0.3215ODE
1.16 1.03 1.31 1.32

0.1440 0.2952 0.1838 0.4527MMSE-R
2.67 2.83 1.94 1.85

9.6730 14.5986 9.0457 18.2776N-R E
179.12 139.83 95.52 74.82

The final table, Table V, shows the case of large attacks
on two sensors measurements. Overall we notice that the
ODE performs better than the other approaches followed in
order by the MMSE-R estimator and the N-R estimators. The
MMSE-R performs well when the variance of the noise is
low and the attacks are small. The N-R estimator performs
well if there are no attacks otherwise its error diverges as
we increase the number of sensor under attacks and the
magnitude of the attacks.

VII. DISCUSSION AND FUTURE WORK

In this work, we introduced a minimum mean-squared
error resilient (MMSE-R) estimator for stochastic systems.
The results indicate that the MMSE-R estimator performs
well as compared to an optimal detector-estimator which
assumes full knowledge of the attack space (i.e. which
sensors are attacked). Observing that the optimal detector-
estimator is unrealizable it is a subject of future work to
evaluate the performance of the MMSE-R estimator on an
application-by-application basis to determine scenarios when
the MMSE-R outperforms a detector-estimator approach and
vice versa. Under the assumption that the MMSE-R estimator
has accurate knowledge of the statistical profile of the sen-
sors, it is shown to significantly outperform a deterministic
resilient estimator (i.e. a resilient estimator that does not
consider the statistical profile of the measurements). As
another future research direction, we intend to analytically
evaluate how errors in the noise profile assumptions affect
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the resilience of the MMSE-R estimator.
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APPENDIX

To prove the estimator in proposition 2 is the MMSE-
R that solves problem 1, we begin by writing the first and

second central moments of x and y as

E
[
x
y

]
=

[
F xss

F yss+ d

]
Cov

[
x
y

]
=

[
Σx Σxy(I − Γ)

(I − Γ)Σ>xy (I − Γ) Σy (I − Γ)

]
+

[
0 0

0 E
[
dd>|θ

] ]
(12)

where, given a realization (sampling) of y, ŷ, the maximum
likelihood estimate of the covariance of d is given by the
sample covariance,

E
[
dd>|θ

]
= Γ (ŷ −my) (ŷ −my)

>
Γ = Γrr>Γ.

It then follows that:

E
[
‖x− x̂(L)‖2|θ

]
= E

[
‖x− ((F xs −LF ys) s+Ly) ‖2|θ

]
= E

[
‖x− F xss−L (y − (F yss+ d) + d) ‖2|θ

]
= E

[
‖x− E [x]−L (y − E [y])−Ld‖2|θ

]
= Tr

[
Σx − 2L(I − Γ)Σ>xy

]
+ Tr

[
L(I − Γ)Σy(I − Γ)L>

]
+ Tr

[
LΓ

(
E
[
dd>|θ

])
ΓL>

]
= Tr [Σx]− 2Tr

[
(I − Γ)Σ>xyL

]
+ Tr

[
L
(
(I − Γ)Σy(I − Γ) + Γrr>Γ

)
L>
]

= ~L
>
Aθ~L− 2~B

>
θ
~L+ Tr [Σx]
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