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Abstract—The paper studies the problem of constructing
assurance cases for embedded control systems developed using
a model-based approach. Assurance cases aim to provide a
convincing argument that the system delivers certain guaran-
tees, based on the evidence obtained during the design and
evaluation of the system. We suggest an argument strategy
centered around properties of models used in the development
and properties of tools that manipulate these models. The paper
presents the case study of a resilient speed estimator for an
autonomous ground vehicle and takes the reader through a
detailed assurance case arguing that the estimator computes
speed estimates with bounded error.
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I. INTRODUCTION

Cyber-physical systems (CPS) are often deployed in crit-

ical environments, where human life and safety, as well

as success of expensive missions, depend on the system

being able to perform its functions in adverse conditions

that are hard to predict in advance. These adverse conditions

may include faults, unpredictable environments, or malicious

activity. To succeed, the system must be designed to be

resilient to these conditions. A substantial fraction of CPS

design efforts are spent of establishing and guaranteeing

resilience.

As CPS become more and more complex, providing such

resilience guarantees is more and more difficult. Rigorous

model-based design techniques, extensive verification and

validation (V&V) are all necessary to ensure resilience.

However, these activities need to be performed in a con-

certed fashion to make sure that all efforts are consistent

and nothing important is missed. Design and V&V activi-

ties yield large amount of artifacts – such as requirement

specifications, test and verification results, design reviews,

etc., – that can serve as evidence that the system achieves

the desired goals. However, evaluating consistency between

different evidence items and any potential gaps is a daunt-

ing task that requires a deep understanding of the system

requirements, its intended requirements, design approaches,

etc. Assumptions made in the process of design and V&V

are critical for proper understanding of the available evi-

dence.

In a large CPS design project, when a large team is

engaged in design and V&V activities it can be difficult

to maintain a centralized, coherent view of the system and

its associated evidence in all its detail. It can be even more

difficult to communicate this view to regulators who need

to evaluate the system for safety and grant permission for

its use. Assurance cases have been proposed as means to

organize the evidence into a coherent argument that captures

what evidence is available, what assumptions have been

made in the design process, how each piece of evidence

contributes to the overall assurance, etc.

There is no clear understanding yet, however, how to

build an assurance case for a given resilience property,

combining together arguments performed at different levels

of abstraction and using different reasoning techniques. In

this paper, we consider a case study of one component in a

resilient control system, namely a resilient speed estimator

(RSE) for an autonomous ground vehicle. We construct a

detailed assurance case for the component that covers both

a mathematical model of the state estimator and its physical

environment, as well as a software implementation of the

state estimation algorithm. The purpose of the case study

is to gain understanding of what levels of modeling are

involved in the design and implementation of a control

system, what reasoning techniques are used at each level,

and what assumptions are likely to be made at each level, as

well as how these assumptions can be justified by guarantees

established in a lower-level model. While the models con-

sidered in the case study are specific to the control system

and its intended deployment platform, we believe that the

modeling levels and assumptions encountered on each level

in this case study are typical of many other CPS control

problems.

The paper is organized as follows. Section II introduces

the concept of assurance cases and discusses the main

strategy employed in the development of our assurance case.

Section III describes the robotic platform and the problem of

resilient state estimation. Section IV presents the assurance

case for the RSE. We conclude with a discussion of our

approach to the assurance case construction, and the role of

the assurance case in the context of the whole vehicle.
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Figure 1. Argument node types

Figure 2. Model-manipulation strategy

II. ASSURANCE CASES

In a straightforward generalization from [1], we define

an assurance case as a documented body of evidence that
provides a convincing and valid argument that a system has
desired critical properties for a given application in a given
environment. A common example of such a critical property

is system safety, in which case the argument is known as a

safety case.

A commonly used notation for expressing assurance cases

is Goal-Structuring Notation (GSN) [2]. In GSN, the argu-

ment is represented graphically. A goal node states the claim

in an argument, a strategy node decomposes the further

argument into sub-claims. Alternatively, an evidence node

can refer to a direct support for the claim. There are also

special nodes to express assumptions and context for the

argument. In this paper, we use a similar notation. However,

in our case study, all claims (except where noted) are using

the same strategy, which is described below. To avoid dupli-

cation and simplify visual representation of the argument,

we therefore do not use strategy nodes and connect the

claim nodes directly to their sub-claims. Where needed, the

strategy is described in the text. Nodes used in argument

fragments in this paper are summarized in Figure 1.

Model-manipulation strategy: Throughout the argu-

ment, we rely on what we call a model-manipulation strat-

egy. The structure of the argument is visually illustrated in

Figure 2. This strategy is related to the from-to assurance

case pattern, described in [3], that targets generative model-

based development methods and is a simplified, one-step

application of the same idea. In our case, we make a claim

about the application of an analysis algorithm or some other

transformation to a given model. This application may be

subject to additional assumptions. For example, we apply

discretization to a continuous-time model. In order to claim

that the discrete-time model accurately describes the real

Figure 3. LandShark vehicle

system, we need to show that discretization is correctly

performed, under the assumption about sampling rates of

sensors on the platform, and that the continuous-time model

was accurate, in the first place. We thus obtain two sub-

claims. The first one, which we refer to as the technique

sub-claim, is about the application of the technique. It does

not need further argument and appeals to the evidence about

the technique, such as proofs of the algorithm or tool qualifi-

cations. The second sub-claim, called the model sub-claim,

is about the model itself. We may have to further extend

the argument that the claim about the model is justified.

The model-manipulation strategy can be applied iteratively,

where the model sub-claim is again argued using the same

strategy. In Section IV, we will present an assurance case

constructed in this way.

III. CASE STUDY

A. Problem definition and design approach

We study the construction of assurance cases in the

context of a resilient cruise control system of LandShark 1,

a fully electric Unmanned Ground Vehicle (UGV) shown in

Figure 3. In our scenario, the operator specifies the desired

vehicle speed, while the on-board control has to ensure

that the desired speed is maintained, even in the presence

of malicious activity aimed to disrupt the operation of the

vehicle. A crucial part of the control system is a state
estimator, which receives inputs from sensors and fuses

multiple streams to derive an estimate for the system state.

In our case study, the only state variable is vehicle speed.

Speed readings can be obtained from wheel odometry and

GPS sensors.

In this work, we consider attacks on sensor data, which

result in wrong values being delivered to the state estimator.

These attacks may be external to the vehicle, resulting

from sensor spoofing, or internal, when the attacker can

manipulate messages on the vehicle bus.

1See http://www.blackirobotics.com/LandShark UGV UC0M.html.
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B. Resilient speed estimation

The estimation of the vehicle speed is performed follow-

ing the technique presented in [4], which follows closely

the seminal work in [5] and [6], where recent results on

error correction over the reals and compressed sensing are

used to derive secure state estimators when system sensors

or actuators are under attack [7].

In [4] it is shown that the state (speed) can be estimated

using N sensors measured at M time steps as the solution

to the following minimization problem

argmin
E,x

‖E‖l1/l0
s.t. |Y − φ(x,U)−E| ≤Δ

(1)

where x is the state to be estimated, U are the applied

actuator inputs, Y ∈ �N×M represents a matrix of mea-

surements, φ maps x and U onto �M×N , Δ ∈ �N×M
+ has

elements corresponding to the worst-case sensor uncertainty

bounds, and E ∈ �N×M denotes a matrix with non-zero

entries corresponding to the estimated sensor attack values.

Each row of Y (and likewise E) corresponds to one of the

N sensors, such that the objective in (1) is equivalent to

minimizing the number of rows of E with a non-zero entry

(i.e. minimize the number of sensors which are estimated to

be attacked). It is assumed in [4] that the (possibly altered)

sensor measurements Y, applied actuation U, mapping φ,

and worst-case uncertainty Δ are provided.

C. Implementation strategy

We employ a model-centric approach to develop and

implement the state estimator. In the case study, the Land-

Shark vehicle is running the ROS middleware [8]. In ROS,

a control system is built as a collection of periodic or

aperiodic nodes that communicate via a publish/subscribe

mechanism. We use the tool ROSLab [9] to describe the

architecture of the control system. We model the resilient

state estimator as a single periodic node that publishes

speed estimates and subscribes to individually published

sensor streams. The node invokes the platform-independent

step function that solves the optimization problem in (1).

The solver is generated using the CVXGEN tool [10].

ROSLab generates a ROS wrapper for the step function that

introduces subscribers and publishers according to the model

of the state estimator node, and invokes the state estimator

periodically at the rate specified in the model.

IV. ASSURANCE CASE FOR THE LANSSHARK RESILIENT

SPEED ESTIMATOR

A. Overall assurance case structure

The top-level claims of the assurance case are shown in

Figure 4. The argument is partitioned into two parts. One

part is concerned with the algorithmic correctness of the

state estimator. We refer to this part of the assurance case as

Figure 4. Top level claims of the assurance case

the control-level argument, since it deals with mathematical

models of the estimator and relies on control-theoretic

reasoning about these models. The other part addresses the

implementation of the state estimator algorithm and the way

it is deployed on the LandShark platform.

The argument also specifies assumptions and the im-

plementation context. We rely on three categories of as-

sumptions. Attack assumptions represent our model of the

attacker capabilities. We consider attacks on sensor data

and do not restrict the attacker’s capability to manipulate

a stream of sensor data. However, we assume that less

than half of the redundant sensors are attacked. We have

three sensors that provide speed data and thus assume that

no more than one is attacked at any time. Given that the

LandShark platform has three speed sensors, we assume

that at most one sensor can be compromised at any time.

There is no direct way to prove that this assumption holds,

since it describes the limitation on the capability of the

attacker. Indirect justification for the attack model can be

derived from the implementation of the control system. In

particular, sensors are implemented as different ROS nodes

and publish their readings on separate ROS topics, making it

more difficult for an attacker to compromise multiple sensor

streams. Environmental assumptions describe the intended

operating environment of the vehicle. These assumptions are

used in evaluating the accuracy of the model of LandShark

dynamics. We generally assume that the robot is operated on

dry, almost level surface and is driving in an almost straight

line. These assumptions can be validated in deployment,

when deciding whether the robot is fit for a given mission.

Finally, platform assumptions and the implementation con-

text deal with the properties of the LandShark platform.

Here, we assume a certain sampling frequency, expected

latency of sensing and actuation, maximum actuation jitter

(that is, deviations from periodic application of the control

output to actuators), etc. These assumptions need to be

validated on the platform and, if an assurance case for the
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whole vehicle is constructed, should correspond to claims

made in other parts of the assurance case.

B. Control-level arguments

The structure of the control-level argument is shown in

Figure 5.

Main control-level claim: The first control-level claim,

immediately derived from the top-level claim of the assur-

ance case, is that the resilient state estimation algorithm

achieves bounded state estimation. The algorithm operates

on a relation between measurements, inputs, and the state

of the system. The algorithm requires that less than half of

the sensors are compromised, thus our attack assumptions

match the expectations of the algorithm. The evidence for

algorithm correctness is the proof published in [4]. The proof

is constructed under the condition that the system model

has bounded parametric uncertainty. The remainder of the

argument concentrates on the system model, targeting the

uncertainty of the model and its accuracy with respect to

the real LandShark vehicle. For this, we move to the next

claim in the argument.

Claims about optimization constraint: We claim that

(a) the mapping φ and uncertainty Δ in (1) describes the

sampled dynamics of the LandShark platform with accept-

able accuracy and (b) the uncertainty Δ is bounded. For

sub-claim (a), we demonstrate how the mapping φ and Δ
can be derived from parameters of a discrete-time model of

the LandShark. The evidence used in this step is the analysis

provided in [4], which explicitly states the linear mappings

and transformations required to generate φ and the elements

of Δ from the discrete-time model,

xk+1 = Axk +Buk +wk

yk = Cxk + vk.
(2)

where yk and uk denote the sensor measurements and

actuator inputs at time step k, A, B, and C are the state

gain, input gain, and measurement gain, respectively, and

wk and vk are the process and measurement uncertainty.

Furthermore, for sub-claim (b) we demonstrate that when

wk and vk are bounded, then Δ is also bounded. The

evidence used in this sub-claim is also provided in the

analysis in [4].

Claims about discrete-time model: Here, we claim that

the discrete-time model in (2) describes the dynamics of the

LandShark platform with acceptable accuracy. For the claim

we demonstrate how the parameters of the model, A and B,

as well as process and discretization disturbance terms wk

and vk are derived from parameters of a continuous-time

model of the LandShark. The evidence used in this step

is the analysis provided in [4], which follows closely the

mathematics in [11] and [12]. This analysis states that, with

proper initialization, the outputs of the discrete-time model

in each step, are identical to the sampled outputs of the

following continuous-time model

ẋ(t) = Acx(t) +Bcu(t) +wc(t)

y(t) = Cx(t) + vc(t)
(3)

In the remainder of this document, we will refer to the model

in (3) as the reduced-order continuous-time model.

Claims about the reduced-order continuous-time
model: We claim that the reduced-order continuous-time

model in (3) represents the dynamics of the LandShark

platform with sufficient accuracy; however, the model is

an approximate representation of the LandShark dynamics

and its parameters cannot be directly tied to the parameters

of the vehicle. Employing accurate reduced-order models

provides two benefits in resilient estimation: elimination

of non-observable model modes, and reduction in run-time

computational requirements. The argument, therefore, pro-

ceeds by establishing an approximate bisimulation between

the reduced-order model in (3) and a full-order continuous-

time model, denoted as

˙̃x(t) = Ãcx̃(t) + B̃cu(t) + w̃(t)

y(t) = C̃x̃(t) + ṽ(t)
(4)

The theory of approximate bisimulation of linear systems is

described in [13] and is supported by the tool Matisse.2

Claims about the full-order continuous-time model:
The full-order model in (4) is derived from first principles

and reflects the actual design of the LandShark platform. We

obtain the model by noting that the movement of a skid-

steering vehicle, such as the LandShark, can be modeled

using first-principle physics following the mode-switching

dynamics as described in [15], such that the elements of the

full-order continuous-time state vector, x̃, are written as

x̃ =
[
l θL θR v FL ωL iL FR ωR iR

]�
(5)

where l and v denote the LandShark linear position and

speed, FL and FR are the left and right tractive forces, and

θL, ωL, ıL (θR, ωR, ıR) are the left (right) DC motor posi-

tion, angular velocity, and current, respectively. Since there

are multiple state-space representations for the LandShark

platform, our selection of a first principles representation

is based on ensuring that the parameters in the governing

differential equations are either known (i.e. constants or

provided via datasheets), or can be accurately estimated

over the entire operating range. When all the first principle

models are derived from known parameters and accurately

estimated parameters, we claim that the resulting full-order

continuous-time model is acceptably accurate.

The requirement that the unknown parameters for each

first-principles differential equation be estimated over the

entire operating range is crucial in validating the claim

2In the case study, bisimulation analysis has not been performed. Instead,
we constructed the reduced-order model by identifying the dominant
eigenvalues of (4) [14].
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Figure 5. Control-level reasoning

that the model is acceptably accurate. As an example, we

consider the first-principles differential equation for the left-

side LandShark DC motor3, namely

ω̇L =
1

J

(
αiL − ωLBL − r

gr
FL + εL

)
(6)

where α, J, r, gr are the current-to-torque ratio, angular

moment of inertia, the tire radius, and the drivetrain gear

ratio and all are available via the LandShark datasheets4;

however, the drivetrain rotational resistance, BL, and model

noise εL are not provided through the datasheet and must be

accurately estimated. Estimation of BL and εL is achieved in

a laboratory setting by lifting the LandShark off its wheels

(such that FL = 0), and applying the entire operating

range of current, iL, to the motor, and measuring, for each

current setting, the angular velocity, ωL, using a tachometer

at steady state (such that ω̇L = 0). The resulting equation

relating the current, iL, steady-state angular velocity, ωL,

rotational resistance, BL, and model noise, εL, is written as

ωL =
α

BL
iL +

1

BL
εL (7)

Observing that (7) is a linear equation, we can accurately

identify unknown parameters BL and εL from the applied

current and measured rotational velocity, by choosing BL

such that the slope is a best fit, and εL as the worst-case

error bias.

C. Implementation-level arguments

In addition to claiming that the RSE algorithm achieves

the desired goal, we also need to argue that the algorithm

is correctly implemented and deployed on the LandShark

platform. This part of the argument is given in Figure 6.

The strategy is to separate the argument into two sub-

claims. The first one covers the platform-independent im-

plementation of the RSE algorithm, implemented as a step
function periodically invoked by the platform. The second

3A similar differential equation governs the right-side LandShark DC
motor, just with (potentially) different parameter values.

4See http://www.blackirobotics.com/LandShark UGV UC0M.html and
http://www.thunderstruck-ev.com/Manuals/PMG132curve.pdf.

Figure 6. Argument for the code-level claims

sub-claim considers the deployment of the step function

within a platform-specific wrapper, which handles periodic

invocation of the step function, its connection to the streams

of sensor data, and makes speed estimates available to

other modules in the system. Arguments for both sub-claims

are instances of the model-manipulation strategy. The step

function is obtained using the CVXGEN tool, which gen-

erates embedded solvers for optimization problems. From

our perspective, CVXGEN is trusted code base, and we

use its widespread use as evidence. For the model sub-

claim, we show that the model used by CVXGEN represents

the optimization problem in (1), which can be determined

by model reviews. The wrapper for the step function is

produced from the architectural model of the LandShark

platform, which captures ROS topics and their respective

publishers and subscribers. The wrapper generator has been

implemented in Coq and supplies a proof that (a) the

wrapper subscribes to the sensor topics as specified in the

architectural model, and that subscribed values are passed

to the parameters of the step function, and also that (b)

the step function is invoked with the period specified in the

architectural model. We use this proof as evidence for the

technique sub-claim, and perform review of the architectural

model as evidence for the model sub-claim.
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V. DISCUSSION AND CONCLUSIONS

We have considered an approach to construct an assurance

case for a specific property of the resilient state estimation

module in a control system of an autonomous vehicle. The

assurance case is intended to be used as a part of a larger

assurance case for the whole vehicle. This overall assurance

case is the subject of an on-going multi-institutional project

funded by the DARPA HACMS program. Some of the

platform assumptions made in our argument will eventually

be claims delivered by other parts of the overall assurance

case.

Our approach to the construction of the assurance case is

motivated by the understanding that the outcome of model-

based development of a system is only as good as the

model used in the process. Therefore, in each step of the

argument we argue that not only we apply sound model

analysis and correct model transformations, but also that

models we operate on are adequate representations of the

reality. To this end, we established a chain of reasoning

from the first-principles model of the vehicle, which is

directly tied to the measurements on the device, all the

way to the model used in the state estimation algorithm,

demonstrating that the accuracy of the model is preserved

in each transformation step. In practice, some of these steps,

along with the associated argument, are left implicit. For

example, it may be possible to start with a discrete-time

model of the vehicle, which would be obtained by system

identification. In this case, we rely on the expertise of control

engineers and common practices of control design to ensure

the accuracy of the model. However, we believe that first-

principles analysis and reasoning is adding confidence in the

argument and makes evaluation of the argument easier.
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