
Cloud-based Secure Logger For Medical Devices

Hung Nguyen∗, Bipeen Acharya∗, Radoslav Ivanov∗, Andreas Haeberlen∗, Linh T.X. Phan∗,
Oleg Sokolsky∗, Jesse Walker†, James Weimer∗, William Hanson‡, and Insup Lee∗

∗Dept. of Computer and Information Science, University of Pennsylvania, PA, U.S.A.

Email: {hungng,acharyab,rivanov,ahae,linhphan,sokolsky,weimerj,lee}@cis.upenn.edu
†Intel Labs, Intel Corporation

Email: jesse.walker@intel.com
‡Hospital of the University of Pennsylvania, PA, U.S.A.

Email: bill.hanson@uphs.upenn.edu

Abstract—A logger in the cloud capable of keeping a secure,
time-synchronized and tamper-evident log of medical device and
patient information allows efficient forensic analysis in cases of
adverse events or attacks on interoperable medical devices. A
secure logger as such must meet requirements of confidentiality
and integrity of message logs and provide tamper-detection and
tamper-evidence. In this paper, we propose a design for such
a cloud-based secure logger using the Intel Software Guard
Extensions (SGX) and the Trusted Platform Module (TPM).
The proposed logger receives medical device information from a
dongle attached to a medical device. The logger relies on SGX,
TPM and standard encryption to maintain a secure commu-
nication channel even on an untrusted network and operating
system. We also show that the logger is resilient against different
kinds of attacks such as Replay attacks, Injection attacks and
Eavesdropping attacks.

I. INTRODUCTION

Medical devices today are becoming increasingly sophisti-

cated and capable of handling more functionality, storing more

information and interacting with patients better. In addition,

medical device interoperability offers numerous advantages

in terms of usability, patient safety and treatment efficacy.

For instance, a number of interconnected medical devices can

provide a more comprehensive picture of patient information

that reduces medical errors and health care costs for patients.

While there are a number of benefits to medical device

interoperability, it exposes medical devices to a new attack

surface through the communication network. Recent research

has shown that a vehicle can be hijacked through vulnera-

bilities in a vehicle’s communication system [1] or through

sensor spoofing [2]. Medical devices are now vulnerable to

similar attacks since they are starting to join local to global

networks and storing information in the network cloud. In

addition to disrupting medical devices, such attacks have the

potential of stealing confidential patient information and even

affecting patient safety (e.g., an attacker could cause a medical

device to diagnose a diabetic patient with excess glucose

causing a life threatening situation called hyperglycemia).

Therefore, interoperable medical systems need to be integrated

with proper security and safety measures to prevent threats

to patient safety and information. The need is so high that

the U.S. Food and Drug Administration has recently unveiled

a draft guidance for interoperable medical devices [3] with

the intention to provide a reasonable assurance of safety and

effectiveness for these devices.

A cloud-based data logger capable of keeping a complete

record of medical device information from multiple network-

integrated devices would be effective in adverse event analysis.

Such a data logger operating in an adverse environment must

be able to provide: confidentiality and integrity of stored

data, tamper-detection and tamper-evidence. We focus on these

security properties as they are sufficient for forensic analysis

in case of attack happens.

There has been much work done on developing tamper-

proof loggers. Some designs rely on published commitments

to provide tamper-proofness and require a gosship protocol

for distribution [4]–[7]. Others require some form of trusted

hardware such as monotonic counter or secure memory. For

instance, Sarmenta et al. [8] and Sinha et al. [9] use Trusted

Platform Module (TPM) as a trusted computing base to

guarantee tamper-proofness. However, they either assume an

adversary who cannot perform sophisticated hardward attacks

(e.g., proping memory or launching side-channel attack) or

assume features that do not exist on current TPMs.

There has also been work on logging for medical devices.

A prominent example is OpenICE, which provides a recording

application on top of a framework for integrating healthcare

devices and clinical applications [10]. It is, however, important

to point out that OpenICE was not built with security features

in consideration. To the best of our knowledge, our design is

the first cloud-based secure logger applied for medical device.

In this paper, we address the problem of designing such a

logger by making use of the Intel Software Guard Extensions

(SGX) [11] and the TPM [12] whose use with the logger would

help to prevent tampering of stored logs. SGX enables the

creation of a secure container (called an enclave) that protects

the integrity and privacy of the data inside it by isolating it

from privileged software [13]. TPM is a cryptographic chip

that provides shielded storage for authentication of stored

information. We propose a design that leverages the guarantees

provided by the SGX and the TPM to provide tamper-evidence

to our system. Being an SGX enclave process that is protected

from unauthorized access, our logger attempts to defend

against most kinds of attacks discussed above. Additionally,

our design is implementable today, using existing machines.

2015 IEEE First Conference on Connected Health: Applications, Systems and Engineering Technologies

978-1-5090-0943-5/16 $25.00 © 2016 IEEE

DOI 10.1109/CHASE.2016.48

89

2016 IEEE First Conference on Connected Health: Applications, Systems and Engineering Technologies

978-1-5090-0943-5/16 $25.00 © 2016 IEEE

DOI 10.1109/CHASE.2016.48

89

The remainder of this paper is organized as follows. In

Section II, we formulate a problem statement and explore

the attack space that a secure logger operates in. Section III

then discusses the design architecture of the secure logger

and provides a background on various components of the

design. Section IV provides details of the logger’s operation.

In Section V, we discuss the guarantees and limitations of our

design. In Section VI, we summarise our work and provide

avenues for future research.

II. PROBLEM STATEMENT

As discussed in the previous section, our goal is to design

a secure logger in the cloud for medical devices. In particular,

we aim to develop a centralized logger that gets medical device

and patient information from a dongle attached to each medical

device. The data that it receives is stored as secure logs and can

be later retrieved by an auditor for verification and analysis

of tamper. Figure 1 illustrates a high-level overview of the

logger’s environment.

A secure logger in the cloud must satisfy certain security

properties; specifically, it guarantees:

• Confidentiality: The system ensures that sensitive infor-

mation is prevented from being illegitimately accessed by

an unauthorized party.

• Integrity: The system ensures that data collected from

medical devices is consistent, upon later retrieval.

• Tamper-detection: The system is able to detect any unau-

thorized access to the protected data.

• Tamper-evidence: Upon detection of tamper, the system

also provides evidence to identify the attack.

We now explore the attack scenarios that a cloud based

logger needs to defend against to meet these requirements. We

illustrate the possible attack scenarios for our work in Figure 2

using the three dimensional attack space proposed by Teixeira

et al. [14] that comprises of the adversary’s system model

knowledge, its disruption resources and disclosure resources.

Disruption resources are resources that enable an attacker

to affect system operation and availability while disclosure

resources can be defined as resources that allow an attacker

to obtain confidential information. System model knowledge

often provides an attacker insider knowledge of the system

to perform more complex attacks. In our case, an attacker

would gain unauthorized knowledge of the secure logger. A

Fig. 1: A high-level overview of the logger.

combination of these resources would give the attacker power

to cause more severe damage.

We follow these attack dimensions and discuss three attack

scenarios under the system model introduced earlier and their

potential impact. Even though the attack space is bigger, we

limit this work to these three scenarios as we believe these are

the most relevant for a logger operating in the cloud. Section

III explains how our system defends against each attack.

1) Eavesdropping Attack. In an eavesdropping attack, the

adversary utilizes the disclosure resources to gain unauthorized

access to confidential data. In general, the attack relies on

monitoring communication channels and gaining unauthorized

information. An eavesdropping attack does not affect normal

system operation. Obtained data from the attack can be patient

data, medical device and logger technical information, which

are potential system knowledge. An eavesdropping attack also

allows the attacker to perform an unauthorized read on the

disk.

2) Injection Attack. This particular scenario is where the

attacker’s goal is to inject false data or wipe evidence from

the logger. By combining system knowledge and disruptive

resources, he may try to tamper with the communication chan-

nels. The attack can be an injection of new messages, changes

in the message content, re-ordering of message sequence, or

a Denial of Service (DoS). Furthermore, it is also possible for

the content in the storage to be altered.

3) Replay Attack. A replay attack scenario can be consid-

ered as a combination of eavesdropping attack and injection

attack. The attacker first intercepts the transmission of data

with the purpose of capturing a valid sequence of data, and

then retransmits that valid data to the receiver. In this manner,

an attacker with malicious intent could feed legitimate looking

data while carrying out an attack on the device. The system

would have no idea of the attack and the attacker would

successfully carry out a man-in-the-middle attack.

III. DESIGN OF THE CLOUD-BASED SECURE LOGGER

This section describes the design of the proposed secure

logger. A dongle, with a corresponding driver, will be used

as an attached module to a medical device. Being able to

Fig. 2: Secure logger attack space.

9090

communicate directly with the medical device, it will acquire

the necessary information, use a monotonically increasing

counter to stamp the data, and use SSL/TLS protocol to

encrypt, provide integrity and transfer its contents to our

logger, which is an SGX-enabled software application. This

ensures that the logs received by our logger preserve integrity

and confidentiality. The counter ensures that the information

preserves freshness. When our logger receives medical device

data, the logger first encrypts the content, and then generates

and signs the hash of the entry. It then sends the log entry and

corresponding signed hash to storage. It also keeps a copy of

the latest signed hash in a TPM. With efficient hash chaining

of stored logs, the latest hash stored in the TPM is sufficient

to detect tamper because any kind of change or deletion of a

hash value in a hash chain would make tamper evident. Upon

detection of any attacks, the logger is able to sound an alarm

on the system and raise alarm message on the User Interface.

We discuss this design in detail in the following two sections.

In our design, we assume that the Intel SGX, the TPM and

the dongle are implemented correctly and not compromised.

We also make the usual assumptions that RSA and AES

encryption are safe, an attacker cannot forge digital signatures

and that the hash function is pre-image resistant, second pre-

image resistant, and collision resistant with pseudo-random

compression function.

In the remaining part of this section, we first describe

various components of our design presented in Figure 3

and discuss the functionality of each component. We then

propose proper usage of these components to establish secure

communication channels to defend against the attack scenarios

previously discussed.

A. Component Descriptions

1) Dongle: As a part of the system model, we have a dongle

attached to the medical device to get information from the

device and send to the logger. After establishing a connection

with the logger, the dongle keeps sending messages to it

without waiting for an acknowledgement for message receipt.

The dongle also maintains a monotonically increasing counter

that is used as a sequence number for the message before

it is sent to the logger. Besides the counter, the dongle also

maintains a queue of recently sent messages with the unique

ID of the counter. If the logger has a missing sequence ID,

Fig. 3: Design architecture of the logger.

it can ask the dongle again and raises an alarm if the dongle

does not reply within allocated time. If it receives messages

with duplicate ID, the logger immediately raises an alarm.

Before deployment, each dongle is assigned a private/public

key pair with a corresponding digital certificate. The certificate

includes information about the public key and the dongle

identity and can be verified using the digital signature of the

deployment team.

2) Intel Software Guard Extensions (SGX): SGX is the

attempt by Intel at solving the problem of executing software

applications in a remote computer owned by an untrusted

party, with integrity and privacy guarantees [13]. SGX, a set

of new instructions and memory access changes in the Intel

Architecture, attempts to solve this problem by trusting a

hardware at the remote computer to instantiate an enclave

which is used for computation and information exchange.

Enclave code and data are contained in the Enclave Page

Cache (EPC), which is a subset of the Processor Reserved

Memory (RPM) protected by the CPU from non-enclave

memory accesses. Each enclave designates an area called the

Enclave linear Address Range (ELRANGE) which can be used

to map the code and sensitive data stored in the enclave’s

EPC. Special CPU instructions, such as EENTER (to execute

code) and EEXIT (to quit execution), must be used by the

enclave’s host process to interact with the enclave, and it

happens in protected mode. Exceptions are raised when a non-

enclave access to a memory is attempted by a software, and

also when a code fetch is attempted from inside an enclave

to an address range outside that enclave. Before initiating

communication with an enclave, a remote application performs

software attestation to make sure that it is communicating with

the correct enclave.

3) Trusted Platform Module (TPM): TPM is a crypto-

graphic chip that is available on many motherboards today.

The TPM is primarily a cryptographic engine that can perform

encryption and hashing, and store the state of the internal

software [15]. However, we are mostly interested in the small

amount of non-volatile memory (NVRAM) provided by TPM

to shield data. Since protected data in NVRAM can only be

accessed via specific commands within an authorized session,

it will be sufficient for us to store the latest hash value obtained

from our logger application to help with forensic analysis.

To prove that it is genuine and complies with TPM spec-

ification, each TPM is embed with an unique Endorsement
Certificate (EC), which contains manufacturer name, model

number, version and most importantly, the TPM public key.

EC is, in essence, a digital certificate stating that TPM identity

has been properly created and embedded.

B. Secure Communication Between Components

The logger is an SGX process operating in the cloud, which

we assume to be untrusted. Our assumption that the network is

untrusted makes it imperative that the communication channels

between the dongle and the SGX process as well as the logger

and the TPM are secure. Next, we discuss how we make these

channels secure to defend against attacks.

9191

1) Dongle-SGX: To create a secure communication channel

between the dongle and the SGX, we use the SSL/TLS

protocol. Note that the dongle and the SGX process are

themselves trusted, and assumed behaving correctly. Since it

is infeasible to do I/O operations (other than memory stores

and fetches) from within an SGX enclave, not all the SSL/TLS

protocol will be implemented inside the enclave. However, we

can guarantee the security by ensuring the data sent out from

the enclave is encrypted and protected following the protocol.

To establish a connection, firstly, a handshake protocol is

initiated between the dongle and the SGX where, messages

are exchanged between the two parties to agree on the cipher

suite - a combination of key exchange protocol, authentication

algorithm and encryption algorithm to be used for the SSL ses-

sion. Each of them use software attestation to verify that they

are communicating with a trusted process. In particular, the

dongle’s certificate is used by the SGX to verify the dongle’s

identity and vice-versa. After this exchange, a session key is

agreed upon to be used for encryption in all communication

henceforth. This ensures that message transmission between

them is encrypted and authenticated.

2) SGX-TPM: In order to protect the confidentiality of

a shielded object, TPM defines each object as a pair of

(authV alue, data). Access to protected data requires uses of a

Protected Capability, which is a set of commands with exclu-

sive permission to access shielded storage, where authV alue
is used by the caller to authorize the action [12]. Upon running

the first time, the SGX process generates the authV alue,

encrypts and stores it in the logger storage. The process

also sends command to the TPM to create the corresponding

protected object. As a result, both SGX and TPM share the

same authV alue.

To establish a trusted channel with TPM, the SGX process

sends a TPM2 StartAuthSession() command including an ini-

tial nonceSGX, a value to generate the session key and location

of protected object in TPM. After executing successfully, TPM

returns a session key and the initial nonceTPM. The primary

use of a nonce is to prevent a message being sent multiple

times: for each message, sender includes the last received

nonce and a newly generated nonce so that the receiver

can verify if the message follows correct sequence. All the

commands and responses are sent with an HMAC value to

provide assurance that the message was not modified and came

from the trusted entity with access to the HMAC key, which

is defined as the concatenation of session key and authValue.

IV. OPERATION OF THE CLOUD-BASED SECURE LOGGER

In this section, we discuss, in detail, the operations of

the secure logger. In particular, we describe how the log is

generated, how the SGX process operates to maintain secure

logs and the auditor operates to verify log correctness and

detect tamper.

A. Tamper-Evident Log

The logger keeps a secure record of outputs from medical

devices that is used for adverse events analysis. Based on the

proposal of PeerReview [6] with some modifications in the

way the hash chain is stored, a tamper-evident log is defined

as an append-only linear list with each log entry ek = (sk, ck)
where sk is a strictly increasing, contiguous sequence number

and ck is the entry content. Additionally, each log also includes

a hash value hk = hash(hk−1||sk||hash(ck)), which is the

hash of the concatenation of the previous hash, the sequence

number and the hash of the content. The base hash h−1 is pre-

defined. In addition, hk is signed by the SGX process using

the private key and results in the corresponding shk. The final

hash chain contains all the signed hash values shk.

Algorithm 1 Hash chain implementation

Variables:
e← list of log entries

sh← list of signed hash values

k ← current iteration number

sk ← current sequence number

hk−1 ← previous hash value

m← chunk constant

1: procedure ADDENTRY(content c)
2: hk ← hash(hk−1||sk||hash(c))
3: ek ← (sk, c), shk ← sign(hk)

4: if k − 1 mod m �= 0 then
5: sh.delete(shk−1)

6: k ← k + 1, sk ← sk.next()

7: return shk−1

1: procedure TRUNCATE

2: shi ← sh.start()

3: sh.delete(shi)

4: for j =← i+ 1 to i+m do
5: e.delete(ej)

In practice, storing all the signed hash values is not re-

quired: given shi, shj where i < j, the hash chain from i
to j can be re-computed to verify the integrity of the log.

Therefore, we maintain a constant m indicating that the logger

only stores signed hash value shi for every m log entries

(ei+1, ei+2, ..., ei+m). When the log storage is full and there

is a need for log truncation to prevent log overflow, we can

safely remove shi and all the log entries from ei+1 to ei+m.

Given shi+m, we are still able to re-compute the hash chain

from ei+m+1 to the latest log entry as illustrated in Figure 4.

The log is the most important part of our design because

the entire design relies on the logger being able to maintain

a secure, untampered log of medical device information. The

use of strictly increasing sequence numbers (line 6) and signed

hash values (line 3) are important to ensure that logging is

tamper-evident. We will discuss this process in detail in the

next section when we present Auditor operation.

B. Logger Operation

Our logger has three stages: start-up, logging and shutdown.

We explain each stage briefly and provide pseudocode of

how to implement each stage. The algorithms below describe

9292

(a) Hash chain (b) Storage content

Fig. 4: A sample hash chain and content in logger storage.

Hash shi can be used to recompute hash chain from ei + 1.

the operations between a single logger and a single dongle.

However, this can easily be extended to multiple dongles as

the logger can maintain connections with multiple dongles

simultaneously.

Start-up: At logger start-up, the logger queries the latest

log entry ek, its signed hash shk from the File System service,

the latest signed hash and the latest system status from the

TPM. If the stored sighed hash is different from the one

of TPM or any of the verifications during start-up fails, the

logger will raise alarm. Otherwise, the logger stores the current

sequence number sk and the message sequence number n.

Then, it attempts to establish a connection with the dongle as

mentioned above. If the dongle does not respond, the logger

stands by and waits for incoming connection from the dongle.

If there are no errors, it is ready to go into the logging stage.

Logging: Upon receiving messages from the dongle, the

logger first encrypts the content using its key, and generates

and signs the hash of the new entry. It then sends the log

entry and corresponding signed hash to storage. After that, the

logger writes the signed hash in the TPM1, which is where it

keeps a copy of the latest signed hash. It also checks if the

previous signed hash should be kept based on m and deletes

if needed.

Shutdown: Upon receiving shutdown signal, the logger

simply finishes storing all the received events and writing latest

hash to TPM before exit.

C. Auditor Operation

The auditor is a software application that is responsible

for auditing the logs and detecting tamper. It is a trusted

SGX process that shares the logger’s encryption key. By

recomputing the entire hash chain from the first signed hash

and the log entries, the auditor can compare with the last

signed hash from TPM and verify the digital signature. If any

of the verification steps failed, the auditor raises an alarm. If

an attacker attempts to change a log entry in storage, it would

1Each TPM flash location can accept only a finite number of writes before
it wears out. We can overcome the limitation by having the SGX process keep
track of the number of write and move to another location after a pre-defined
number of times.

result into a completely different hash value, and a different

hash chain, and thus the attacker would be detected.

V. DISCUSSION OF SECURITY GUARANTEES

We described the requirements for a secure logger in the

cloud as: confidentiality and integrity of transmitted and stored

data, tamper-detection and tamper-evidence. In this section, we

discuss how we ensure that the design meets the requirements

under each attack scenarios.

A. Eavesdropping Attack

Since the goal of an eavesdropping attack is gainning unau-

thorized access to confidential data, it only affects the con-

fidentiality property of the system. To prove the preservation

of confidentiality under this kind of attack, first consider the

information exchanged between the dongle and the logger. To

elaborate, in the event that an adversary intercepts information

exchange between the dongle and the logger, he is not able

to obtain information from that interception. The SSL/TLS

exchange protocol has been proven to be secure [16] and is

widely used in information exchange over the internet. We

encrypt messages between the dongle and the logger using

the SSL/TLS exchange protocol and hence, an eavesdropping

attacker cannot cause damage.

Similarly, the secure logger also ensures that an eavesdrop-

ping attacker cannot learn log contents from the logger SGX

process and logger storage. As a part of the trusted SGX

enclave process, the logger is protected from unauthorized

access. As a result, an eavesdropper cannot get information

from the logger process. Further, the SGX process encrypts

log entries before sending them to storage. Hence, even if

an attacker attempts to attack the data storage, the encryption

ensures that the stored data does not lose confidentiality.

Note that the communication between SGX and TPM is not

encrypted. However, since the transfer data is not confidential,

the confidentiality property still holds.

B. Injection Attack

An injection attack affects all the security properties of

the logger. Beside preserving the confidentiality similarly

under eavesdropping attack, the secure logger guarantees the

integrity of the data via ensuring tamper-detection and tamper-

evident properties. Any unauthorized access and message

altering will cause data inconsistency and will be detected

with detailed evidence.

Particularly, messages from the dongle to the logger are

stamped with a monotonically increasing counter and sent

over SSL/TLS secure communication channel. The integrity

of the message is provided by the SSL/TLS protocol and the

counter such that any changes in the message content will

cause a failure in hash verification and any changes in message

sequence will also cause a failure in counter verification of the

receiver. Such failure is the evidence provided by the system

to the auditor that an attempted attack has happened.

Additionally, the communication between SGX and TPM

relies on the HMAC function, whose secret key is only known

9393

by the SGX and the TPM. Together with random nonce value

for each message, the logger ensures the integrity of this

channel.

Finally, as mentioned above, we generate and sign hash to

store log contents to the file system and storage. Since each

hash value depends on its previous hash, any kind of alteration

of the stored content creates a completely different hash chain

branching off at the affected sequence number and an auditor

is able to detect tampering [6]. The sequence ID of the affected

log entry can be used as a tamper-evidence.

For the specific attack such as DoS attack, when the

attacker’s goal is making the logger unavailable, it won’t affect

the operation of the dongle or logger. Because the dongle

keeps sending messages to the logger without waiting for

acknowledgement, all the lost messages during attack can be

retrieved after the logger detects missing message sequence

IDs and queries the dongle again. However, such defense

depends on the size of message queue that the dongle keeps.

C. Replay Attack

Consider a replay attack as the combination of eaves-

dropping attack and injection attack, it also affects all the

security properties. Since the injected messages are authentic,

to preserve security properties, the logger must be able to

detect any duplicate messages. This can be achieved by the

monotonically increasing counters as described in the injection

attack.

The logger is also able to detect storage replay attack

where the attacker clones a version of logger storage and later

on restores it. Although the data is authentic, it is an older

version. By comparing with the latest hash value protected in

the TPM, the logger or the auditor can identify the attack.

Limitations: Our logging system is designed to make

tampering of data detectable and thus, it detects and raises

alarms when messages are altered. However, any behaviour

that does not lead to altering of messages is not detected. For

instance, when the logger does not get a reply from the dongle,

it does not know if the dongle is under attack or just under

normal shut-down. In addition, we protect the integrity of the

information received by the dongle, but cannot guarantee the

correctness of what it receives. Addressing these limitations

are outside the scope of this paper. However, we do plan to

explore and address these limitations in the future.

VI. CONCLUSION

In this paper, we have described a secure logging system

that provides tamper-evidence to message logs that it receives

from medical devices on a network. We leverage the use of

trusted hardware in an untrusted network to design such a

secure logger. The design guarantees that attacks attempting

to modify or delete logs are detected.

This project is a first attempt at mitigating cyber threats

to medical devices with their imminent increase in interoper-

ability with other devices on a hospital network. This is an

ongoing project and the next step is to implement our design

on a simulated ICE environment. Then, we will experiment

on a small part of the local hospital network. Furthermore, we

also aim to extend the attack space by looking at attacks like

Denial of Service in more detail. Finally, we plan to explore

the Data Distribution Service (DDS) middleware for efficient

data delivery and security guarantees for our logger.

ACKNOWLEDGMENT

This work was supported in part by NSF CNS-1505799 and

the Intel-NSF Partnership for Cyber-Physical Systems Security

and Privacy, NSF CNS-1035715, and the DGIST Research and

Development Program of the Ministry of Science, ICT and

Future Planning of Korea (CPS Global Center).

REFERENCES

[1] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
S. Savage, K. Koscher, A. Czeskis, F. Roesner, T. Kohno et al.,
“Comprehensive experimental analyses of automotive attack surfaces.”
in USENIX Security Symposium. San Francisco, 2011.

[2] A. Rutkin, “spoofers use fake GPS signals to knock a yacht off course,”
MIT Technology Review, 2013.

[3] The Food and Drug Administration, “Design Considerations and Pre-
market Submission Recommendations for Interoperable Medical De-
vices - Draft Guidance for Industry and Food and Drug Administration
Staff,” 2016.

[4] B. Schneier and J. Kelsey, “Cryptographic support for secure logs on
untrusted machines.” in USENIX Security, 1998.

[5] C. Martel, G. Nuckolls, P. Devanbu, M. Gertz, A. Kwong, and S. G.
Stubblebine, “A general model for authenticated data structures,” Algo-
rithmica, vol. 39, no. 1, pp. 21–41, 2004.

[6] A. Haeberlen, P. Kouznetsov, and P. Druschel, “PeerReview: Practical
accountability for distributed systems,” in ACM SIGOPS operating
systems review, vol. 41, no. 6. ACM, 2007, pp. 175–188.

[7] S. A. Crosby and D. S. Wallach, “Efficient data structures for tamper-
evident logging.” in USENIX Security Symposium, 2009, pp. 317–334.

[8] L. F. Sarmenta, M. Van Dijk, C. W. O’Donnell, J. Rhodes, and
S. Devadas, “Virtual monotonic counters and count-limited objects using
a tpm without a trusted os,” in Proceedings of the first ACM workshop
on Scalable trusted computing. ACM, 2006, pp. 27–42.

[9] A. Sinha, L. Jia, P. England, and J. R. Lorch, “Continuous tamper-proof
logging using tpm 2.0,” in Trust and Trustworthy Computing. Springer,
2014, pp. 19–36.

[10] J. Plourde, D. Arney, and J. M. Goldman, “Openice: An open, interop-
erable platform for medical cyber-physical systems,” in Cyber-Physical
Systems (ICCPS), 2014 ACM/IEEE International Conference on. IEEE,
2014, pp. 221–221.

[11] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative Technology
for CPU based attestation and sealing,” in Proceedings of the 2nd
International Workshop on Hardware and Architectural Support for
Security and Privacy, vol. 13, 2013.

[12] Trusted Computing Group, “TPM 2.0 Library Specification,” accessed:
2016-03-04. [Online]. Available: http://www.trustedcomputinggroup.
org/resources/tpm library specification

[13] V. Costan and S. Devadas, “Intel SGX explained,” Cryptology ePrint
Archive, Report 2016/086. http://eprint.iacr.org, Tech. Rep., 2016.

[14] A. Teixeira, D. Prez, H. Sandberg, and K. H. Johansson, “Attack
models and scenarios for networked control systems,” Proceedings of
the 1st international conference on High Confidence Networked Systems
- HiCoNS ’12, pp. 55–64, 2012.

[15] J. D. Osborn and D. C. Challener, “Trusted platform Module evolution,”
Johns Hopkins APL Technical Digest (Applied Physics Laboratory),
vol. 32, no. 2, pp. 536–543, 2013.

[16] H. Krawczyk, K. G. Paterson, and H. Wee, “On the security of the TLS
protocol: A systematic analysis,” Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 8042 LNCS, no. PART 1, pp. 429–448,
2013.

9494

