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ABSTRACT
Data-driven techniques are used in cyber-physical systems (CPS) for

controlling autonomous vehicles, handling demand responses for

energy management, and modeling human physiology for medical

devices. �ese data-driven techniques extract models from training

data, where their performance is o�en analyzed with respect to

random errors in the training data. However, if the training data is

maliciously altered by a�ackers, the e�ect of these a�acks on the

learning algorithms underpinning data-driven CPS have yet to be

considered. In this paper, we analyze the resilience of classi�cation

algorithms to training data a�acks. Speci�cally, a generic metric

is proposed that is tailored to measure resilience of classi�cation

algorithms with respect to worst-case tampering of the training

data. Using the metric, we show that traditional linear classi�cation

algorithms are resilient under restricted conditions. To overcome

these limitations, we propose a linear classi�cation algorithm with

a majority constraint and prove that it is strictly more resilient than

the traditional algorithms. Evaluations on both synthetic data and a

real-world retrospective arrhythmia medical case-study show that

the traditional algorithms are vulnerable to tampered training data,

whereas the proposed algorithm is more resilient (as measured by

worst-case tampering).

CCS CONCEPTS
•Computing methodologies →Supervised learning by clas-
si�cation; Batch learning; •Computer systems organization
→Embedded and cyber-physical systems; •Security and pri-
vacy →Domain-speci�c security and privacy architectures;
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1 INTRODUCTION
�e penetration of data-driven techniques (e.g., machine learning)

to monitor and control a broad range of cyber-physical systems has

sharply increased. Autonomous cars rely on visual object detectors

learned from image data for recognizing objects[12, 25, 30]. Build-

ing demand response can be e�ectively handled by data-driven

modeling and prediction of the electric usage of buildings [33].

Smart insulin pumps can adapt to type 1 diabetic patients using

data-driven modeling of user-speci�c eating and pump-using be-

havior [13]. While data-driven CPS o�er remarkable capabilities

for enhanced performance, they also introduce unprecedented se-

curity vulnerabilities with the risk of malicious a�acks having

catastrophic consequences. Speci�cally, the training data used for

learning (be it online or o�ine), is vulnerable to malicious tam-

pering that can result in data-driven CPS reacting incorrectly to

safety-critical events.

�e training data for data-driven CPS can be tampered in several

ways, depending on the application. In modern automobiles, multi-

ple vulnerabilities have been demonstrated where hackers obtain

full control of automobiles by eavesdropping a Controller Area Net-

work (CAN) and injecting CAN messages [11, 29], which provides

possibilities to inject malicious data being used for online learning

algorithms [12, 25]. Furthermore, automobiles and robots, which

rely on sensor inputs from global positioning system (GPS), inertial

measurement unit (IMU) or wheel speed sensors, can be susceptible

on spoo�ng a�acks [26, 43, 45]. �is means a�ackers can tamper

training data collected from sensors. Hacking incidents on medi-

cal devices and hospitals [1–3] suggest a�ackers can tamper both

device-level and data center-level training data. Moreover, a�ackers

with knowledge of the underlying machine learning techniques –

e.g., support vector machines (SVMs), principal component anal-

ysis, logistic regression, arti�cial neural network, and (ensemble)

decision trees – can strategically alter the training data to minimize

the accuracy of the algorithms [6, 7, 23, 27, 34, 46], to maliciously

a�ect the performance of data-driven CPS [12, 13, 25, 33, 39, 42, 48].

Capabilities provided by traditional cyber defenses (e.g., com-

munication channel encryption and authentication), fault tolerant
techniques (e.g., data sanitization [16], robust loss functions [51, 53],

and robust learning [14, 20]), and adversarial learning [9, 17, 19]

are necessary to secure data-driven CPS, but they are not su�cient.

Speci�cally, the cyber defenses are insu�cient for defending against

cyber-physical a�acks (e.g., GPS spoo�ng [26]) where a sensing

environment can be maliciously altered such that correctly function-

ing sensors and systems can act erroneously. �ese challenges are

compounded in dynamic applications (e.g., autonomous driving and

closed-loop physiological control) where accurate physical models,
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commonly required for fault tolerant systems, are challenging to

obtain. Moreover, adversarial learning literature (e.g., [9, 17, 19])

usually assumes a known a�acker behavior and/or goal – which

is likely unknown in complex CPS applications. Due to the short-

comings of traditional approaches for securing the training data of

data-driven CPS, it is necessary to consider techniques for resilient
machine learning that can defend against cyber-physical a�acks

and make minimal assumptions on environments and a�ackers.

Towards the ultimate goal of a�ack-resilient machine learning,

we propose a resilience metric for the analysis and design of learn-

ing algorithms under cyber-physical a�acks. �e metric aims to

quantify the resilience of learning algorithms for analysis, which in

turn contributes to designing resilient learning algorithms. Speci�-

cally, this work considers binary linear classi�cation algorithms in

the presence of maliciously tampered training data. Binary linear

classi�cation represents a basic building block for more complex

classi�cation approaches, such as neural network, decision trees,

and boosting; thus, developing a�ack resilient linear classi�ers can

lead to more advance resilient machine learning algorithms. To

analyze binary classi�ers in the presence of training data a�acks,

we introduce a generic measure of resilience for classi�cation in

terms of worst-case errors.

Based on the resilience metric, traditional linear classi�cation

algorithms are evaluated. First, we prove the maximal resilience of

any linear classi�cation algorithm, which provides an upper bound

of a resilience condition that can be achievable. �en, we prove

that convex loss linear classi�cation algorithms, such as SVMs, and

0-1 loss linear classi�cation algorithm can not achieve maximal

resilience. Based on these results, we introduce a majority 0-1 loss

linear classi�cation algorithm that is strictly more resilient than

the traditional approaches and achieves the maximal resilience

condition.

Finally, we evaluate the di�erent classi�cation algorithms, in the

presence of a�acks, on a synthetic dataset and a medical case-study,

introduced in [24], to design a detector for arrhythmia (i.e., irregular

heart beat). �e evaluation on synthetic data illustrates conditions

when the di�erent algorithms are (and are not) resilient, while the

arrhythmia dataset serves to illustrate resilient binary classi�cation

in a real-world data-driven medical CPS (described in Section 7).

In summary, the contributions of this work include: (i) intro-

ducing, to our knowledge, the �rst assessment metric for analyz-

ing binary classi�er resilience; (ii) providing an analysis of the

resilience of traditional binary classi�cation techniques illustrat-

ing their shortcomings; (iii) describing a resilient classi�cation

approach that provides maximal resilience; (iv) evaluating in a

retrospective real-world arrhythmia classi�cation case-study.

�e following section describes the work most closely related to

the resilient classi�cation problem considered herein. In Section 3,

we de�ne a�acker capabilities and a resilience metric. In Section 4,

the resilient classi�cation problem is formally de�ned while an

analysis of traditional linear classi�cation algorithms is provided in

Section 5. In Section 6, a new resilient linear classi�cation algorithm

is proposed which achieves maximal resilience for the a�acker’s

capabilities considered. Section 7 illustrates the theoretical results

using case studies on synthetic and medical data. �e �nal section

provides conclusions with discussion about countermeasures and

future work.

2 RELATEDWORK
�is section presents the related works for CPS security (Section 2.1)

and traditional error/a�ack models in the machine learning litera-

ture (Section 2.2).

2.1 CPS security
�ough the security of learning systems for data-driven CPS has

been an a�erthought, the security of CPS has seen much e�ort in

the past decade. A mathematical framework considering a�acks on

CPS is proposed in [10, 41]. �e necessary and su�cient conditions

on CPS with a failure detector such that a stealthy a�acker can

destabilize the system are provided in [35]. State estimation for

an electric power system is analyzed in [47] assuming a�ackers

know a partial model of the true system. Resilient state estimators

for CPS that tolerate a bounded number of sensors and/or actu-

ators a�acks are considered in [18, 38]. In mobility-as-a-Service

systems (e.g., ride-sharing services), it has been demonstrated that

a fraction of cars are maliciously called by fake reservation for

denial-of-service [52]. Surgical tele-operated robotic systems can

be a�ected by denial-of-service a�acks on communication channels

[8]. Energy management systems, especially when connected to

building networks, are vulnerable to cyber a�acks that impact on

the systems operation. �is vulnerability can be a�enuated by ap-

plying resilient policy when a�acks are detected [39]. While there

has been much recent work on CPS security, these approaches are

(in general) not directly applicable to data-driven CPS.

2.2 Learning with Errors
In this subsection, we review the literature on learning in the pres-

ence of training data errors most closely related to our work, where

a more complete survey of the entire literature can be found in

[22, 36]. �e error models can be categorized as either label errors

or feature errors in Table 1, according to their classical de�nitions

[22, 36]. Under each error model, the performance of a learning al-

gorithm is analyzed against whether it achieves a desired classi�er.

label errors

class-independent (CICE) [4]

class-dependent (CDCE) [36]

feature errors

uniform random (URAE) [44]

product random (PRAE) [22]

malicious errors (ME) [28]

Table 1: Taxonomy of training data errors in the literature.

When labels in training data are corrupted, the training data

is said to have label errors, which can be divided into two sub-

types: class-independent classi�cation errors (CICE) [4] and class-

dependent classi�cation errors (CDCE) [36]. �e class-independent

classi�cation error model assumes the error probability of positive

and negative labels are same while the class-dependent classi�ca-

tion error model allows the di�erent error probability for positive

and negative labels.

When features in the training data are corrupted, the training

data is said to have feature errors, which can be divided into three

subtypes: uniform random a�ribute errors [44], product random

a�ribute errors [22], and malicious errors [28]. Both the uniform

random a�ribute error (URAE) and the product random a�ribute

error (PRAE) models assume errors on features (i.e., columns of the

feature matrix), where URAE assumes the same error probability for
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all features and PRAE allows for variable error probabilities. From

a CPS perspective, a�acks on individual features require that each

column of the feature matrix corresponds to a single a�ack surface

(e.g., a single sensor) – which restricts the use of multiple sensors in

a single feature, as common in data-driven CPS [12, 25]. Di�erent

from URAE and PRAE, the malicious error (ME) model assumes

arbitrary a�acks on feature vectors (i.e., rows of the feature matrix).

However, the ME model assumes the probabilities of a�acking

the feature vectors corresponding to positive and negative labels

are the same – a condition which may not be satis�ed by savvy

a�ackers. In contrast to this, our error (or a�ack) model assumes

the probabilities can be di�erent.

3 SETUP FOR RESILIENT BINARY
CLASSIFICATION

�is section introduces essential de�nitions that are the bases for

describing resilient binary classi�cation problem. In the following

subsections, we present a traditional binary linear classi�cation

problem (Section 3.1), de�ne our a�acker assumptions (Section 3.2),

and introduce a resilience metric (Section 3.3).

Notationally, we write R, R+
0

, N0 and [a,b] to denote the set

of real numbers, non-negative real numbers, non-negative inte-

gers, and integers from a to b, respectively. We write 1 as the

ones vector of an appropriate size and | · | to denote the cardi-

nality (i.e., number of elements) of a �nite set. �e sign func-

tion is wri�en as sign : R → {+1,−1} and 1{·} corresponds to

the indicator function that maps true and false to 1 and 0. Ad-

ditionally, we write `01 to denote a 0-1 loss function, such that

`01 (yi ,h(xi )) = 1
{
yi , sign(h(xi ))

}
. Lastly, ‖ · ‖1 and ‖ · ‖∞ de-

notes the 1-norm and the∞-norm, respectively. See Table 2 for the

glossary of mathematical notations in this paper.

3.1 Traditional Binary Classi�cation
We begin by considering the traditional problem of binary classi�-

cation in the absence of a�acks (or errors). Namely, we consider

un-a�acked training data D̂ = {(xi ,yi )}Ni=1
∈ ˆD, where N is the

number of training data pairs,
ˆD = {D ⊂ X × Y | |D | = N } is a

class of training data with N pairs, X ⊆ Rp corresponds to a set

of feature vectors (or a�ributes), Y = {−1,+1} denotes the set of

labels (or classes), and each element of xi is called a feature. In a tra-

ditional (binary) classi�cation problem, such as [50], given training

data, a designer speci�es a set of (real-valued) classi�ersH ⊆ RX ,

and a loss function ` : Y×R→ R+
0

, to learn a (real-valued) classi�er

ˆh ∈ H , according to

PH , ` (D̂) :
ˆh = arg min

h∈H
‖W · ˆR` (h |D̂)‖1, (1)

where W ∈ R2×2
is the diagonal matrix with the positive risk

weightw+ and the negative risk weightw− on the diagonal, and ze-

ros elsewhere.
ˆR` (h |D̂) ∈ R

2
denotes the bi-dimensional vector of

empirical risks corresponding to the positive and negative training

data. Speci�cally, we write
ˆR` (h |D̂) =

[
R̂` (h |D̂

+) R̂` (h |D̂
−)

]>
,

where R̂` (h |D̂) =
1

|D̂ |

∑ |D̂ |
i=1
`(yi ,h(xi )) is the normalized empirical

risk evaluated over the training data and D̂+ and D̂− corresponds

to the mutually exclusive sets of positive and negative training data

pairs, respectively, such that D̂ = D̂+ ∪ D̂−. We note that we use

symbol description

D̂ actual training data

ˆD class of training data

D̂+ positive training data

D̂− negative training data

Θ set of a�acker capability parameters

α a�acker capability parameter where α ∈ Θ

D̂α tapered training data

ˆDα class of tampered training data

D̂+α positive tampered training data

D̂−α negative tampered training data

N number of training data pairs (i.e., |D̂ | )
N pair of |D̂+ | and |D̂− |

F set of classi�ers

H subset of classi�ers (i.e.,H ⊆ F )

L set of linear classi�ers

S set of loss functions

` loss function in S

`c convex loss function in S

`01 0-1 loss function in S

P classi�cation algorithm

PF ,S class of classi�cation algorithms

PH , ` classi�cation algorithm

PL,S class of linear classi�cation algorithms

PL, `c convex loss linear classi�cation algorithm

PL, `01
0-1 loss linear classi�cation algorithm

PM, `01
majority 0-1 loss linear classi�cation algorithm

дP resilience bound of a classi�cation algorithm P

G set of resilience bounds

AP resilience a�ack condition of a classi�cation al-

gorithm P where AP ⊆ Θ

BP perfectly a�ackable condition of a classi�cation

algorithm P where BP ⊆ Θ

Table 2: �e glossary of mathematical notations.

Equation (1) for distinguishing empirical risks over positive and neg-

ative training data, but it is equivalent to the standard notation [50]

ifw+ = |D̂+ | andw− = |D̂− |, and we assume the standard notion in

this paper. Also, we call
ˆh a classi�er (i.e., ˆh ∈ YX ) or a real-valued

classi�er (i.e., ˆh′ ∈ RX ), interchangeably, assuming the composition

of a sign function and a real-valued classi�er (i.e., sign ◦ ˆh′ ∈ YX )

is a classi�er. Moreover, we say N is the number of training data

pairs or N = ( |D̂+ |, |D̂− |), interchangeably.

In this paper, we consider a set of classi�cation algorithms PF ,S ,

where F is a set of classi�ers and S is the set of monotonically non-

increasing functions that are lower-bounded by a 0-1 loss function.

Speci�cally, the loss function `(y,h(x )) is represented as `(y,h(x ))
= ϕ (t ), where t = yh(x ), ϕ is lower-bounded by 1 {t ≤ 0}, ϕ (0) = 1,

ϕ is a monotonically non-increasing function, and limt→∞ ϕ (t ) = c
for some scalar c < 1. We note that these assumptions generalize a

convex loss [5] to cover a non-convex loss.

Each algorithm in PF ,S is a map from a class of training data

ˆD to a subset of F that uses a loss function in S (i.e., PF ,S =
{PF , ` |F ⊆ F , ` ∈ S}). �us, empirical risk minimization (Equa-

tion (1)) for any hypothesis space H ⊆ F and a loss function
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` ∈ S is also a classi�cation algorithm considered here (i.e., PH , ` ∈

PF ,S ).

3.2 Attacker Capabilities
In this work, we introduce a new class of an a�ack based on the

number of training data elements the a�acker can manipulate,

referenced to as a bounded feature a�ack (BFA). Speci�cally, in

this class of an a�ack, we assume the a�acker has the following

three capabilities; (i) �e a�acker knows the classi�cation algo-

rithm to be a�acked, (ii) the a�acker has unbounded computing

power, (iii) the a�acker knows all the training data (both before

and a�er tampering), and (iv) the a�acker can tamper the training

data. However, the ability to tamper the training data is limited

such that the tampered training data D̂α di�ers from the original

training data D̂ by a �nite number of elements. We parameterize

the tampered training data using an a�acker capability parameter

α = (α+,α−) ∈ Θ = [0, |D̂+ |] × [0, |D̂− |] such that at most α+ and

α− number of positive and negative feature vectors are maliciously

manipulated, respectively. Formally, the α-bounded feature a�ack

is de�ned as follows:

De�nition 1 (bounded feature a�ack). Given PH , ` , D̂, and α ,

then D̂α is a bounded feature a�ack (BFA) if D̂α ∈ ˆD satis�es the

following two conditions:

(i) |D̂+α \D̂
+ | ≤ α+, (ii) |D̂−α \D̂

− | ≤ α−. (2)

Additionally, let
ˆDα be the set of all such D̂α (i.e., D̂α ∈ ˆDα ⊆ ˆD).

We emphasize that De�nition 1 only speci�es what an a�acker can

do and which information can be used – but does not indicate how
the a�acker changes the data. �is de�nition is consistent with the

a�acker capability de�nition used in the CPS security literature

(e.g., [18, 38]). Moreover, α is unknown in general, so algorithms

considered in this paper do not assume anything on α .

�e BFA represents a practical model of a�acker capabilities. For

example, assume several devices collect medical data and store it

in the hospitals central data center. An a�acker can exploit known

vulnerabilities of the enterprise system of the data center to gain

read access on all data (i.e., knows all data), but can only alter data

from speci�c devices having a certain vulnerabilities (i.e., a�acks

some of the data). Here, we assume obtaining write access is more

di�cult than obtaining read access.

In comparison to other a�ack models discussed in Section 2,

we emphasize that the proposed a�acker capabilities are quite

general; we only limit the number of tampered feature vectors.

By de�nition, the BFA includes the ME; moreover, the BFA can

represent a�acks on (maliciously) manipulating labels in training

data. �is is achieved by manipulating a positive feature vector

into one of the negative feature vectors, which e�ectively switches

the label from positive to negative and suggests the BFA includes

the CICE and CDCE models.

3.3 Resilience Metric
To evaluate a classi�cation algorithm in the presence of a BFA, we

aim to quantify the e�ect of a BFA on the learned classi�er’s worst-
case error metric over all training data and all possible a�acks. In

traditional detection and classi�cation theory, the true-positive and

true-negative rates (or the corresponding false-positive and false-

negative rates) are commonly used to evaluate the performance of

a classi�er. We introduce a generic metric that utilizes the false-

positive and false-negative rates such that it measures the worst-

case weighted p-norm of the two error rates over all training data

and all feasible a�acks, de�ned as follows:

De�nition 2 (resilience metric). Given N and α , the resilience of

PH , ` is quanti�ed as the worst-case weighted p-norm of error rates

over all D̂ ∈ ˆD and D̂α ∈ ˆDα , stated as

VW ,p (PH , ` |N ,α )= max

D̂, D̂α

W · ˆR`01
(PH , ` (D̂α ) |D̂)

p . (3)

�is resilience metric measures the performance of a classi�cation

algorithm (i.e., VW ,p (·)) in the presence of the worst-cast a�ack

given the a�acker capability parameter α .

In this work, we select w+ = w− = 1 and p = ∞. So, VW ,p (·)
ranges from zero to one and equals one if PH , ` outputs any clas-

si�er such that an a�ack could result in mis-classi�cation of all

the positive or negative feature vectors in the un-a�acked training

data D̂. For notational simplicity, we denote VW ,p (·) as V (·). Our

selection of w+ = w− = 1 means each label is equally important to

model the unknown a�acker’s preference for each label. �e choice

of p = ∞ is motivated by the worst-case classi�cation approach

that minimizes the maximum of class-conditional error rates [31].

We note that other norm measures could have been chosen rather

than the∞-norm. For instance, selecting p = 1 results in evaluating

the 1-norm of the false-positive and false-negative rates, where

V (·) ≥ 1 implies that the classi�er is at least as bad as a weighted

coin-�ip (i.e., a trivial classi�er) [49]. Additionally, selecting p = 2

speci�es V (·) to be the Euclidean distance to the classi�er error of

zero. In general, the selection of p in Equation (3) can vary based

upon the security concerns.

Applying the resilience metric in Equation (3), a binary classi�-

cation algorithm PH , ` can be evaluated for given N and α . Further-

more, the resilience metric can be upper bounded by a function in

N and α , i.e., д(N ,α ) : (N0 × N0 × N0) → [0, 1] where G is the set

of all such д. �en, the upper bound characterizes the property of

an algorithm over various a�ack parameters. In this case, the classi-

�cation algorithm is called a д(N ,α )-resilient algorithm. Formally,

we de�ne the resilience property of a classi�cation algorithm in

the context of this work as follows.

De�nition 3 (д(N ,α )-resilience). A classi�cation algorithm P is

д(N ,α )-resilient to a BFA if

V (P |N ,α ) ≤ д(N ,α ), (4)

where д ∈ G denotes the worst-case resilience bound.

�is worst-case resilience bound plays a key role in de�ning re-

silient binary classi�cation problem, which is de�ned in the follow-

ing section.

4 PROBLEM FORMULATION
�is section formulates the problem of analyzing (and ultimately

designing) resilient binary classi�cation algorithms with respect

to training data a�acks. Speci�cally, given the number of positive

and negative training data N , a set of classi�ers F , a set of loss

functions S, and a class of algorithms PF ,S , the goal of this paper

is �nding a classi�cation algorithm P and a resilience bound д that
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minimize the error of the resilience bound such that P is д(N ,α )-
resilient to a BFA. Here, to measure the error of the resilience bound

we use the number of α that makes the resilience bound maximum

(i.e.,
∑
α ∈Θ 1{д(N ,α ) = 1}), but any other error measure can be

used. In short, a resilient binary classi�cation problem is de�ned

as follows:

Problem (BFA resilient binary classification problem). Gi-
venN , F , S, and PF ,S , a BFA resilient binary classi�cation problem
is to �nd a classi�cation algorithm P ∈ PF ,S and a resilience bound
д ∈ G according to

(P ,д) = arg min

P,д

∑
α ∈Θ

1{д(N ,α ) = 1} (5)

s.t. V (P |N ,α ) ≤ д(N ,α ),∀α ∈ Θ. (6)

We note several implications of the above problem. First, a feasible

classi�cation algorithm of this problem guarantees the worst-case

performance characterized by д since the constraint of the problem

enforces that the worst-case error (i.e., V (·)) is bounded by д for all

possible a�acks (i.e., ∀α ). Next, the problem can consider the capa-

bilities of classi�cation algorithms by encoding prior knowledge

on the class of classi�cation algorithms PF ,S . Speci�cally, PF ,S
can be the class of classi�cation algorithms that uses empirical

risk minimization over F with convex loss functions. �e resilient

classi�cation problem then �nds a classi�cation algorithm in the

restricted class of PF ,S . We note that when choosing the restricted

class of classi�cation algorithms in this paper, we do not consider

the a�acker capability parameter α , implying we focus on �nding

an algorithm without assumptions on α . �en, the ultimate goal

of the resilient binary classi�cation problem is making д(·) ≤ ϵ
for some N and for all α given conditions on PF ,S , where ϵ is a

su�ciently small scalar. Finally, we note that the resilience binary

classi�cation problem is related to the problem of minimizing gener-

alization error of a classi�er considered in traditional classi�cation

(See Section 1 in [40]).

We note that in this paper a BFA resilient binary classi�cation

problem is simply called a resilient binary classi�cation problem

assuming a BFA as an a�ack model. дP denotes the optimal д of

the resilient binary classi�cation problem to explicitly represent

the dependency on P . Also, an algorithm A is more resilient than an

algorithm B if

∑
α ∈Θ 1{дA (N ,α ) = 1} ≤

∑
α ∈Θ 1{дB (N ,α ) = 1},

and A,B, дA, and дB satisfy the constraint in the problem (Equa-

tion (6)). In the following section, we utilize the de�nition of the

resilient binary classi�cation problem to analyze traditional linear

classi�cation algorithms for resilience under a BFA.

5 RESILIENCE OF TRADITIONAL
LINEAR CLASSIFICATION

Traditional classi�cation algorithms (e.g. SVMs or 0-1 loss linear

classi�cation) rarely consider a learning environment that is par-

tially controlled by a�ackers. Here, we focus on linear classi�cation

algorithms (i.e., F = L, where L is the set of linear functions),

which is a basic building block for more complex classi�cation

algorithms. In this section, we analyze whether traditional linear

classi�cation algorithms are resilient. First, linear classi�cation

algorithms with various convex loss functions are analyzed (Sec-

tion 5.1). Next, a linear classi�cation algorithm with a 0-1 loss

function is analyzed (Section 5.2).

In the following, we strictly consider un-a�acked training data

D̂ for which a perfect classi�er exists – i.e., for some h ∈ H , ‖W ·
ˆR` (h |D̂)‖1 = 0 – such that only errors are introduced by a�acks.

We note that, in practice, the empirical risk over training data is

rarely equal to zero due to errors from noise and an assumption on

H . However, by treating errors as a�acks, the theoretical results

in the following sections can be interpreted as assuming worst-case
errors – e.g., a�acks.

�e resilient binary classi�cation problem �nds a classi�cation

algorithm P and a resilience bound дP , but the resilience bound

may be trivial for some α , i.e., д(N ,α ) = 1. �us, it is worthwhile

to �nd a resilience a�ack condition, AP ⊆ Θ, such that д(N ,α ) is

non-trivial for all α ∈ AP . In this case, we say that P is resilient
w.r.t. AP .

De�nition 4 (resilient w.r.t. AP ). Given N , P , дP , and AP , a

classi�cation algorithm P is resilient w.r.t AP if the algorithm is

д(N ,α )-resilient to a BFA and д(N ,α ) < 1 for all α ∈ AP .

Here, we emphasize that �nding an a�ack condition on α that

makes a classi�cation algorithm 1-resilient to a BFA (i.e., �nding

some set BP such that BP ⊆ A
c
P ) is equally important to �nding

the resilience a�ack conditionAP since α ∈ BP can be a “breaking

point” of the algorithm P . We refer to BP as the perfectly a�ackable
condition of P . �us, we introduce a new notion, perfectly a�ackable
w.r.t BP , which is formally described as follows:

De�nition 5 (perfectly a�ackable w.r.t. BP ). Given N , P , and BP ,

a classi�cation algorithm P is perfectly a�ackable w.r.t BP if the

algorithm is 1-resilient to a BFA for all α ∈ BP .

Next, we introduce amaximal resilience a�ack condition ¯A ⊆ Θ. It is

a resilience a�ack condition of some linear classi�cation algorithm

or a combination of algorithms where the size of the condition is

maximal. Formally,

De�nition 6 (maximally resilient condition). ¯A is a maximal re-

silient condition if
¯A = ∪`∈SAPL, ` .

We note that if the resilience a�ack conditionAP of a classi�cation

algorithm P is same as
¯A, we say that P is maximally resilient. To

�nd the maximal resilience a�ack condition
¯A, we consider some

superset of it (i.e., ¯Bc such that
¯A ⊆ ¯Bc ), which is a theoretical

upper bound of the maximal resilience a�ack condition. We argue

that there exists some classi�cation algorithm that achieves the

a�ack condition
¯Bc . �is then implies

¯Bc is the maximal resilience

a�ack condition (See �eorem 2).

One example of
¯B can be some subset of ∩`∈SBPL, ` due to

¯A = ∪`∈SAPL, ` ⊆ ∪`∈SB
c
PL, `

⊆ ¯Bc . �e following theorems

formally state
¯B and a condition when

¯Bc is the maximal resilience

a�ack condition.

Theorem 1. Given |D̂+ | and |D̂− |, let ¯B be{
α

����α
+ ≥

1

2

|D̂+ | or α− ≥
1

2

|D̂− |
}
. (7)

For all ` ∈ S, PL, ` is perfectly a�ackable w.r.t. ¯B.

proof sketch. For all N , α ∈ ¯B, and ` ∈ S, we �nd some D̂
and D̂α where V (PL, ` (D̂α ) |N ,α ) = 1. See Section 2.2.1 in [40] for

details. �
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Figure 1: Perfectly attackable conditions on α for each linear
classi�cation algorithm (colored in red). Assume |D̂+ | = 75,
and |D̂− | = 25.

Theorem 2. If there exists P ∈ PL,S such that AP = ¯Bc , then
¯Bc is the maximal resilience a�ack condition.
proof sketch. We use the following two set relations to prove

¯A = ¯Bc : (1)
¯A ⊆ ¯Bc = AP and (2) AP ⊆ ¯A. See Section 2.2.2 in

[40] for details. �

�e intuitive interpretation of
¯B is that if the number of tampered

positive or negative feature vectors is greater than or equal to

the half of |D̂+ | or |D̂− |, respectively, then any linear classi�cation

algorithm trained with this training data can be perfectly a�ackable

w.r.t.
¯B. We note that in Section 6 we show

¯B is actually the

maximal resilience a�ack condition. �us, we assume this from

now on. In the following subsections, we show that two classical

approaches do not achieve the maximal resilience: (i) convex loss

linear classi�cation; and (ii) 0-1 loss linear classi�cation.

5.1 Convex Loss Linear Classi�cation
In this section, the class of convex-loss linear classi�cation algo-

rithms is considered, where it is the collection of PL, `c ∈ PL,S ,

where `c is any convex relaxation of a 0-1 loss function, such as a

hinge loss function. SVMs and a maximum likelihood learning of lo-

gistic regression belong to this class. We prove that any algorithm in

this class is perfectly a�ackable w.r.t. some a�ack condition where

an a�acker can tamper at least one feature vector. Let BPL, `c be the

a�ack condition for the convex-loss linear classi�cation algorithms

being perfectly a�ackable, and then the a�ack condition is formally

stated as follows:

Proposition 1. Let BPL, `c be the set of α that satis�es one of the
following two conditions:

(i) α+ > 0, (ii) α− > 0. (8)

�en, PL, `c is perfectly a�ackable w.r.t BPL, `c and resilient w.r.t.
BcPL, `c

.
proof sketch. �e idea of “perfectly a�ackable” proof is that

for allN andα ∈ BPL, `c we �nd some D̂ and D̂α whereV (PL, `c (D̂α )
|N ,α ) = 1. �e “resilient” proof is trivial. See Section 2.2.3 in [40]

for details. �

�is implies even though an a�acker has weak ability to tamper

training data, it can make the algorithm misclassify all positive or all

negative feature vectors of un-a�acked training data by tampering

only one positive or negative feature vector (See Figure 1a for

the visualization of the perfectly a�ackable condition on α ). For

example, data-driven CPS that use SVMs to train intrusion detectors

[39] can be vulnerable if an a�acker can tamper at least one feature

vector. We note that convex-loss linear classi�cation algorithms

are not maximally resilient since BcPL, `c
⊂ ¯Bc .

5.2 0-1 Loss Linear Classi�cation
A 0-1 loss linear classi�cation algorithm is de�ned as PL, `01

∈

PL,S , where `01 (·) is a 0-1 loss function. We prove that the 0-1 loss

linear classi�cation algorithm is perfectly a�ackable w.r.t. some at-

tack condition where the number of tampered positive or negative

feature vectors is greater than or equal to the half of |D̂+ | or |D̂− |,
respectively, or the sum of the number of tampered positive feature

vectors and the number of tampered negative feature vectors is

greater than or equal to |D̂− | or |D̂+ |. Let BPL, `
01

be the a�ack

condition for the 0-1 loss linear classi�cation algorithm being per-

fectly a�ackable, and then the a�ack condition is formally stated

as follows:

Proposition 2. Given |D̂+ | and |D̂− |, let BPL, `
01

be the set of α
that satis�es one of the following four conditions:

(i) α+ ≥
1

2

|D̂+ |, (ii) α− ≥
1

2

|D̂− |,

(iii) α+ + α− ≥ |D̂− |, (iv) α+ + α− ≥ |D̂+ |. (9)

�en, PL, `01
is perfectly a�ackable w.r.t. BPL, `

01

.

proof sketch. For all N and α ∈ BPL, `
01

we �nd some D̂ and

D̂α where V (PL, `01
(D̂α ) |N ,α ) = 1. See Section 2.2.4 in [40] for

details. �

�is proposition implies the 0-1 loss linear classi�cation is strictly

more resilient than convex one (See Figure 1b for comparison).

�us, di�erent to the convex case, tampering single feature vector

is not critical for the 0-1 loss linear classi�cation. �is means

any CPS using convex linear classi�cation algorithms [12, 39, 42]

can be converted into the 0-1 linear classi�cation algorithm to

defend against the single feature vector tampering; however, neither

approach can provide maximal resilience due to BcPL, `
01

⊂ ¯Bc .

6 RESILIENT LINEAR CLASSIFICATION
In this section, we propose a maximally resilient linear classi�ca-

tion algorithm. A majority 0-1 loss linear classi�cation is de�ned

as PM, `01
∈ PL,S , whereM denotes a majority constraint that

restricts a feasible set of classi�ers by only allowing a classi�er

that correctly classi�es at least half of positive and negative feature

vectors, according to

M=

{
h ∈L

����R̂`01
(h |D̂+α )<

1

2

and R̂`01
(h |D̂−α )<

1

2

}
. (10)

In the following subsections, the resilience proof and the worst-case

resilience bound of the majority 0-1 classi�cation are provided.

6.1 Resilience of Majority 0-1 Loss Linear
Classi�cation

�e majority 0-1 loss linear classi�cation is perfectly a�ackable w.r.t.

some a�ack condition where an a�acker can manipulate greater

than or equal to the half of |D̂+ | or |D̂− |. Let BPM, `
01

be the a�ack

condition for the majority 0-1-loss linear classi�cation algorithms

being perfectly a�ackable, and then the a�ack condition is formally

stated as follows:

Theorem 3. Given |D̂+ | and |D̂− |, let BPM, `
01

be{
α

����α
+ ≥

1

2

|D̂+ | or α− ≥
1

2

|D̂− |
}
. (11)
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�en, PM, `01
is perfectly a�ackable w.r.t. BPM, `

01

and resilient w.r.t.
BcPM, `

01

.

proof sketch. �e ideal of “perfectly a�ackable” proof is that

for all N and α ∈ BPM, `
01

we �nd some D̂ and D̂α whereV (PM, `01

(D̂α ) |N ,α ) = 1. For the “resilient” proof, we exploit the property

of the majority constraint. See Section 2.2.5 in [40] for details. �

�is result shows that the majority 0-1 loss linear classi�cation

algorithm is more resilient than traditional linear classi�cation

algorithms, which is also illustrated in Figure 1c. Furthermore,

it achieves the maximal resilience condition (�eorem 1) due to

BPM, `
01

= ¯B, showing this algorithm achieves the maximal re-

silience a�ack condition.

6.2 Robustness of Resilient Classi�cation
If a classi�cation algorithm is resilient, it is worth analyzing the

degree of resilience. If α ∈ APM, `
01

, where APM, `
01

= BcPM, `
01

,

then the worst-case resilience bound д of the majority 0-1 loss

classi�cation algorithm is nearly proportional to the tampering

ability of an a�acker, which is formally stated as follows:

Theorem 4. Given |D̂+ |, |D̂− |, and α ∈ APM, `
01

, the resilience
bound д of PM, `01

can be computed as follows:

д(N ,α )=max
*
,

min

(
2α+ + α−,α+ + |D̂

+ |−1

2

)
|D̂+ |

,

min

(
α+ + 2α−,α− + |D̂

− |−1

2

)
|D̂− |

+
-
. (12)

proof sketch. To prove V (·) is bounded by д(·) for all N and

α ∈ APM, `
01

, we exploit the optimality condition of an optimal

classi�er PM, `01
(D̂α ) and the property of the majority constraint.

To prove that the bound is tight for all N and α ∈ APM, `
01

, we

�nd some D̂ and D̂α whereV (·) = д(·). See Section 2.2.6 in [40] for

details. �

�is theorem shows that if α ∈ APM, `
01

, the resilience bound is non-

trivial. Also, it shows that even if the a�acker capability parameter

α is restricted (i.e., α ∈ APM, `
01

) to ensure that the algorithm is

resilient w.r.t. APM, `
01

, the tampered portion of training data still

a�ects on the accuracy of the algorithm. Finally, we note that the

resilience bound д is tight.

7 CASE STUDY
In this section, we validate the proven resilience of algorithms

experimentally. �alitative results on synthetic data are presented

in Figure 3 and results on a real-world retrospective arrhythmia

data are shown in Table 3.

�e majority 0-1 loss linear classi�cation algorithm is formulated

in the following mixed integer linear program (MILP).

min

h,e,z
1>z + λ‖h‖2

s.t. ∀i, ei ≥ 1 − yih
>xi , −δz ≤ e ≤ δz

1>+z ≤
1

2

( |D̂+α | − 1), 1>−z ≤
1

2

( |D̂−α | − 1),

Heart Pacemaker Arrhythmia 
detector 

Alarm 

Figure 2: Pacemaker with an Arrhythmia detector.

where (xi ,yi ) is an ith training data pair, h ∈ Rp is a real-valued

classi�er, e ∈ R |D̂α |
denotes a scaled classi�cation error, z ∈

{0, 1} |D̂α |
is a vector that indicates misclassi�cation of each train-

ing data pair, λ is a regularization constant, set to zero, and δ is

a su�ciently large positive constant, where δ = 10
3
. 1+ and 1−

represent vectors where a jth element is �lled with one if yj = +1

and yj = −1, respectively, and zeros elsewhere. We note that the

0-1 loss linear classi�cation algorithm is formulated in the same

way to the above MILP except for the last two constraints (See

Section 3 in [40]), related to the majority constraint, and we adopt

a standard SVMs formulation [15] without a regularization term

for fair comparison. �eoretically, the performance of the 0-1 loss

linear classi�cation algorithm is as good as that of the convex loss

linear classi�cation algorithms [5]. If there are no a�ack and no

error, the 0-1 loss linear classi�cation algorithm is same as the

majority 0-1 loss linear classi�cation algorithm since the last two

constraints of MILP are not activated if there are no a�acks and no

error.

In experiments, we consider two types of a�acks: a point a�ack
and an overlap a�ack, which are concrete instances of a BFA. �e

point a�ack is an a�ack that manipulates a single feature vector to

be located far from the training data as illustrated in Figure 3. �e

a�acked single feature vector is chosen and tampered as follows.

Let α+ = 1, and x̄+ and x̄− be the mean of positive and negative

feature vectors, respectively. Any positive feature vector is chosen

and replaced to a scaled vector σx where the scaled vector is on the

half-line from x̄+ to the direction of x̄− − x̄+, and the scale value σ
is a su�ciently large scalar.

�e overlap a�ack is an a�ack that manipulates positive and/or

negative feature vectors to be overlapped negative and/or positive

feature vectors, respectively, as illustrated in Figure 3. �e over-

lap a�ack is brie�y described as follows: when α = (α+,α−), α+

and α− number of positive and negative feature vectors are ran-

domly chosen for tampering, respectively. �e chosen positive and

negative feature vectors are randomly overlapped to negative and

positive un-a�acked feature vectors, respectively. �ese steps are

repeated until a target classi�cation algorithm achieves a maximum

desired resilience value V (·).
Synthetic data. In Figure 3, the classi�cation results of each

linear classi�cation algorithm, such as SVMs, the 0-1 loss linear

classi�cation, and the majority 0-1 loss linear classi�cation, are

illustrated with di�erent types of an a�ack. �e original train-

ing data without a�acks is randomly drawn from two Gaussian

distributions, as illustrated in the �rst column and the �rst row,

where |D̂+ | = 20 and |D̂− | = 80. When there is no a�ack (the �rst

row in Figure 3), all three algorithms correctly classify training

data. If there is a point a�ack (the second row in Figure 3), only

SVMs algorithm is a�ected by the a�ack, outpu�ing a classi�er
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Figure 3: �e resilience of each linear classi�cation algorithm under the speci�ed attacks. �e blue or red mark represents a
positive or negative feature vector, respectively. �e feature vector in the blue or red region is classi�ed as positive or negative,
respectively.

Approach

A�ack Type

SVMs 0-1

0-1 with

majority

No A�ack

(α+, α− ) = (0, 0)
0.0 0.0 0.0

Point A�ack

(α+, α− ) = (0, 1)
1.0 0.0270 0.0270

Overlap A�ack

(α+, α− ) = (16, 21)
1.0 1.0 0.5946

Table 3: �e resilience metric V (·) of each linear classi�-
cation algorithm for Arrhythmia detection [24] under the
speci�ed attacks.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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Figure 4: �e degree of the resilience of PM, `01
in the re-

silience metricV (·) with respect to the ability of an attacker.
�e blue solid and dashed line represents the theoretical
robustness bound (Equation (12)) and the red cross means
the empirically evaluated feasible resilience. Assume |D̂+ | =
|D̂− | and α+ = α−.

that misclassi�es all positive feature vectors of un-a�acked training

data. When an overlap a�ack (the third row in Figure 3) is applied,

where α− = 24, both SVMs and the 0-1 loss linear classi�cation

output classi�ers that misclassi�es all positive feature vectors of

un-a�acked training data while the majority 0-1 loss classi�cation

algorithm still correctly classi�es the portion of the positive feature

vectors of un-a�acked training data, showing that the majority

0-1 loss classi�cation algorithm is more resilient than others.

Moreover, using the synthetic data, the theoretical worst-case

resilience bound (Equation (12)) of the majority 0-1 loss linear

classi�cation is experimentally shown in Figure 4. �e blue line

represents the theoretical worst-case resilience bound. Red points

are the resilience V (·) over the corresponding α . Speci�cally, 100

di�erent D̂ are randomly generated, where D̂+ and D̂− are drawn

from two Gaussian distributions of positive and negative labels,

respectively. For each D̂ and for each α+, which ranges from 0 to

the total number of positive feature vectors, an a�acker moves α+

number of positive feature vectors beyond the negative features in

100 di�erent ways to obtain D̂α so that positive and negative feature

vectors cannot be linearly separable. By taking the maximum of

V (·) for 100 di�erent D̂ and 100 di�erent D̂α , the resilience V (·)
is obtained for each α+, which is represented in a red cross. In

Figure 4, the red crosses do not excess the theoretical bound and

the increasing trend follows the bound.

Medical data. We evaluated the resilience of traditional linear

classi�cation algorithms and the proposed algorithm using arrhyth-

mia dataset. �e arrhythmia, a.k.a irregular heartbeat, is a condition

of the heart in which the heartbeat is irregular. An arrhythmia de-

tector cooperated with logs from pacemaker can reduce stroke and

death rate [21]. To design such a detector, electrocardiogram (ECG)

training data can be collected from logs of the pacemaker (Figure 2)
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whether ECG data is normal or abnormal (e.g., atrial �brillation or

sinus tachycardia). But, if the pacemaker is vulnerable, the train-

ing data can be tampered to hinder to detect arrhythmia, possibly

leading to death.

In Table 3, we have compared the resilience V (·) of each algo-

rithm on real medical dataset. Arrhythmia dataset [24], which can

be found at the UCI machine learning repository [32], is used for

evaluating the resilience of each algorithm. �e Arrhythmia dataset

is preprocessed as follows. Due to the computational limitation to

solve the MILP, we use 20 percent of training data (i.e., |D̂+ | = 37

and |D̂− | = 49) and select features from 40th and 99th for train-

ing classi�ers. We’ve obtained the same results as illustrated with

synthetic data. SVMs algorithm outputs a classi�er that misclas-

si�es all positive or negative feature vectors under both a point

a�ack and an overlap a�ack. 0-1 loss linear classi�cation does not

a�ect on a point a�ack but outputs a classi�er that misclassi�es

all positive or negative feature vectors when an overlap a�ack is

applied by tampering 43.2 and 42.8 percent of positive and negative

feature vector, respectively. However, the majority 0-1 loss linear

classi�cation still correctly classi�es the portion of positive and

negative feature vectors even though about 43 percent of training

data were tampered. We emphasize that V (·) values in Table 3 are

not prediction results, but they are evaluated over training data,

making V (·) = 0 possible. However, a higher V (·) value implies

higher prediction error.

Comparison with [28]. Kearns and Li’s paper [28] analyzes a

binary classi�cation problem under the malicious error (ME) model,

but our paper analyzes a binary linear classi�cation problem un-

der a BFA, which is a general case of the ME model. Here, we

compare each paper’s result by providing an example. Assume a

binary linear classi�cation problem under the ME model, where

|D̂+ | = |D̂− | = 50 and α+ = α− = 10. Kearns and Li’s paper states

that if a designer wants to have the expected accuracy of 0.9, then

α+

|D̂+ |
= α−

|D̂− |
< 0.1

1+0.1 ≈ 0.091 regardless of a classi�cation algo-

rithm. �is means at most 0.091 percent of training data can be

tampered to guarantee the expected accuracy. However, this does

not state anything on the expected accuracy when
α+

|D̂+ |
≥ 0.091. In

comparison to this, our paper implies that, in the case of the major-

ity 0-1 linear classi�cation algorithm, д( |D̂ |, (α+,α−)) = 0.6. �is

means that a designer can expect the accuracy on training data that

is at least 1− 0.6 = 0.4. �is further implies the expected minimum

accuracy can be approximately 0.4 when
α+

|D̂+ |
= 0.2 ≥ 0.091. We

note that the connection between the accuracy on training data

(i.e., the performance measure of this paper) and the expected accu-

racy (i.e., the performance measure of traditional classi�cation) can

be found in Section 1 in [40].

8 CONCLUSIONS
In particularly, the incorrect decisions on CPS directly a�ect on a

physical environment, so learning techniques under training data

a�acks should be scrutinized. Toward the goal of resilient machine

learning, we propose a resilience metric for the analysis and design

of a resilient classi�cation algorithm under training data a�acks.

Traditional algorithms, such as convex loss linear classi�cation al-

gorithms and the 0-1 loss linear classi�cation algorithm, are proved

to be resilient under restricted conditions. However, the proposed

0-1 loss linear classi�cation with a majority constraint is more

resilient than others, and it is the maximally resilient algorithm

among linear classi�cation algorithms. �e worst-case resilience

bound of the proposed algorithm is then provided, suggesting how

resilient the algorithm is under training data a�acks.

Countermeasures. �e resilience analysis on di�erent linear

classi�cation algorithms provides us clues for countermeasures on

training data a�acks. Here, we brie�y discuss a possible direction

for countermeasures and its challenges. In general, additional al-

gorithms can be considered to eliminate the worst-case situations

in the analysis of each classi�cation algorithm. For example, to

defend against the point a�ack on SVMs, it might be considered

to add a preprocessing step that saturates large values in training

data. Speci�cally, if a designer knows the minimum and maximum

range of features, then range can saturate the large values that con-

tribute to the point a�ack. However, this might not be an e�ective

countermeasure since the range of features is not known in general

and the point a�ack can be conducted a�er the preprocessing step,

not before it.

Here, we emphasize that our analysis, which is purposely fo-

cused on a classi�cation algorithm exclusively, helps to devise

countermeasures: combining a classi�cation algorithm with a pre-

processing step or using a complex classi�cation algorithm (e.g., hi-

erarchical approach and neural networks). We believe that the

advanced algorithms work be�er under the training data a�ack in

general and our analysis on the simple algorithms (e.g., SVMs) can

be a building block for analyzing and devising advanced algorithms.

Future works. As a future work, the following issues are worth

being considered. A more practical mixed integer linear program

can speed up computational time (e.g., [37]) and it would be promis-

ing to design and analyze multiple algorithms in tandem (one to

monitor the data, one to learn a classi�er). It is also worth incor-

porating bounded noise error and designing error onH in analy-

sis, and extending to non-linear and multiclass classi�cation prob-

lem. Finally, to devise countermeasures, it would be promising to

consider resilient algorithms that estimate a�acker capabilities or

model prior knowledge on a�ackers.
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[52] Chenyang Yuan, Jérôme �ai, and Alexandre M Bayen. 2016. ZUbers against

ZLy�s Apocalypse: An Analysis Framework for DoS A�acks on Mobility-as-a-

Service Systems. In 2016 ACM/IEEE 7th International Conference on Cyber-Physical
Systems (ICCPS). IEEE, 1–10.

[53] Tong Zhang. 2004. Solving large scale linear prediction problems using stochastic

gradient descent algorithms. In Proceedings of the 21st International Conference
on Machine Learning. ACM, 116.

146146164

http://money.cnn.com/2016/03/23/technology/hospital-ransomware/
http://money.cnn.com/2016/03/23/technology/hospital-ransomware/
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199

