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Abstract—This paper considers the problem of incorporating
context in medical cyber-physical systems (MCPS) applications
for the purpose of improving the performance of MCPS detectors.
In particular, in many applications additional data could be
used to conclude that actual measurements might be noisy or
wrong (e.g., machine settings might indicate that the machine is
improperly attached to the patient); we call such data context.
The first contribution of this work is the formal definition
of context, namely additional information whose presence is
associated with a change in the measurement model (e.g., higher
variance). Given this formulation, we developed the context-
aware parameter-invariant (CA-PAIN) detector; the CA-PAIN
detector improves upon the original PAIN detector by recognizing
events with noisy measurements and not raising unnecessary false
alarms. We evaluate the CA-PAIN detector both in simulation
and on real-patient data; in both cases, the CA-PAIN detector
achieves roughly a 20-percent reduction of false alarm rates over
the PAIN detector, thus indicating that formalizing context and
using it in a rigorous way is a promising direction for future
work.

I. INTRODUCTION

Recent advances in medical device technologies have led
to an explosion in the number and kind of medical devices
available. The large amounts of digital data collected by
these devices [7], [16] provide great opportunities for de-
veloping Medical Cyber-Physical Systems (MCPS) in order
to improve health outcomes and reduce costs [20]. Such
systems would aid clinicians in multiple ways, ranging from
providing prompts to clinicians (in case they are focused
on the patient and not looking at the monitors), to alerting
clinicians of unsuspected events (by processing time-series
data and discovering trends over a long period of time, e.g.,
in pulmonary shunt detection [12], [13] and hypovolemia
detection [22]), to providing fully closed-loop systems (e.g.,
the artificial pancreas project [6]).

Building reliable MCPS with guarantees presents multiple
challenges, however. The first obstacle is that data is often
missing or wrong. Furthermore, there are multiple artifacts
during a patient’s stay in a hospital (e.g., the patient is
moving or clinicians are checking the mechanical ventilator
for leaks) that introduce noise in measurement data or render
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it useless altogether (e.g., pulse oximeter falls off the pa-
tient). Thirdly, human physiology varies greatly with patients,
which means that MCPS need to be robust to very different
model parameters and patient reactions. Finally, the safety-
criticality of medical applications poses strict requirements on
the performance of MCPS such that they must both have very
good average performance and provide guarantees for each
individual as well.

In order to address the last two challenges, namely guaran-
teed performance and robustness to physiological parameters,
in previous work we developed the Parameter-Invariant (PAIN)
detector for detection of critical patient events in real time [32],
[31]. By using PAIN statistics that are unaffected by the
specific values of physiological parameters (e.g., metabolic
rate, diffusion rate), the PAIN detector provides maximal
invariance to the nuisance physiological parameters, thus re-
sulting in (near) constant false alarm rates across different
patients. The PAIN detector has been shown to have very good
detection performance in multiple medical applications such
as pulmonary shunt detection [12], [13], meal detection in
type I diabetes [30], and detection of hypovolemic shock [22].
Despite its robustness, however, the PAIN detector is still
affected by bad data, as caused by technical issues (e.g.,
machine not properly connected) or other unmodeled events.

To address the shortcomings of the PAIN detector, in
this work we make use of other available (context) data in
an operating room/intensive care unit (OR/ICU) in order to
judge when measurements might be noisy or inaccurate. For
example, a typical anesthesia machine [1] outputs a range
of context data in addition to standard measurements (e.g.,
machine settings, clinician inputs). If context data is not within
normal ranges, one can conclude that the machine is likely not
operating according to specification and that the measurements
that it provides should be treated with caution.1 Thus, in this
paper we aim to augment the PAIN detector with knowledge
of (formally defined) context in an effort to reduce some of
the technical alarms that might be raised in an OR/ICU.

There is a significant body of literature in the MCPS
detection/estimation space. At a high level, works can be

1A similar notion of context can be naturally used in other domains as well,
e.g., autonomous vehicles, as discussed in Section VII.



classified into three classes: white-box (model-based), grey-
box, and black-box (data-driven). When good models are
available, one might be able to develop approaches with
strong theoretical guarantees and with good results [3], [18].
Alternatively, compartmental models are also developed that
result in a grey-box setting with lumped-parameter models;
examples include the cardiac [28] and insulin-glucose sys-
tems [14]. Finally, machine learning approaches have also
been developed looking for trends as revealed by the data
instead of building first-principles models [17], [19], [23],
[24]. All of the above approaches, however, require either
good physiological models or rich training data, which are
not available in many medical applications. The PAIN detector
alleviates some of these challenges by providing guaranteed
performance regardless of specific patient parameters and
without requiring training data. At the same time, as argued
above, the PAIN detector might perform poorly in scenarios
with bad data as caused by unmodeled artifacts (e.g., an
improperly connected machine). While it is possible to use
standard anomaly detection techniques to identify bad data
points [29], it is challenging to develop detectors that take this
information into account (e.g., by using predictions instead of
measurements) in scenarios with uncertain models.

The notion of using (discrete) contextual information has
also been explored in different CPS domains, at different
levels of generality and formality. In detection and estimation,
works have been developed for handling both discrete and
continuous data (e.g., target tracking [15], quantized mea-
surements [21], Kalman filtering with intermittent measure-
ments [27]) but these works are either too general (thus
resulting in approximation algorithms) or too specific, i.e.,
they do not consider context to be additional data but rather
a function of available measurements. In robotics, researchers
have used contextual cues for the purpose of simultaneous
localization and mapping [2], [4], [5], [33], although these
approaches do not provide a general definition of context. In
prior work, we developed the context-aware filter, in which
context measurements are modeled as binary measurements
with a known probability given the state [9]; this approach
was applied to the problem of estimating blood oxygen
content during surgery [11]. One limitation of this work is
that obtaining the distribution of context measurements often
requires significant domain expertise and/or training data that
may not be available.

To address the limitations of related work, in this paper we
combine the notions of context and parameter invariance. We
define a context measurement as binary context data that is
correlated with inaccurate measurements (e.g., an unexpected
machine setting is a context measurement that indicates the
machine might be providing noisy or altogether meaningless
measurements). Using this framework, we develop the context-
aware parameter-invariant (CA-PAIN) detector that still pro-
vides guaranteed performance regardless of physiological pa-
rameters but is also aware of when the available measurements
might be noisy. In particular, when a context measurement is
present, the detector adapts and treats the measurements during
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Fig. 1: Typical missing/bad data patterns over time in a
surgery case at CHOP. Vt denotes tidal volume (measured in
milliliters), RR denotes respiratory rate (measurement in beats
per minute, BPM), and PEEP denotes positive end-expiratory
pressure (measured in centimeters of water). Missing measure-
ments are set to -1, i.e., they lie on the lower border of each
graph.

that time as having an unknown high variance.
To achieve both goals of the CA-PAIN detector (namely,

improve performance during bad data periods while main-
taining the parameter invariance guarantee), a total of three
PAIN statistics are generated: 1) a PAIN statistic assuming
all measurements have the same variance, 2) a PAIN statistic
obtained only by measurements with low variance, and 3) a
PAIN statistic obtained only by using measurements with high
variance. We derive a decision rule based on these statistics
such that alarms are only raised when all statistics provide
evidence in favor of the same hypothesis. It is important to
emphasize that the CA-PAIN detector is also invariant to the
actual value of both normal and high variances; thus we make
no assumptions on the values of the respective variances.

The CA-PAIN detector is evaluated both in simulation and
on real data. We simulated multiple patients with different
(unknown) parameters; at each time, if a context measurement
is present, a high-variance noise is added to the actual (con-
tinuous) measurements. We observe on average a 20-percent
improvement due to context, i.e., for similar detection rates,
the CA-PAIN detector’s false alarm rate is roughly 20 percent
lower than that of the vanilla PAIN detector.

For real-data evaluation, we use data obtained from the Chil-
dren’s Hospital of Philadelphia (CHOP) during lung lobec-
tomy surgeries on infants.2 Since lobectomies often require
one-lung ventilation (thus introducing a pulmonary shunt, i.e.,
a blockage of one of the bronchi), patients often experience de-
saturation events (low-blood-oxygen events) that are especially
dangerous in infants. Thus, we aim to detect such desaturation
events before they occur and alert clinicians in real time.
The PAIN detector was originally applied to this problem
with good performance but raised multiple false alarms during

2A lung lobectomy is the incision of a cystic lesion on a lung.



bad-data events [12], [13]; such events were often caused
by an improperly connected anesthesia machine (e.g., when
clinicians are checking for leaks).

To improve the performance of the PAIN detector, we
identified a context measurement that is correlated with bad-
data events. As illustrated in Figure 1, missing positive end-
expiratory pressure (PEEP) or peak-inspiratory pressure (PIP)
values (which are inputs set by clinicians) are correlated with
greater noise in actual measurements since they are provided
by the same machine and are not recorded if the machine is not
properly connected. Consequently, we applied the CA-PAIN
detector by using missing PIP/PEEP as context measurements.
The CA-PAIN detector results in a significant reduction in
false alarms, eliminating about 20 percent of false alarms on
average. Equivalently, for the same false alarm rate, the CA-
PAIN results in an addition 5% of life-critical detections.

In summary the contributions of this paper are three-fold:
1) the formalization of context in the MCPS detection setting;
2) the development of the CA-PAIN detector that is invariant
to patient physiology and is aware of the quality of available
measurements through the use of context; 3) the evaluation of
the CA-PAIN detector both in simulation and on real-patient
data from CHOP.

The remainder of this paper is organized as follows. Sec-
tion II introduces the background terminology and notation,
and Section III presents the problems addressed in this paper.
A formal definition of context is provided in Section IV,
whereas Section V presents the design of the CA-PAIN
detector. Section VI contains the detector’s evaluation, while
Sections VII and VIII provide a discussion and concluding
remarks, respectively.

II. BACKGROUND

Before presenting the precise problem formulation, in this
section we provide a brief introduction to the PAIN detector,
as it pertains to clinical monitoring applications.

A. Overview of Detection Approaches in MCPS

In the PAIN detection setting, the problem is to distinguish
between one of two hypotheses: 1) the null that captures
normal operation (e.g., patient is in a safe state) or 2) the
alternative that models the detection scenario (e.g., patient
is in an unsafe state). Given a parameterized model for
each hypothesis, the problem is to determine from available
measurements which hypothesis is true, regardless of the
specific values of the parameters. Mathematically, we assume
the measurements y ∈ RN were drawn from a distribution
y ∼ fθ that is parameterized by the patient-specific parameters
θ. The hypothesis test is thus a test of parameters:

H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ1, (1)

where H0 is the null hypothesis, H1 is the alternative, and Θ0

and Θ1 are corresponding parameter sets associated with each
hypothesis.

The performance of any detector φ is evaluated using false
positive and true positive rates (also known as false alarms and

true alarms). A false positive occurs when φ(y) = 1 when
H0 is true whereas a true positive occurs when φ(y) = 1
when H1 is true. In general, these metrics introduce a trade-
off such that one is improved at the expense of the other.
Note that achieving a good balance between the two metrics
is only possible in cases where the sets Θ0 and Θ1 do not
have significant overlap. Thus, one of the major challenges
in hypothesis testing (especially in MCPS where models are
usually only partially known) is to develop models that lead
to well separated hypotheses. Once the hypothesis test is
developed, the goal is to build a detector that has the highest-
possible true positive rate (given the separation of the two
hypotheses) for any false alarm rate – this is known as a
Universally Most Powerful (UMP) test. Thus, a UMP test
would allow system designers to pick a desired false alarm rate
depending on the application and achieve the highest-possible
corresponding true positive rate.

If the parameters were known, say θ0 and θ1 under each
hypothesis respectively, then one can build a UMP test by
computing the likelihood ratio test:

l(y) =
fθ1(y)

fθ0(y)
,

and comparing the result to a predefined threshold in order to
determine whether to raise an alarm on not.

In the medical setting, patient parameters are almost never
known and are difficult to measure (e.g., measuring the
diffusion rate would require knowing the exact geometry of
the lung); in addition, parameters tend to change over time.
In such cases, it might be possible to estimate parameters
from data and perform a generalized likelihood ratio test by
comparing the likelihoods of the estimated parameters under
each hypothesis:

l̂(y) =
max
θ∈Θ1

fθ(y)

max
θ∈Θ0

fθ(y)
.

Generalized likelihood ratio tests work well in applications
with sufficient high-quality data where good parameter esti-
mates can be computed. However, due to the inferior quality
and often small amount of medical data available, obtaining
good parameter estimates is challenging in the MCPS setting.
In such a scenario one might develop a parameter-invariant
test, i.e., a test that generates a statistic that is invariant to
the specific values of the parameters. Invariance is formally
captured using groups; we say that a statistic t(y) is invariant
to a group of transformations G if and only if

∀g ∈ G, t(y) = t(g(y)).

This means that the statistic’s value does not change even if
some transformation g is applied to the measurements first.
Intuitively, groups capture all the behaviors that might change
across patients and affect the detector’s performance. Specific
groups are discussed in the next subsection.

Ideally, one would like to develop a maximally invariant
statistic, i.e., a statistic that is invariant only to G and nothing



else (note that t(y) = 0 is invariant to any group but it is
useless). Formally, this is defined as:

t(y) = t(y′) =⇒ ∃g ∈ G, y = g(y′),

i.e., the maximally invariant statistic naturally creates an
equivalence relation on the orbits in G.

Maximally invariant statistics are useful because they pre-
serve as much information as possible while also being in-
variant to G. They can be used to design maximally invariant
tests:

φMI(y) =

{
0 if t(y) ≤ η
1 otherwise

, (2)

where η is some chosen threshold. Usually, the group G is
chosen so that it captures the transformations under H0 – this
ensures that t(y) has the same distribution under H0 under
transformations in G; in turn, this means that the test φMI

can be designed to have a constant false alarm rate regardless
of the parameter values. The true alarm rate of φMI will vary
with the parameter values. While it might be possible to design
a universally most powerful invariant (UMPI) test (i.e., a test
that achieves the highest true alarm rate for any chosen level
of false alarm rate) under certain circumstances, this cannot
be done in general. Yet, parameter-invariant tests have been
shown to work well in practice.

B. Parameter Invariant Tests for Linear Systems

In multiple medical detection applications (namely, all
MCPS detectors we have developed [12], [13], [22], [30],
[31]), the detection problem often reduces to a matched-
subspace test:

H0 : y = F0θ0 + σn

H1 : y = F1θ1 + σn,
(3)

where F0 ∈ RN×k and F1 ∈ RN×p are known matrices that
determine the subspace of the measurements’ mean under each
hypothesis, θ0 and θ1 are unknown (vector) parameters that
determine the coordinates of the measurements’ mean under
the respective hypothesis, σ is an unknown scale, and n is
zero-mean noise.3. Since the unknown parameters can take
on any values, the test in (3) is essentially a test of which
subspace (the column space of F0 or F1) the measurements
are more likely to belong to.

In order to develop a test that is invariant to the unknown
parameters in (3) under H0, we ask for invariance to the group
G0 of bias in the column space of F0 (introduced by θ0), scale
(introduced by σ) and rotation in the space of F1. We ask for
invariance to the rotation of F1 in an effort to test whether the
magnitude of θ1 is non-zero (i.e., ‖θ1‖ = 0 vs. ‖θ0‖ = 0),
where ‖θ1‖ > 0 would indicate that the data comes from the

3It is customary to assume that n has a Gaussian distribution because in
that case it is possible to compute the distribution of the resulting maximally
invariant statistic. However, even if n is not Gaussian (as is likely), we would
still obtain a maximally invariant test assuming that n is zero-mean (if the
mean is non-zero, one could estimate it from data and reduce the problem to
the zero-mean problem by subtracting the estimated mean)

model under H1 rather than H0. G0 can be concisely written
as:

G0 =

gµ ◦ gρ ◦ gσ
∣∣∣∣∣∣∣
gµ ∈ Gbias,0,
gρ ∈ Grotate,1,
gσ ∈ Gscale


where

Gbias,0 =
{
g | g(y) = y + F0µ, µ ∈ Rk

}
Grotate,1 =

g
∣∣∣∣∣∣∣
g(y) =

(
P1 +U1RU

>
1

)
y,

P1 = I − F1(F>1 F1)−1F>1

R−1 = R>, det(R) = 1


Gscale =

{
g | g(y) =

1

σ
y, σ ∈ R≥0

}
,

and U1 comes from the singular value decomposition of
F1 = U1ΛV

>
1 for some V1.

Given G0, it is possible to design a maximally invariant
statistic as follows [25]:

r0(y) =
y>PF̄1

y/rank(F̄1)

y>(I − PF̄1
)y/nullity(F̄1)

, (4)

where F̄1 =
(
I − F0(F>0 F0)−1F>0

)
F1,

PF̄1
= F̄1

(
F̄>1 F̄1

)−1
F̄>1 , rank(F̄1) denotes the rank of F̄1,

and nullity(F̄1) is the dimension of the null space of F̄1. If
the noise n is Gaussian, then under H0, r0(y) is distributed
according to an F-distribution with rank(F̄1) numerator and
nullity(F̄1) denominator degrees of freedom, respectively.
Regardless of whether n is Gaussian, a maximally invariant
test can be designed using r0(y) that has a constant false alarm
rate for any values of the unknown parameters. Finally, note
that one can also create a statistic r1(y) for testing H1 against
H0 by following the same steps and replacing F0 with F1;
such a two-sided test could be used in scenarios where multiple
models could match the event hypothesis (e.g., comorbidities)
and would allow us not to raise unnecessary alarms.

III. PROBLEM STATEMENT

This section presents the context-aware parameter-invariant
detection problem. The problem has two parts – 1) context
formulation and 2) a corresponding parameter-invariant test.
The next subsection states the former first.

A. Context Definition

As described in the introduction, context is intuitively
defined as additional information that is not directly used as
measurement data but is related to the measurements in an
unknown but structured way. In this paper, we are specifically
interested in binary context that informs the system that the
available measurements might be inaccurate. As argued in
Section I and as illustrated in Figure 1, examples of such
context measurements include known properties of MCPS
(e.g., missing PEEP/PIP measurements in the data recorded
from an anesthesia machine are correlated with inaccurate tidal
volume measurements since the machine might be temporarily
improperly connected).



Thus, the first problem addressed in this paper is how
to define context measurements. Note that such a definition
need not be tied to the parameter-invariant detector but rather
the opposite: a reasonable definition should be formulated to
capture the notion of context first, which can then be utilized
in a corresponding hypothesis test. In this sense, such a test
may or may not be solved using a PAIN detector.

Problem. The first problem addressed in this paper is how to
define context, with respect to a hypothesis testing problem,
in a general manner in order to capture the intuition that
context measurements are correlated with more/less noisy
measurements.

B. Context-Aware Parameter-Invariant Detector

Once context is defined for a hypothesis testing problem,
a corresponding hypothesis test can be formulated. This test
will also contain unknown parameters, namely all parameters
contained in the original hypothesis test in (3) plus any extra
parameters that might be introduced by the definition of
context. Similar to other detectors in the medical setting, our
goal would still be to build a PAIN detector that provides a
guaranteed level of false alarm rate regardless of the values of
the model parameters or of context parameters.

To approach this problem, one would need to first identify
a group of transformations induced by the hypothesis testing
problem. Once such a group is defined, a maximally-invariant
statistic needs to be constructed that will result in a corre-
sponding maximally-invariant test.

Problem. The second problem statement is to develop the
CA-PAIN detector, i.e., develop a maximally-invariant test to
the group of transformations induced by the context-aware
hypothesis testing problem.

IV. CONTEXT DEFINITION

This section presents some considerations when defining
context before presenting the actual context definition and the
resulting modified hypothesis test.

A. Frequentist vs. Bayesian Approaches

As usual with definitions, the definition of context presents
a variant of the frequentist vs. Bayesian dichotomy. On the one
hand, with a Bayesian definition, one can capture the precise
probabilistic relation between context and the system state and
thereby obtain strong theoretical results (e.g., an unbiased state
estimator). Such an approach was taken in our prior work
on context-aware estimation [9], [10] where we assume that
context measurements are binary measurements with a known
probability given the state; given this assumption, we devel-
oped a closed-form context-aware filter. The context-aware
filter was successfully applied to the problem of estimating
the patient’s blood oxygen content during surgery [11].

On the other hand, the Bayesian approach often requires
expert knowledge or rich training data in order to acquire
the prior relation between context and the measurements. In
applications where this may be challenging one might adopt a

frequentist approach instead. In this setting, we do not make
any prior assumptions about the distribution of context but
rather rely on data in order to make conclusions about the
occurrence of context. The detection setting is also naturally
suited for a frequentist approach because it is possible to
obtain good results without knowledge of certain parameters,
as discussed in Section II. In contrast, this is not true for
estimation problems where good parameter estimates are a
necessary condition for good estimation performance.

B. Context Formulation
Given the considerations in the previous subsection, we take

a frequentist approach and make minimal assumptions about
the relationship between context and the actual measurements.
In other words, our definition aims to only capture the fact
that the presence of context measurements increases a mea-
surement’s variance – we do not assume anything about the
magnitude of that variance nor about the frequency of context
measurements.

Formally, we assume each context measurement bik at
time k is a binary variable indicating whether context i is
present (e.g., PEEP is missing or not missing). The vector
bk = [b1k, b

2
k, . . . ]

> contains all context measurements at time
k. It is important to emphasize that we do not make any
assumptions about the distribution or likelihood of bk at any
given time. Since the presence of each bik suggests that the
measurements might be more noisy at that time, under H0 we
capture this formally with an unknown scale:

yk =

{
µ0,k + σ1nk if ∃i bik = 1
µ0,k + σ0nk if ∀i bik = 0

, (5)

where y = y1:N , n = n1:N , F0θ0 = µ0,1:N , and N is the total
number of measurements as before. A similar relationship for
the measurement could be obtained under H1.

Having defined context, we can now state the modified
hypothesis test. The test is the same as the one in (3)
except that some measurements might have different variances
depending on whether context is present or not. Thus, the
hypothesis test for y can be succinctly written as:

H0 : y = F0θ0 + σ0D0n+ σ1D1n

H1 : y = F1θ1 + σ0D0n+ σ1D1n,
(6)

where D0 is a diagonal selection matrix such that [D0]jj = 1
if ∀i, bij = 0 and [D0]jj = 0, otherwise; D1 is similarly
defined such that D0 + D1 = I .4 Note that (6) simplifies
to the standard hypothesis test in (3) when either D0 or D1

is the identity matrix.

V. DESIGN OF THE CONTEXT-AWARE
PARAMETER-INVARIANT DETECTOR

Given the context definition presented in Section IV, this
section develops the CA-PAIN detector for the hypothesis
testing problem in (6).

4Note that to simplify notation we use only two values for the noise
variance, i.e., all context measurements result in the same high variance, if
present. The framework in this paper could be straightforwardly extended to
handle the case with multiple variance values by introducing more Di’s.



A. Group of Transformations Induced by Nuisance Parameters

To construct a CA-PAIN detector, we first need to specify
the group that we ask for invariance to. Similar to other PAIN
detectors, this group needs to capture the transformations
induced by the nuisance parameters in the hypothesis testing
problem. This will ensure that, if an invariant statistic is used
to build the detector, then the false alarm rate will be invariant
to the specific values of the nuisance physiological parameters.

The new group of transformations induced under H0,
namely G0,C , is similar to G0; the only difference is that it
also contains the multi-scale terms:

G0,C =

gµ ◦ gρ ◦ gσ
∣∣∣∣∣∣∣
gµ ∈ Gbias,0,
gρ ∈ Grotate,1,
gσ ∈ Gmulti−scale

 ,

where Gbias,0 and Grotate,1 are as defined in Section II, and
Gmulti−scale is defined as follows:

Gmulti−scale = {g | g(y) = (α0D0 + α1D1)y, α0, α1 ∈ R≥0}.

(7)

The group G1,C for testing H1 against H0 in a two-sided test
can be constructed in a similar manner.

B. CA-PAIN Statistics

This subsection presents the CA-PAIN statistics used in this
paper. First note that finding a maximally-invariant statistic to
G0,C is challenging. The different scaling terms essentially
induce an additional rotation between their respective spaces
but it is difficult to identify the invariance that is preserved
across all transformations in the group (in a single-scale
setting, such an invariance is direction such that a statistic that
normalizes the measurement vector to unit length is maximally
invariant to the group of single scaling). It remains future work
to identify a maximally invariant statistic for this group, if one
exists.

As a result of the challenge described in the previous
paragraph, in this paper we utilize near-maximally invariant
statistics. In particular, we split the measurement vector y into
two, y0 = D0y and y1 = D1y. For each yi, we construct
the statistic t0i := r0(yi) as defined in (4). Note that t0i are
invariant to G0,C but are not maximal. By definition, each t0i
is also maximally invariant to a corresponding subgroup of
G0 (by projecting the group into the space spanned by Di).
The benefit of using t0i (and t1i, respectively) is that they
are independent statistics (because different measurements are
used to generate them); this means that we can compute their
joint likelihood (e.g., in the case of Gaussian noise) and can
construct tests that make decisions only when both statistics
(independently) agree, i.e., provide evidence in favor of the
same hypothesis.

C. Decision Space

Without obtaining a maximally invariant statistic to G0,C ,
we cannot construct a new maximally invariant test. However,

the information provided by the CA-PAIN statistics, i.e., the
t0i and t1i statistics, can still be useful, especially when
they agree. Thus, we construct the CA-PAIN detector by
augmenting the original PAIN detector with the information
provided by the CA-PAIN statistics. In particular, the CA-
PAIN detector uses the information provided by the CA-PAIN
statistics to silence some of the alarms of the PAIN detector
in case the two sets of statistics provide information in favor
of opposite hypotheses. The entire decision space of the CA-
PAIN detector is detailed below.

The PAIN detector uses a two-sided test to make a decision.
For any chosen thresholds η0 and η1, the PAIN detector
outputs one of three decisions:

1) raise an alarm if r0(y) > η0 and r1(y) ≤ η1 (i.e., they
agree in favor of H1),

2) raise a warning if r0(y) > η0 and r1(y) > η1 or if
r0(y) ≤ η0 and r1(y) ≤ η1 (i.e., they disagree),

3) remain silent if r0(y) ≤ η0 and r1(y) > η1 (i.e., they
agree in favor of H0).

The CA-PAIN statistics can be used in a similar fashion to
make a decision. Since t00 and t01 are independent (and so
are t10 and t11), we can compute (assuming the noise n
is Gaussian) the value of the joint cumulative distribution
function (CDF) of both t00 and t01, call it R0, and of both t10

and t11, call it R1. Note that the Gaussian assumption is not
constraining – if the CA-PAIN statistics are not F-distributed,
the CDF comparison will not yield the targeted false alarm rate
but the test will still be invariant to the nuisance parameters.
With this in mind, for any chosen thresholds χ0 and χ1,
the three decisions made using the CA-PAIN statistics are as
follows:

1) raise an alarm if R0 > χ0 and R1 ≤ χ1 (i.e., they agree
in favor of H1),

2) raise a warning if R0 > χ0 and R1 > χ1 or if R0 ≤ χ0

and R1 ≤ χ1 (i.e., they disagree),
3) remain silent if R0 ≤ χ0 and R1 > χ1 (i.e., they agree

in favor of H0).
Finally, we construct the CA-PAIN detector by combining
the decision of both sets of statistics. In particular, we use
the information provided by the CA-PAIN statistics only to
silence the PAIN detector, never to raise additional alarms (this
is done if PAIN statistics agree in favor of H1 but the CA-
PAIN statistics agree in favor of H0). The rationale behind this
choice is the following: if the PAIN detector raised an alarm
during a noisy-data scenario but the CA-PAIN statistics (which
decouple high-variance from low-variance measurements) all
provide information in favor of H0, then most likely the PAIN
detector raised a false alarm due to the difference in variances
(which does not match the model under the null hypothesis).
Note that we do not change the PAIN detector’s decision in the
opposite case because if no PAIN alarm was raised during a
high-variance scenario, then the alarm raised by the CA-PAIN
statistics is likely to be false.

Tables I, II and III contain a summary of the entire decision
space. Table III summarizes the final decision made by the



TABLE I: Test Decision Space for PAIN detector.

r0(y) > η0 r0(y) ≤ η0
r1(y) > η1 DPAIN = Warning DPAIN = No alarm
r1(y) ≤ η1 DPAIN = Alarm DPAIN = Warning

TABLE II: Test Decision Space for CA-PAIN statistics.

R0 > χ0 R0 ≤ χ0

R1 > χ1
DCA−PAIN =

Warning
DCA−PAIN =

No alarm

R1 ≤ χ1
DCA−PAIN =

Alarm
DCA−PAIN =

Warning

TABLE III: Test Decision Space for CA-PAIN detector.

DPAIN =
No alarm

DPAIN =
Warning

DPAIN =
Alarm

DCA−PAIN

= No alarm No Alarm Warning Warning

DCA−PAIN

= Warning No Alarm Warning Alarm

DCA−PAIN

= Alarm Warning Warning Alarm

CA-PAIN detector.
Note that the threshold values are chosen depending on the

application and the desired trade-off between a false alarm
rate and a detection rate. Since the true probability distribution
is never known in practice (and is likely not Gaussian), it is
impossible to a priori map threshold values to false alarm rates.
At the same time, it is important to emphasize that whatever
threshold is chosen, the CA-PAIN detector produces the same
false alarm rate regardless of the specific parameter values.

VI. EVALUATION

This section evaluates the CA-PAIN detector developed in
Section V. We evaluate the performance both in simulation
and on real-patient data. Both types of evaluations are based
on the critical pulmonary shunt detection problem that was
originally used to build the PAIN detector [12], [13]. The
following subsection first presents the shunt detection problem
before providing both types of evaluations in the subsequent
subsections.

A. Prediction of Critical Pulmonary Shunts in Infants

Blood O2 content is one of the most closely monitored
physiological variables during surgery, as too low values can
lead to organ failure (e.g., brain damage), and too high values
can cause atelectasis (i.e., collapse of the lungs). Oxygen
content can drop dangerously low if the patient is experiencing
a pulmonary shunt, i.e., the patient is breathing with only
one lung. Shunts occur frequently during surgeries with one-
lung ventilation; one such example is a lung lobectomy,
i.e., the incision of cystic lesion from the patient’s lung.
Infants are especially vulnerable to shunts because they have
underdeveloped lungs. In these patients, breathing with one

lung may not supply enough O2 to the body, thus leading to
quick drops in the overall O2 content.

Monitoring blood O2 is challenging, however, as it cannot
be currently measured non-invasively or in real time. Instead,
clinicians monitor the hemoglobin oxygen saturation in the
peripheral capillaries, SpO2, and use it as a proxy to estimating
the overall content. While SpO2 is a good measure of the
O2 content in the location at which it is measured (usually a
fingertip, or the foot in small infants), it is a delayed measure
of the O2 content in other parts of the body (e.g., the arteries),
as blood takes time to circulate.

In order to predict drops in a patient’s O2 content before
they are observed through low SpO2, in prior work we
developed a PAIN detector that utilizes other pulmonary mea-
surements that are provided by the anesthesia machine, namely
the partial pressures of O2 and carbon dioxide (CO2), tidal
volume, and respiratory rate [12], [13]. The PAIN detector
is based on a physiological model describing the circulation
of O2 and CO2 around the cardiovascular and pulmonary
systems; the model has the same form as defined in (3):

H0 : y = F0θ0 + σn

H1 : y = F1θ1 + σn,

where the measurements are the partial pressure of expired
CO2 (denoted by EtCO2), whereas the matrices F0 and F1

are constructed using past EtCO2 measurements as well as
the patient’s tidal volume (denoted by Vt) and respiratory rate
(denoted by RR). The detector is run in a sliding window
fashion (with a window size of 34), so that at each time F0

and F1 contain 34 past measurements. Please consult [12],
[13] for a detailed explanation of the physiological model; a
short summary is also provided in Figure 2.

Although the PAIN detector achieved very good perfor-
mance on the shunt detection problem (achieving about 87%
detection rate while introducing on average 1 false alarm per
hour), it also produced multiple false alarms caused by bad
data. These false alarms were often correlated with missing
measurements that are otherwise provided by the anesthesia
machine such as the positive end-expiratory pressure (PEEP)
and the peak inspiratory pressure (PIP). In the original PAIN
detector [12], [13], simple rules are utilized to deal with
such noisy-data scenarios, i.e., silence the detector during
windows with multiple missing PEEP/PIP values such as
the one illustrated in Figure 1. The shortcoming of using
simple rule-based detectors is that it blindly pre-determines
how context will be handled without considering the data,
thus potentially sacrificing valuable testing power for detecting
critical pulmonary shunts.

B. Simulation Evaluation

To illustrate the potential benefit of adding context, we first
evaluate the CA-PAIN detector in simulations. We simulated
200 patients who did not experience a shunt (i.e., any alarm
during those cases would be a false alarm) and 200 patients
who experienced a shunt during the case. The physiological
model that was used to simulate the patients is the same as



(a) System without a shunt. (b) System with a shunt.

Fig. 2: Model of the respiratory and cardiovascular partial pressures with and without a shunt.
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Fig. 3: ROC curves over simulated patients.
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Fig. 4: ROC curves over real-patient data.

the real model described in the previous section and developed
in our prior work [12], [13]. Different parameter values were
used for different patients such that a wide range of possible
patients is covered.

We evaluate the detector’s false alarm rate by computing
the average false alarm rate over the 200 patients who did not
experience an event. The detection rate is computed as the
number of good detections over the total number of events; a
good detection is any detection made during the period starting
five minutes before the event and going up to two minutes after
the event.5 Context was added in a similar fashion to real data:
missing PEEP/PIP measurements were introduced with 10%
probability at each time; each missing measurement resulted
in a five-time increase in the measurement variance, i.e., from
1 to 5.

Figure 3 presents the receiver operating characteristic (ROC)
curves achieved by the CA-PAIN and PAIN detectors on
simulated data. For better evaluation, we also compare the two
detectors with the cumulative sum control chart (CUSUM)

5After consultation with our clinician collaborators, we established that
alarms during this period would be deemed clinically useful.

detector, which is a standard change detection technique;
each patient’s parameters were estimated using the expectation
maximization technique described in [26]; the detector algo-
rithm was then borrowed from Chapter 8.10 of [8]. In order
to obtain different points on the curve, the alarm thresholds
ηi and χi, i ∈ {0, 1}, were varied between 0.0001 and
0.1. ROC curves provide a holistic evaluation of a detector’s
performance by showing different operating points. A detector
is qualitatively better than another one if its ROC curve tends
to the upper left corner of the curve since this means higher
true alarm rates (and lower false negative rates, equivalently)
for the same false alarm rates. As can be observed from
Figure 3, the CA-PAIN detector outperforms the PAIN detector
for all detection rates, and the reduction in false alarm rates is
around 20% on average, especially in the upper section in the
curve, which is likely to contain a desired operating point.
In this controlled simulated setting, the CUSUM detector
outperforms both PAIN detectors since it is able to obtain
good parameter estimates and benefits from the model’s good
predictive power.
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(a) False alarm rates for each patient as produced by the CA-PAIN detector.
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Fig. 5: False alarm rates for each patient as produced by the two PAIN detectors for a chosen operating point with similar
detection performance. Dashed lines denote the average false alarm rate across all patients.

C. Real-Data Evaluation

This subsection provides real-data evaluation of the CA-
PAIN detector. The data was collected during lung lobectomy
surgeries at CHOP during the period 2005-14. The dataset
contains a very diverse population and is a great application
for the CA-PAIN detector; it consists of 484 children ranging
from a-few-days to several-years old. 167 of these cases
had shunts; the remaining 317 cases did not experience one-
lung ventilation, i.e., any alarms during those cases would be
considered false. A case typically lasts around two to three
hours, although some were much longer due to complications;
considering that vital signs were sampled every 15 seconds,
each case generates around several hundred measurements in
total. Note that some cases were eliminated since the event
occurred too early or during periods with no data; overall, we
retain 82 cases with events. It is important to emphasize that
the original PAIN detector only used 62 cases – 20 cases were
excluded because the event occurred during missing PEEP/PIP
events; due to its formal treatment of context, the CA-PAIN
detector is able to make a decision during those cases with
the same detection performance as during the other events.

We evaluate the CA-PAIN detector in a similar fashion to
the simulation setting. The detector’s false alarm rate is the
average false alarm rate over all cases with no shunts. The
detection rate is the number of good detections divided by
the total number of events (with good detections defined in
the same way). Figure 4 presents the results, where alarm
thresholds were varied between 0.0001 and 0.1. We observe
similar patterns to the simulation setting. The CA-PAIN de-
tector outperforms the PAIN detector at all detection rates,
and once again the reduction in false alarm rates for all
operating points above 80% is at least 20%. Equivalently,
the CA-PAIN detector correctly detects an additional 5% of

life-critical events without increasing the false alarm rate.
Finally, the CUSUM detector performs poorly as caused by
wrong parameter estimates and by the model’s weak predictive
power. This result demonstrates the power of PAIN detectors:
although they have weaker theoretical performance on average,
their guarantees make them very suitable for scenarios with
inaccurate models and patient variability.

To further evaluate the CA-PAIN detector, we also inspect
the distribution of false alarms for a specific operating point
from Figure 4. Figure 5 shows the distribution of the false
alarm rates of both detectors for operating points with similar
detection performance. As is clear from the figures, the CA-
PAIN detector improves several of the cases with highest false
alarm rates; in particular, there are only six cases with a
false alarm rate higher than 20% under the CA-PAIN detector,
whereas there are more than 20 such cases under the PAIN
detector. Furthermore, upon closer inspection, the two biggest
outliers both have almost all PEEP/PIP values missing –
such a scenario invalidates the benefit of context because
the CA-PAIN detector reduces to the PAIN detector (i.e., all
measurements are considered to have the same variance). At
the same time, both detectors result in relatively uniformly
spread false alarm rates, with very few outliers, which is one
of the most appealing features of the PAIN detector family.

VII. DISCUSSION

This section provides a discussion on the benefit of using
context in the MCPS domain and in general CPS applications.

For the application considered in this paper, incorporating
context results roughly in a 20-percent reduction of false alarm
rates for high-detection-rate operating points. Equivalently, by
lowering the alarm threshold, the CA-PAIN detector leads to
a 5-percent increase in the number of life-critical detections
without increasing the false alarm rate. There are two ob-



servations that are worth emphasizing about this result. The
first is that the CA-PAIN statistics used in this work are
not maximally invariant, so the results are likely to improve
somewhat with the addition of better (i.e., more maximal)
invariant statistics. The second point is that context provides
coarse information, so it cannot be expected to turn a mediocre
detector into a great detector. It is likely that the biggest
benefit of context is improving worst cases – e.g., if a patient
absolutely does not match the detector’s model, then it might
be possible to use context to warn clinicians accordingly.

We also emphasize that context is a very general concept
that can be applied to many other CPS domains. One example
domain might be autonomous vehicles – these systems have
multiple information sources and many opportunities for ex-
tracting context. A simple context application would be to use
a humidity sensor to detect a fog – if a fog is detected, the
system can conclude that its object detection algorithm (based
on camera measurements) will be more noisy (and possibly
useless) as long as the vehicle is moving through the fog.

VIII. CONCLUSION

This paper presented the problem of context-aware detection
in the MCPS domain. We formalized the notion of context as
additional information that, if present, results in a change in
the measurement model (e.g., higher variance). Based on this
definition, we developed the CA-PAIN detector that utilizes
both parameter-invariant and context-aware statistics. The CA-
PAIN detector was evaluated both in simulation and on real-
patient data, and it was shown to outperform the original PAIN
detector at all operating points. The immediate future work
would be to better understand the challenges associated with
obtaining a maximally-invariant context-aware statistic. More
globally, a main avenue for future work is formulating context
in a general CPS setting and understanding its benefits and
limitations.
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