
Self-Driving Vehicle Verification Towards a Benchmark
Nima Roohi

University of Pennsylvania

Philadelphia, Pennsylvania

roohi2@cis.upenn.edu

Ramneet Kaur

University of Pennsylvania

Philadelphia, Pennsylvania

ramneetk@seas.upenn.edu

James Weimer

University of Pennsylvania

Philadelphia, Pennsylvania

weimerj@seas.upenn.edu

Oleg Sokolsky

University of Pennsylvania

Philadelphia, Pennsylvania

sokolsky@cis.upenn.edu

Insup Lee

University of Pennsylvania

Philadelphia, Pennsylvania

lee@cis.upenn.edu

ABSTRACT
Industrial cyber-physical systems are hybrid systems with strict

safety requirements. Despite not having a formal semantics, most

of these systems are modeled using Stateflow/Simulink
®
for mainly

two reasons: (1) it is easier to model, test, and simulate using these

tools, and (2) dynamics of these systems are not supported by

most other tools. Furthermore, with the ever growing complexity

of cyber-physical systems, grows the gap between what can be

modeled using an automatic formal verification tool and models of

industrial cyber-physical systems. In this paper, we present a simple

formal model for self-deriving cars. While after some simplification,

safety of this system has already been proven manually, to the best

of our knowledge, no automatic formal verification tool supports

its dynamics. We hope this serves as a challenge problem for formal

verification tools targeting industrial applications.

KEYWORDS
Model Checking, Cyber-Physical System, Challenge Problem, Au-

tomatic Formal Verification

1 INTRODUCTION
The following paragraph is taken directly from [25]. According to

the authors, two ingredients are missing from the race for who will

have the first self-driving car on the road: (1) standardization of

safety assurance, and (2) scalability.

The “Winter of AI” is commonly known as the decades

long period of inactivity following the collapse of Arti-

ficial Intelligence research that over-reached its goals

and hyped its promise until the inevitable fall during

the early 80s. We believe that the development of Au-

tonomous Vehicles (AV) is dangerously moving along

a similar path that might end in great disappointment

after which further progress will come to a halt for

many years to come.

A typical approach to estimate the amount of safety assurance

while preserving scalability, is to use statistical techniques, in which

one simulates the system or collects actual/random data. To ap-

preciate the problematic nature of a data-driven approach, authors

in [25] prove, in order to have 10
−9

fatality per hour in an au-

tonomous vehicle, one require 10
9
hours of data, which for example

means, 1000 employees must drive 24 hours a day, 7 days a week,

for 114 years! Even worse, every time part of a system gets updated,

no matter how small, preserving the guarantee requires repeating

the whole data collection.

To solve the safety standardization problem, [25] suggests the

notion of “who is responsible” for an accident in a non-deterministic

setting. Intuitively, instead of trying to build a system in which no

accident occurs, “Responsibility-Sensitive Safety”, tries to prevent

car c from only those accidents in which c is going to be blamed.

In other words, if a car drives responsibly, it might still be involved

in an accident, but it will never be blamed for one. To achieve

this goal, [25] defines two major components: (1) a policy that

cars should follow, and (2) a mechanism to identify responsible

parity (or parties) in case of an accident (they are exactly those

who will be blamed for the accident). The majority of the paper is

devoted to different policies in different conditions, like moving in

the same direction or in the opposite directions, moving laterally

or longitudinally, moving on a straight road or road with other

geometries, and who should be blamed in case of accident in each

of those conditions.

After a policy is defined, one has to show it does not blame

those who follow it and at least one party in each accident will

be blamed (otherwise a policy that prevents nothing won’t blame

anyone for an accident, but also does not prevent any accident from

happening). Unfortunately, all these proofs or in some cases only

sketches of proofs are done manually in [25]. However, to the best

of our knowledge, there is no automatic formal verification tool

that can be used to prove these properties. Even worse, we are not

aware of any automatic formal verification tool that can be used

to specify these properties. This was our motivation to write this

paper, in which we specify the most basic and fundamental policies

defined in [25] and challenge current and any future automatic

formal verification tool for cyber-physical system to solve any of

the five challenge problems in this paper.

In Section 2, we review preliminary definitions we need in this

paper. In Section 3, we formally specify system and policy defined

in [25], for the case when finite number of cars are driving on a

straight road. The rigorous level of the specifications in this paper

is high enough to seamlessly write them all in a theorem prover

like PVS [18] or Lean [5]. This removes any ambiguities from policy

and system dynamics
1
. Having policy and system dynamics clearly

defined, next we specify five different fundamental problems about

these specification in Section 4. The first four are about (robust)

1
Through this process we observed a couple of problems/inconsistencies with the

specifications in [25] (they are mentioned at different places in this paper).

ar
X

iv
:1

80
6.

08
81

0v
1

 [
cs

.L
O

]
 2

0
Ju

n
20

18

safety and (robust) liveness, and the last one, is about the policy

when not every car follows it. We use signals (a function from

a non-negative real value as time to a point in a metric space)

to specify all of our system dynamics, policy, and problems. This

makes our specifications uniform but not constructive, i.e. it does
not specify how to build a system that follows those specifications.

In Section 5, we list nine different tools and six different reasons

that prevent us from even specifying our problems in these tools.

This is after ignoring all the difficulties that may arise when one

wants to encode everything in the language of one of these tools.

All these tools are written solely for the purpose of formal model

checking cyber-physical systems. Finally, we conclude the paper in

Section 6.

2 PRELIMINARIES
We denote the set of natural, positive natural, real, positive real, and
non-negative real numbers by N, N+, R, R+, and R≥0, respectively.

For any two sets A and B, size of A is denoted by |A|, and the set
of functions from A to B is denoted by A −→ B or BA. Operator −→
is considered to be right-associative, meaning if C is a set then

function f of type A −→ B −→ C is a function that maps every

element of type A to an element of type B −→ C .

2.1 Extended Metric Space and Distance
Functions

Let M be an arbitrary set and d : M ×M −→ R ∪ {∞} be an ar-

bitrary function. Ordered pair (M,d) is called an extended metric
space and d is called a distance function iff for any x ,y, z : M the

following conditions hold: (1) d(x ,y) ≥ 0, (2) d(x ,y) = 0 ⇔ x = y,
(3) d(x ,y) = d(y,x), and (4) d(x , z) ≤ d(x ,y) + d(y, z). If distance
function d is known from the context, we use M to also refer to

the metric space. Let X be a finite set of variables, andM ⊆ RX be

an arbitrary set. A well-known distance function on M , denoted

by d∞(ν1,ν2), maps any two points ν1,ν2 : M tomax

x :X
|ν1(x) −ν2(x)|.

Let C be a finite set and (M,d) be a metric space. We extend d to

map any two points ν1,ν2 : C −→ M to max

c :C
d(ν1(c),ν2(c)).

2.2 Signal
In this paper we present dynamics of a system and policies both

using signals. This is for two reasons: First, using one formalism

to specify both behavior and policy makes our presentation more

uniform. Second, we intentionally stay away from any class of

hybrid automata or temporal logic, and leave it to the reader to

choose or develop an appropriate formalism for this benchmark.

Definition 1 (Signal). Let (M,d) be an extended metric space.
Signal is any function of type R≥0 −→ M .

Signal f is continuous at time t : R≥0 iff limt ′−→t f (t ′) is defined
and equal to f (t) 2. Signal f is continuous iff it is continuous at all

times. Signal f is piecewise continuous iff number of discontinuities

within any finite amount of time is finite.

2
When t = 0, we only consider continuity from right.

3 DYNAMICS AND POLICY
In this paper we only consider the case in which cars are on a

straight road and no car drives in reverse gear. While making the

presentation simpler, this is quite enough to specify our automatic

formal verification challenge problems. Table 1 lists every parameter

that we use in this paper.

Parameter Description

C Finite Set of Cars

ρ : R≥0 Response Time

µ : R+ Minimum Distance Parameter

amax_accel : R+ Maximum Longitudinal Acceleration

amin_brake : R+ Minimum Longitudinal Deceleration

amax_brake : R+ Maximum Longitudinal Deceleration

alatmax_accel : R+ Maximum Lateral Acceleration

alatmin_brake : R+ Minimum Lateral Deceleration

alatmax_brake : R+ Maximum Lateral Deceleration

Table 1: Parameters

The most basic signal in this paper is the position signal that

specifies position of every car on the road throughout the entire

time. The next most fundamental signal in this paper is the delay

signal that models delays in the controller parts of a cyber-physical

system. We first define position and delay signals. Next, we define

minimum longitudinal and lateral distance signals as a function

of position and delay signals. Later, we use these four signals to

uniquely define dangerous situation and blame time signals. These

signals together are almost everything we need to define policy

and verification problems about that policy.

Definition 2 (Position Signal). Let C be an arbitrary finite
set of cars. Position signal is any function of the type f : R≥0 −→
C −→ R{x,y } .

Note that in Definition 2, C −→ R{x,y } is the metric space. Also,

in Definition 2 and every other signal that is defined later in this

paper, we use d∞ as the distance function. Let f be a position signal.

We say f is differentiable at time t : R≥0 iff for every car c : C and

axis u : {x ,y}, limh−→0

(f (t+h) c u)−(f t c u)
h is defined

3
. We say f

is differentiable iff it is differentiable at all times in R≥0. Furthermore,

we use fv to denote derivative of f and call it velocity signal (note
that fv is also a position signal). Furthermore, if fv is differentiable,

we denote the induced derivative signal by fa and call it acceleration
signal. Finally, we use PosC to denote the set of position signals

f with two conditions: (1) both fv and fa are defined throughout

the entire time domain, and (2) no car has a negative longitudinal

velocity (i.e. ∀t : R≥0, c : C· fv t c y ≥ 0).

Position of different cars is a physical property of our cyber-

physical system and for every signal, each car has a unique position

at every single point in time. However, when a car uses its sensors to

observe positions of different cars including itself, there are at least

3
Similar to the continuity definition, if t = 0, we only consider differentiability from

right.

2

two sources of errors: (1) measurement errors caused by inaccuracy

of sensors, and (2) slight delay in sensors and controllers (parameter

ρ in Table 1). To handle measurement errors, one has to consider

not only a position signal, but at least all the position signals that

are pointwise close to it. This usually happens in the context of

robust verification [7, 9, 10, 13, 17, 26, 27]. Delays on the other hand,

are usually considered in system models [1, 2, 6, 19, 23], which is

the focus of this section. In order to simplify presentation of later

definitions, we next define a delay signal that assigns a delay to

every pair of cars. If τ is a delay signal, its value for cars c1, c2 : C at

time t : R≥0 models a delayed time in car c1 when it observes state

of car c2 at time t . Although, we use one delay signal throughout

our entire formulation, one can easily extend this to multiple delay

signals, one for each part of the system. Definition 3 formally defines

a delay signal based on response time parameter ρ. Note that, by
definition, there is no delay at time t = 0. Also, if ρ = 0 then there

will be no delay in the future either.

Definition 3 (Delay Signal). Delay signal is any piecewise
continuous signal of type R≥0 −→ C −→ C −→ R≥0 that satisfies ∀t :

R≥0, c1, c2 : C·t − ρ ≤ τ t c1 c2 ≤ t , where ρ : R≥0 is defined in
Table 1. We use DelayC to denote the set of all delay signals for cars
in C.

The general idea in [25] to guarantee safety is to first define a

safe distance between every two cars and then take a proper action

whenever distance is unsafe. The safe distance is computed using

the knowledge a car has about velocity of itself and another car, and

is supposed to be large enough such that the car will have enough

time to respond properly, whenever the distance becomes unsafe.

Definition 4 and Definition 5 define minimum (safe) longitudinal

and lateral distances, respectively.

Definition 4 (Minimum Longitudinal Distance Signal). Let
f and τ be, respectively, position and delay signals. We define min-

imum longitudinal distance signal, denoted by dlonmin , as a function
of type R≥0 −→ C −→ C −→ R+ ∪ {−∞} that maps a time t and cars
c1, c2 : C with t1 B τ t c1 c1 and t2 B τ t c1 c2 to −∞ if c1 = c2 or
f t1 c1 y > f t2 c2 y, and to the maximum of µ and following term,
otherwise:

ρ fv t1 c1 y +
1

2

amax_accel ρ
2 +

(fv t1 c1 y + ρ amax_accel)2

2amin_brake
− (fv t2 c2 y)2

2amax_brake

There is a big difference between Definition 4 and its correspon-

dence in [25]. Definition 4 uses delayed observations, but minimum

distance in [25] is defined assuming exact value of every car’s lon-

gitudinal velocity is known to every other car at all times. Another

difference is that, in Definition 4, we make sure minimum distance

is never smaller than µ, however in [25] this distance can become

arbitrary close to 0. Since both Definition 5 below and [25] make

sure that minimum lateral distance is never smaller than µ, our
approach is more uniform.

Definition 5 (Minimum Lateral Distance Signal). Let f and
τ be, respectively, position and delay signals. We define minimum

lateral distance signal, denoted by dlatmin , as a function of type R≥0 −→
C −→ C −→ R+ ∪ {−∞} that maps a time t and cars c1, c2 : C with

t1 B τ t c1 c1 and t2 B τ t c1 c2 to−∞ if c1 = c2, and to the following
term, otherwise:

µ + ρ | fv t1 c1 x | + ρ | fv t2 c2 x | +

1

2

alatmax_accel ρ
2 +

(
| fv t1 c1 x | + ρ alatmax_accel

)
2

2alatmin_brake

+

1

2

alatmax_accel ρ
2 +

(
| fv t2 c2 x | + ρ alatmax_accel

)
2

2alatmin_brake

Note that similar to Definition 4, minimum distance in Defini-

tion 5 is also computed using delayed observations. The only other

difference between Definition 5 and its correspondence in [25] is

that we do not assume car c1 is on the left of car c2. Finally, to the

best of our knowledge, the case when two cars move laterally in

the same direction is not considered in [25] and hence nor here
4
.

According to Definition 2 and what comes after it, for any po-

sition signal f , there are unique velocity and acceleration signals.

However, according to Definition 4 and Definition 5, when response

time (ρ) is positive, there could be uncountably many minimum

longitudinal/lateral distance signals for f . This is because, we as-
sume velocity and acceleration are physical properties that are

defined using position. For example, if positions at times 1 and

3 are respectively 10 and 18 then (average) velocity during this

time is exactly
18−10
3−1 . However, we assume actual values of these

signals are obtained/observed with delay of at most ρ units of time.

Signal f (and hence signals fv and fa) can take uncountably many

values during any positive duration of time. Therefore, there are

uncountably many possible minimum longitudinal/lateral distance

signals that can be observed/considered.

Definition 6 (Dangerous Longitudinal Situation Signal).

Let f , τ , and dlonmin be a position, delay, and minimum longitudi-
nal distance signals, respectively. We define dangerous longitudinal
situation signal, denoted by danglon, as a function of type R≥0 −→
C −→ C −→ {⊤,⊥} that maps a time t and cars c1, c2 : C with t1 B
τ t c1 c1 and t2 B τ t c1 c2 to to ⊤ exactly when value of dlonmin t c1 c2
is strictly larger than (f t2 c2 y) − (f t1 c1 y).

Definition 7 (Dangerous Lateral Situation Signal). Let
f , τ , and dlatmin be a position, delay, and minimum lateral distance
signals, respectively. We define dangerous lateral situation signal,
denoted by danglat, as a function of type R≥0 −→ C −→ C −→ {⊤,⊥}
that maps a time t and cars c1, c2 : C with t1 B τ t c1 c1 and
t2 B τ t c1 c2 to to ⊤ exactly when value of dlatmin t c1 c2 is strictly
larger than |(f t2 c2 x) − (f t1 c1 x)|.

We define dangerous situation signal, denoted by dang, as a

function of type R≥0 −→ C −→ C −→ {⊤,⊥} that maps time t : R≥0

and cars c1, c2 : C to the conjunction of (danglon t c1 c2) and
(danglat t c1 c2). Note that Definition 6 and Definition 7 also use

delayed observations in their definitions.

Definition 8 (Blame Time Signal). Let dang be a dangerous
situation signal. We define blame time signal, denoted by blame, as a
function of type R≥0 −→ C −→ C −→ R≥0 ∪ {∞} that maps time t : R≥0

and cars c1, c2 : C to
4
We leave it to the reader to prove or disprove the necessity of considering that case.

3

∞ if ¬dang t c1 c2 or ∀r : [0, t)·dang t c1 c2 5

t ′ if ∀r : (t ′, t]·dang r c1 c2 and∀t ′′ : [0, t ′)·∃r ′ : (t ′′, t ′]·¬dang r ′ c1 c2
We denote the blame time signals that are obtained by replacing dang
with danglon and danglat, respectively by blamelon and blamelat.

The second condition in Definition 8 uniquely defines value of

t ′. Intuitively, it is the smallest value t ′ for which the situation is

dangerous at any time between t ′ and t . Note that according to [25],
in the second case of Definition 8, instead of ∀t ′′ : [0, t ′)·∃r ′ :

(t ′′, t ′]·¬dang r ′ c1 c2, we should have just said ¬dang t ′ c1 c2. It
is easy to see that our condition is strictly weaker. For example,

if t ′ > 0, dang t ′ c1 c2 = ⊤ and ∀r ′ : (0, t ′)·¬dang r ′ c1 c2 then
value of blame t c1 c2, according to Definition 8 is t ′, and according
to [25] is undefined. We leave it to the reader to (dis)prove that

Definition 6 and Definition 7 and whatever comes before them

guarantee dangerous signal is continuous from left, in which case

Definition 8 and its correspondent in [25] are equivalent.

According to the following quote from [25], by simply not mov-

ing, a car can have 0 longitudinal velocity for a long time, but it is

impossible for a car to keep its lateral velocity at 0. We believe this

is a mistake, since if a car does not move then it has zero velocity

in both directions. Furthermore, since we only consider position

signals with fully defined velocity and acceleration, the velocity

signal is continuous throughout the entire time. Therefore, when-

ever its sign is different at time t1 and t2, we know its value is 0 at

some time between t1 and t2, which is enough for the purpose of

this paper.

Unlike longitudinal velocity, which can be kept to a

value of 0 for a long time (the car is simply not mov-

ing), keeping lateral velocity at exact 0 is impossible

as cars usually perform small lateral fluctuations. It

is therefore required to introduce a robust notion of

lateral velocity.

We have everything we need to finally define a policy in Defini-

tion 9.

Definition 9 (Policy). Let f and τ be position and delay sig-
nals, respectively, and let signals dlonmin , d

lat
min , dang

lon, danglat, dang,
blamelon, blamelat, and blame be uniquely defined based on f and
τ , as specified in this section. For any time t : R≥0 and car c1 : C, we
say car c1 follows the policy at time t , denoted by P f τ t c1 iff for
any car c2 : C, if dang t c1 c2 = ⊤ and tb B blame t c1 c2 ∈ R then
the following conditions hold:
• If before the blame time there was a safe longitudinal distance
between c1 and c2 (i.e. tb = blamelon t c1 c2) then
(1) ∀t ′ : (tb , tb + ρ)· fa t ′ c1 y ≤ amax_accel, i.e. within the

response time, acceleration of the rear car must be bounded by
amax_accel.

(2) ∀t ′ : [tb+ρ, t]· fa t ′ c1 y ≤ −amin_brake, i.e. after the response
time, bound on acceleration decreases to −amin_brake (the rear
car must use its brake).

5
The case ∀r : [0, t) ·dang t c1 c2 is only considered here for completeness. However,

using additional constraints that will be given later, we would not consider any signal

that is initially dangerous, i.e. satisfies ∃c1, c2 : C ·dang 0 c1 c2 (note that value of
dang 0 c1 c2 is uniquely determined by values of f 0 c1 c2 and fv 0 c1 c2).

(3) ∀t ′ : (tb , t]· fa t ′ c2 y ≥ −amax_brake, i.e. there is bound on
how fast the front car can stop.

• If before the blame time there was a safe lateral distance between
c1 and c2 (i.e. tb = blamelat t c1 c2) then
(1) ∀t ′ : (tb , tb + ρ)·| fa t ′ c1 x | ≤ alatmax_accel, i.e. within the re-

sponse time, acceleration of car c1must be bounded byalatmax_accel.
(2) ∀t ′ : [tb + ρ, t]·| fa t ′ c1 x | ≤ alatmin_brake and (fv t ′ c1 x) ×

(fa t ′ c1 x) ≤ 0, i.e. after the response time, bound on accelera-
tion decreases to alatmin_brake and acceleration and velocities are
in the opposite direction. (a.k.a. the c1 must use its brake).

We define P f τ c1 to be ∀t : R≥0·P f τ t c1 (i.e. car c1 always follows
the policy). Similarly, we define P f τ to be ∀c1 : C·P f τ c1 (i.e.
every car follows the policty at all time).

There are three differences between the first part of policy writ-

ten in Definition 9 and the one introduced in [25]. First, according to

Definition 9, there is no requirement on acceleration of the rear car

at time tb . We believe imposing a restriction at time tb is a mistake,

specially in [25], since by definition the situation is not dangerous at

tb and no car can look into the future of the system state. The next

two differences are more important. According to [25], after the

rear car reached to full stop, it can never move forward. Similarly,

after the front car reached to full stop it can never decelerate. We

believe either one of these policies is too restrictive to be allowed

in any real scenario. One implies if the rear car enters a dangerous

situation, it is going to stop on the road and never move again. The

other one implies if the front car enter into a dangerous situation

with a car on its behind, first it will fully stop and then if it moves,

it will never lower its speed. None of these makes any sense in

practical scenarios. These three differences also exists between the

second part of policy written in Definition 9 and the one introduced

in [25].

4 VERIFICATION PROBLEMS
We have specified dynamics and policy of cars in Section 3. In

this section we specify multiple verification problems about those

specifications. According to Section 3, for every position and delay

signals, minimum longitudinal and lateral distance signals (dlonmin and

dlatmin), longitudinal and lateral dangerous situation signals (danglon,
danglat, and dang), and longitudinal and lateral blame time signals

(blamelon, blamelon, and blame), are all uniquely defined. There-

fore, in this section, whenever we consider a position and a delay

signal, we assume all the other signals can be used without intro-

duction. We divide our verification problems into three different

categories: (1) safety properties, (2) liveness properties, and (3) re-

sponsibility properties.

4.1 Safety Problems
Problem 10 (Safety). Prove or disprove that policy in Definition 9

guarantees utopia (i.e. prevents accident). More precisely, prove or
disprove the following formula cannot be satisfied by a position signal

4

f : LocC :

A1︷ ︸︸ ︷(
∃τ : DelayC · (

∀c1, c2 : C·¬dang 0 c1 c2)︸ ︷︷ ︸
A2

∧ P f τ

)
∧

∃t : R≥0, c1, c2 : C· f t c1 = f t c2︸ ︷︷ ︸
A3

Condition A2 guarantees that the situation is not initially dan-

gerous. ConditionA1 guarantees f is initially not dangerous and it

follows policy as specified in Definition 9. ConditionA3 guarantees

that there will be an accident in the future. A system/policy is safe
iff the formula defined in Problem 10 is unsatisfiable. Finally note

that formula defined in Problem 10 depends on parameters given

in Table 1. We leave it to the reader to solve this problem for only

one or a class of values of these parameters.

Problem 10 ultimately depends on signals dlatmin and dlonmin . Dis-

tances defined by these two signals are never smaller than the

same distances defined in [25]. However, as we mentioned multiple

times, there is a big difference here: in this paper definitions of

signals dlatmin and dlonmin involve delay, while in [25] these signals are

defined using no delay (i.e. response time is zero)
6
. Furthermore,

minimum/safe distance defined in Definition 4 uses the fact that

observations are made with no delay. This intuitively means that,

using policy and minimum distance defined in [25], cars can be-

come arbitrary close to each other. Therefore, it should be of no

surprise that if we compute minimum distance the same way as

in [25], but use delayed values for it, cars will crash. This informal

justification answers Problem 10 negatively. However, it is not clear

to us how one should fix this problem. For example, if we consider

delay, is it still true that the minimum distance is always exists,

or even to guarantee its existence one has to bound both velocity

and acceleration (policy in Definition 9 only bounds signals during

some intervals)? Furthermore, validity of any suggestion for fixing

this issue requires a formal proof, something that we look forward

to be done automatically.

Problem 10 completely ignores errors and uncertainties in each

cars’ sensors. As mentioned before, this is usually handled in the

context of robust verification. Note that there are many definitions

for robustness. What we put here is taken from [13] and is for

illustration purposes only. For any position signal f : LocC and

ϵ : R≥0, let B
ϵ
∞(f) be the set of signals in LocC that are point-wise

ϵ-close to f . More precisely, f ′ ∈ Bϵ∞(f) iff supt :R≥0
d(f t , f ′ t) ≤ ϵ ,

where d is the distance function used in the definition of signal.

Definition 11 (ϵ-Robust Safe and Unsafe Signals). Let A1

and A3 be the two predicates over position signals defined in Prob-
lem 10. A position signal f : LocC is called ϵ-robust safe iff it satisfies
the following formula:

A1(f) ⇒ ∀f ′ : Bϵ∞(f)·¬A3(f ′)

6
Authors in [25] only consider positive response time when a car responds to a

dangerous situation. However, observing position and velocity of the every other car

that is used to determine if a situation is dangerous is assumed to be performed within

0 response time.

Similarly, f : LocC is called ϵ-robust unsafe iff it satisfies the follow-
ing formula:

A1(f) ∧ ∀f ′ : Bϵ∞(f)·A3(f ′)
A position signal is called robustly safe (unsafe) iff it is ϵ-robust safe
(unsafe) for some ϵ : R+. A policy is called ϵ-robust safe (unsafe) iff
all (some) position signals are ϵ-robust safe (unsafe) in that policy. A
policy is called robustly safe (unsafe) iff all (some) position signals
are robustly safe (unsafe) in that policy.

Note that it is impossible for a position signal (or a policy) to be

both robustly safe and unsafe. But it is possible for a position signal

(or a policy) to be neither robustly safe nor robustly unsafe.

Problem 12 (Robust Safety). Prove or disprove that the policy
in Definition 9 is robustly safe (or robustly unsafe). More precisely,
determine which of the following sentences are true and which ones
are false:
(1) ϵ-robust safe: ∀f : LocC ·A1(f) ⇒ ∀f ′ : Bϵ∞(f)·¬A3(f ′)
(2) ϵ-robust unsafe: ∃f : LocC ·A1(f) ∧ ∀f ′ : Bϵ∞(f)·A3(f ′)
(3) robustly safe:

∀f : LocC ·∃ϵ : R+·A1(f) ⇒ ∀f ′ : Bϵ∞(f)·¬A3(f ′)
(4) robustly unsafe:

∃f : LocC ·∃ϵ : R+·A1(f) ∧ ∀f ′ : Bϵ∞(f)·A3(f ′)

It should be easy to see that being ϵ-robust safe (unsafe) implies

being robustly safe (unsafe). But the converse is not necessarily

true.

4.2 Liveness Problems
Having a safe system is not enough, otherwise one could write

false as the simplest policy that guarantees safety of every system

(i.e. any behavior that satisfies this policy is safe). We also need to

make sure that it is possible for a signal to satisfy the policy that is

specified in Definition 9.

Problem 13 (Liveness). Prove or disprove that policy in Defini-
tion 9 is not inconsistent (i.e. it can be followed). More precisely, prove
or disprove the following formula can be satisfied by a position signal
f : LocC :

∀τ : DelayC ·(∀c1, c2 : C·¬dang 0 c1 c2) ∧ P f τ

In Problem 10 we have ∃τ : DelayC , but in Problem 13 we have

∀τ : DelayC . We chose to have this change, since for safety wewant

to say using any valid delay signal that together with the position

signal follow the policy, results in a safe behavior. However, for

liveness we want to say there is a position signal for which any
delay signal can be used to follow the policy. This is because the

intended use of delay is to allow a bounded amount of response

time, and any amount of delay within this bound should be allowed

by the policy.

Similar to the case of Problem 10 vs. Problem 13, just having

liveness is not enough. Otherwise, although in theory there is a

signal f : LocC that follows the policy, in practice, a car has to

always behave exactly like f (any deviation violates the policy)

which is never possible.

Definition 14 (ϵ-Robust Live Signals). A position signal f :

LocC is called ϵ-robust live iff it satisfies the following formula:

∀f ′ : Bϵ∞(f)· f ′ satisfies the formula defined in Problem 13
5

A position signal is called robustly live iff it is ϵ-robust live for some
ϵ : R+. A policy is called robustly live iff some position signal f :

PosC is robustly live in it.

Problem 15 (Robust Liveness). Prove or disprove that the policy
in Definition 9 is robustly live.

Our definition of (robust) liveness is the minimum requirement

for system to be considered live and in practice one has to add more

constraints to it. For example, in order to consider a position signal f
live, one might want to also consider the following two constraints.

(1) Longitudinal position of every car diverges to infinity (∀u : R, c :
C·∃t : R≥0· f t c y > u). Otherwise, a policy that does not move

any car will be considered ∞-robust safe and live. (2) There are

always points in time at which all cars are moving for a positive

duration of time (∀t : R≥0·∃t1 : (t ,∞), t2 : (t1,∞)·∀r : (t1, t2), c :

C· fv t c y > 0). Otherwise, a policy that moves only one car at

a time can be considered robustly live. Determining the exact set
of constraints for liveness is not a formal process and should be

determined using experience or simulation.

4.3 Responsibility-Sensitive Safety Problem
Our problems in Section 4.1 and Section 4.2 only concern the case

in which every car follows the policy. However, there is always

someone on the road who drives recklessly. Authors in [25], in-

troduce the concept of “who is responsible for an accident”, and

instead of trying to come up with a policy that guarantees absence

of an accident, they come of with a policy that guarantees if a car

follows the policy then it won’t be held responsible for an accident.

Definition 16 (Responsibility for an Accident). Let f and
τ be position and delay signals, respectively. Let c1, c2 : C be two
cars, and let t : R≥0 be a time of accident between c1 and c2 (i.e.
f t c1 = f t c2). We say c1 is responsible for the accident with c2 at
time t iff dang t c1 c2 = ⊤ and c1 did not follow the policy (as specified
in Definition 9) at sometime during (tb , t], where tb B blame t c1 c2.

Once again considering delays distinguishes Definition 16 from

the same definition in [25]. For example, because of delays, blame

time (tb) for an accident could be different in c1 and c2. Even worse,

it is not so much obvious that whenever there is an accident, there

will be a blame time. We consider these problems next. However, it

should be obvious that according to Definition 16, whoever follows

the policy won’t be held responsible for an accident.

Theorem 17 (Responsibility-Sensitive Safety). Whoever fol-
lows the policy won’t be held responsible for an accident.

Problem 18 (Existence of Responsible Party). Prove or dis-
prove that each accident has at least one responsible party. More
precisely, prove the following formula cannot be satisfied by any
signal f : LocC .

∃τ : DelayC , c1, c2 : C, t : R≥0, tb1 , tb2 : R≥0 ∪ {∞}·
f t c1 = c t c2 ∧ ¬dang 0 c1 c2 ∧ ¬dang 0 c2 c1(

tb1 = blame t c1 c2 ∧ ∀t ′ : (tb1 , t] ∩ R≥0·P f t ′ τ c1
)
∧(

tb2 = blame t c2 c1 ∧ ∀t ′ : (tb2 , t] ∩ R≥0·P f t ′ τ c2
)

5 TOOLS
In Section 3 and Section 4, we defined system specifications as well

as five different fundamental problems about those specifications.

In this section, we look at different formal verification tools, and for

each tool we specify why our problems cannot be even expressed

using these tools. All of these tools are developed solely for the

purpose of model checking cyber-physical systems. Table 2 lists

these tools along where they fail to support required features. We

have identified six reasons. The first four prevent us from specifying

our models using these tools, and the last two prevents us from

specifying our verification problems using these tools. Note that we

completely ignored possible difficulties in expressing our models

and problems in the language of these tools, and the fact that C,
finite set of cars, is given as a parameter (i.e. it is fine if a tool can
solve these problems for a fixed known number of cars ≥ 2).

• Non-Linear Dynamics: Some tools do not support non-linear

dynamics. For example, UPPAAL is for model checking timed

automata, HyTech is for model checking rectangular automata,

SpaceEx, PHAVer, and HARE16
7
are for model checking hybrid

automata with affine dynamics. Note that support for non-linear

dynamics in HARE17, is only for flows and not discrete transitions.
• Ordinary Differential Inclusions (ODI): Some tools only support

ordinary differential equation and not ordinary differential in-

clusion. In Section 3, the only constraints that we ever put on

accelerations was some bound on its value in Definition 9. This

means velocity is restricted using some bound on its derivative.

• Delays in Dynamics: None of these tools supports having delays

in dynamics. In timed automata, delays in dynamics are closely

related to skewed clocks, and for a very large subclass of timed

automata, it is known how to handle skew clocks using UPPAAL [2,
6, 19, 23]. However, timed automata are far from what we need

to express our dynamics. Note that even if we set response time

(ρ) to 0, blame time and hence policy still depend on continuous

state of the system in the past.

• Unbounded State Space: Most tools that handle non-linear dy-

namics, require state space to be bounded using intervals for

every state variable. However, no state variable is bounded in

this paper.

• Unbounded Time: Similar to unbounded state space, most tools

that handle non-linear dynamics require time horizon to be

bounded. Note that bounding time does not necessarily bound

number of discrete transitions that can be taken within the given

bound [3, 24], and tools like dReach, C2E2, and Flow* also require
number of discrete transitions to be bounded as well.

• Robustness: None of these tools supports specifying robustness.

Similar to delays, in timed automata, robustness (as defined in

this paper) is similar to perturbing constraints. If we consider

perturbation of constraints for robustness, the problem has been

already solved for timed automata using UPPAAL [2, 6, 19, 23].

However, not only timed automaton, is far from what we need

in our specification, it is not even clear that robustness as de-

fined here (taken from [13]) is equivalent to robustness based on

perturbation of constraints.

7HARE16 [21] and HARE17 [22] are two different versions of the same tool. We decided

to separate them since only the older version supports ordinary differential inclusion.

6

Name

N
o
n
-

L
i
n
e
a
r
i
t
y

O
D
I

D
e
l
a
y
s

U
n
b
o
u
n
d
e
d

S
t
a
t
e

U
n
b
o
u
n
d
e
d

T
i
m
e

R
o
b
u
s
t
n
e
s
s

dReach [15] ✗ ✗ ✗ ✗ ✗

SpaceEx [12] ✗ ✗ ✗ ✗ ✗ ✗

PHAVer [11] ✗ ✗ ✗

HyTech [14] ✗ ✗ ✗

C2E2 [8] ✗ ✗ ✗ ✗ ✗

Flow* [4] ✗ ✗ ✗ ✗ ✗

HARE16 [21] ✗ ✗ ✗

HARE17 [22] ✗ ✗ ✗

HSolver [20] ✗ ✗ ✗

UPPAAL [16] ✗ ✗ ✗ ✗

Table 2: Different model checkers and why they cannot be
used to solve our problems. Cross marks are where a tool
lacks a required support.

6 CONCLUSION
In this paper, we presented a challenge problem for formal veri-

fication tools developed or aimed to be developed for industrial

cyber-physical system. We formalized main components of dynam-

ics and policies introduced in [25] for autonomous vehicles driving

on a straight road. This also helped us to find some inconsistencies

with the current specifications in [25]. To the best of our knowledge,

no current automatic formal verification tool can be used to even

express these dynamics and problems. We hope this serves as a

challenge problem for formal tools targeting automatic verification

of industrial cyber-physical systems.

REFERENCES
[1] Manindra Agrawal and P. S. Thiagarajan. 2004. Lazy Rectangular Hybrid Au-

tomata. In Proceedings of HSCC, Rajeev Alur and George J. Pappas (Eds.). 1–15.

[2] Patricia Bouyer, Nicolas Markey, and Ocan Sankur. 2011. Robust Model-Checking

of Timed Automata via Pumping in Channel Machines. In Proceedings of FOR-
MATS. 97–112.

[3] T. Brihaye, L. Doyen, G. Geeraerts, J. Ouaknine, J. F. Raskin, and J. Worrell. 2013.

Time-Bounded Reachability for Monotonic Hybrid Automata: Complexity and

Fixed Points. In Proceedings of ATVA, Vol. 8172. 55–70.
[4] Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan. 2013. Flow*: An

Analyzer for Non-linear Hybrid Systems. 258–263.
[5] Leonardo MendonÃğa de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn,

and Jakob von Raumer. [n. d.]. The Lean Theorem Prover (System Description).

In CADE.

[6] Martin de Wulf, Laurent Doyen, Nicolas Markey, and Jean-François Raskin. 2008.

Robust safety of timed automata. Formal Methods in System Design 33, 1 (2008),

45–84.

[7] Alexandre Donzé, Thomas Ferrère, and Oded Maler. 2013. Efficient Robust Moni-
toring for STL. 264–279.

[8] Parasara Sridhar Duggirala, Sayan Mitra, Mahesh Viswanathan, and Matthew

Potok. 2015. C2E2: A Verification Tool for Stateflow Models. 68–82.
[9] Georgios E. Fainekos and George J. Pappas. 2007. Robust Sampling for MITL

Specifications. Berlin, Heidelberg, 147–162.
[10] Georgios E. Fainekos and George J. Pappas. 2009. Robustness of temporal logic

specifications for continuous-time signals. Theoretical Computer Science 410, 42
(2009), 4262 – 4291.

[11] Goran Frehse. 2005. PHAVer: Algorithmic Verification of Hybrid Systems Past

HyTech. In Proceedings of HSCC. 258–273.
[12] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi Ray,

Olivier Lebeltel, Rodolfo Ripado, Antoine Girard, Thao Dang, and Oded Maler.

2011. SpaceEx: Scalable Verification of Hybrid Systems. In Proceedings of CAV.
[13] Vineet Gupta, Thomas A. Henzinger, and Radha Jagadeesan. 1997. Robust timed

automata. In Hybrid and Real-Time Systems, Oded Maler (Ed.). 331–345.

[14] T. A. Henzinger, P. H. Ho, and H. Wong-Toi. 1997. HYTECH: a model checker for

hybrid systems. International Journal on Software Tools for Technology Transfer
(STTT) 1 (1997), 110–122.

[15] Soonho Kong, Sicun Gao, Wei Chen, and Edmund Clarke. 2015. dReach: δ -
Reachability Analysis for Hybrid Systems. In Proceedings of TACAS. 200–205.

[16] K.G. Larsen, P. Pettersson, and W. Yi. 1997. UPPAAL in a nutshell. International
Journal on Software Tools for Technology Transfer 1 (1997), 134–152.

[17] Oded Maler and Dejan Nickovic. 2004. Monitoring Temporal Properties of Contin-
uous Signals. 152–166.

[18] Sam Owre, John M. Rushby, and Natarajan Shankar. 1992. PVS: A Prototype

Verification System. In CADE. 748–752.
[19] Anuj Puri. 2000. Dynamical Properties of Timed Automata. Discrete Event

Dynamic Systems 10, 1-2 (2000), 87–113.
[20] Stefan Ratschan and Zhikun She. 2007. Safety Verification of Hybrid Systems

by Constraint Propagation Based Abstraction Refinement. ACM Transactions in
Embedded Computing Systems 6, 1 (2007).

[21] Nima Roohi, Pavithra Prabhakar, and Mahesh Viswanathan. 2016. Hybridization

Based CEGAR for Hybrid Automata with Affine Dynamics. In Proceedings of
TACAS. 752–769.

[22] Nima Roohi, Pavithra Prabhakar, and Mahesh Viswanathan. 2017. HARE: A Hy-

brid Abstraction Refinement Engine for Verifying Non-linear Hybrid Automata.

In Proceedings of TACAS. 573–588.
[23] Nima Roohi, Pavithra Prabhakar, and Mahesh Viswanathan. 2017. Robust Model

Checking of Timed Automata Under Clock Drifts. In Proceedings of HSCC. 153–
162.

[24] Nima Roohi and Mahesh Viswanathan. 2014. Time-Bounded Reachability for

Initialized Hybrid Automata with Linear Differential Inclusions and Rectangular

Constraints. In Proceedings of FORMATS. 191–205.
[25] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. 2017. On a Formal

Model of Safe and Scalable Self-driving Cars. CoRR (2017). arXiv:1708.06374

[26] YuWang, Nima Roohi, MatthewWest, Mahesh Viswanathan, andGeir E. Dullerud.

2015. A Mori-Zwanzig and MITL Based Approach to Statistical Verification of

Continuous-time Dynamical Systems. IFAC-PapersOnLine 48, 27 (2015), 267 –
273.

[27] Y. Wang, N. Roohi, M. West, M. Viswanathan, and G. E. Dullerud. 2016. Verifying

Continuous-time Stochastic Hybrid Systems via Mori-Zwanzig model reduction.

In Proceedings of IEEE CDC. 3012–3017.

7

http://arxiv.org/abs/1708.06374

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Extended Metric Space and Distance Functions
	2.2 Signal

	3 Dynamics and Policy
	4 Verification Problems
	4.1 Safety Problems
	4.2 Liveness Problems
	4.3 Responsibility-Sensitive Safety Problem

	5 Tools
	6 Conclusion
	References

