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ABSTRACT
Becoming to open architectures has been making Cyber-Physical

Systems (CPS) vulnerable to malicious attacks that are beyond

conventional cyber attacks. Recently, a procedure, named cyber-

physical system checkpointing and recovery, has been proposed to

improve system resilience against CPS attacks. While the feasibility

of CPS recovery is well demonstrated, one issue not fully addressed

is that what kind of states should be used for the recovery. In this pa-

per, we address this issue and claim to use consistent states. Yet, to

define state consistency is a challenging task because CPS systems

usually have both functional and real-time requirements. To address

the challenge, we formally define state consistency by taking ac-

count of both requirements. Specially, we define two consistencies

in the intersection of the cyber and physical world: cyber-physical

logic-consistency and cyber-physical timing-consistency, based on

whether the physical world can be accurately reflected by the cor-

responding cyber part. We build a simulator of PID controlled DC

motor to evaluate how control performance is affected by these

consistencies when performing recovery.

1 INTRODUCTION
Cyber-Physical Systems (CPS) tightly integrate computing and com-

munication processes with sensing and actuation components that

interact with the physical world. The ever increasing functionali-

ties and network interoperability have been advancing CPS from

isolated control systems to more open interacting architectures.

This development enables various new services and applications,

but meanwhile, it also introduces potential security vulnerabilities

that are easily exploitable.

The interaction between information technology and the physi-

cal worldmakes CPS vulnerable tomalicious attacks that are beyond

the traditional cyber attacks [2]. For example, the authors in [3]

demonstrate how to disrupt the operation of a car and even disable

the vehicle using some simple methods. Further, the authors in [4]

present a case study, where they can launch a Denial-of-Service at-

tack to compromise the CAN bus and the functionalities dependent

on the CAN bus. Exclusively utilizing cyber-security techniques

to secure CPS is inadequate. This is indicated especially by non-

invasive sensor attacks, that is, when the physical environment is

compromised to allow injecting malicious signals to sensors [7, 9].

For instance, the authors in [10] demonstrate remote attacks on

sensors including camera and LiDAR that are usually mounted in

autonomous vehicles. The authors in [11] demonstrate attacks on

GPS sensors to misguide a yacht off its course.

∗
Acknowledgement: This work was supported in part by NSF CNS-1505799 and the

Intel-NSF Partnership for Cyber-Physical Systems Security and Privacy and in part

by Global Research Laboratory Program (2013K1A1A2A02078326) through NRF, and

the DGIST Research and Development Program (CPS Global Center) funded by the

Ministry of Science, ICT & Future Planning.

These results havemotivatedmany efforts that study the problem

of improving attack-resilience under the cases of various attacks

on sensors, actuators and communication networks [5, 6, 9]. An

effective way to address this problem is to develop methods that

can estimate system states accurate enough for control regardless

of the compromised components. One advantage of this way is that

it allows a system to use the same controller as in the case without

attacks. Along this way, a procedure, called cyber-physical system

checkpointing and recovery, has been recently proposed in [7].

In [7], we divide CPS recovery into two different operations:

roll-back recovery for cyber states and roll-forward recovery for

physical-states. Cyber-states are computing information of a con-

troller, such as values of data variables, while physical-states are

defined as physical information of a plant, such as speed of a motor.

Roll-forward recovery is defined as rolling the system forward to

the current time, starting from a historical physical-state. It can

be seen as a general method that handles failed estimated states

(caused by attacks or faults). We further demonstrate the feasibility

of CPS recovery by utilizing a case study of sensor faults or attacks.

One issue not fully addressed in [7] is that what kind of states

should be used for CPS recovery. We study this issue and claim to

use consistent states for CPS recovery. The focus of this paper is to

define state consistency for roll-forward recovery (the definition for

roll-back recovery is left as future work). However, to define state

consistency is a challenging task. First, CPS systems are usually

subject to not only functional requirements, e.g., guaranteeing the

correctness of results, but also real-time constraints, e.g., producing

results within a certain time frame. Recovery based on a functional

correctness state may not yield a result meeting timing require-

ments, and vice versa. Further, attacks can compromise both value

and timing properties of a state, which also requires definitions

that take account of both aspects. Second, state consistency is no

longer confined to cyber world for CPS systems, because of the in-

teraction between cyber components and the physical world. Thus,

consistency definitions applicable to CPS systems should involve

both cyber and physical parties.

To address these challenges, we formally define consistencies

for cyber-physical states (i.e., cyber information that reflects the

physical world). Cyber-physical consistency is in the intersection of

the cyber and physical world, i.e., whether the physical world can be

accurately reflected by the corresponding cyber part. We define 1)

cyber-physical logic-consistency based onwhether cyber values can

accurately reflect corresponding physical states, 2) cyber-physical

syn-timing-consistency based on whether individual elements of

estimated states and control inputs are synchronized, and 3) cyber-

physical exp-timing-consistency based on the freshness of cyber-

physical states to guarantee a certain degree of control performance

when performing recovery. We build a simulator of PID controlled

DC motor to evaluate how control performance is affected by these

consistencies when conducting recovery.
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Figure 1: A System Diagram of CPS.
2 SYSTEM MODEL AND PRELIMINARY
Fig. 1 shows a system diagram of CPS. Notations are described as

follows. Notation y denotes an actual output of the plant, while ȳ
denotes a measurement used by a state estimator. Notation x de-

notes a physical state of the plant/the physical system and x̄ denotes

an estimated state. (If the system has no state estimator, x̄ can be

seen as a cyber value that represents the physical state.) Notation u
represents an input actually applied by actuators to the plant, while

ū represents an output of the control system, i.e., a control input

produced by the control system. Notation xr represents a desired
or reference state. We use t(·) to denote a parameter’s time stamp.

For example, for an element x̄i , t(x̄i ) denote its time stamp; for an

estimated state x̄, t(x̄) denotes the time stamp vector that consists

of the time stamp of each element in x̄. We call the combination of

x̄ and ū as a cyber-physical state c̄, which is denoted as c̄ = {x̄, ū}.
We use |P| to denote the matrix whose elements are absolute

values of the initial matrix P. For matrices P and Q, P ≼ Q means

that matrix P is element-wise less than or equal to matrix Q.

3 CYBER-PHYSICAL CONSISTENCY
Cyber-physical consistency defined here is in the intersection of

the cyber and physical world. It describes whether the physical

world can be accurately reflected by the corresponding cyber part.

We consider both logic and timing aspects and a consistent cyber-

physical state must be both logic-consistent and timing-consistent.

3.1 Cyber-Physical Logic-Consistency
Definition 1 (Cyber-Physical Logic-Consistency). A cyber-

physical state c̄ = {x̄, ū} is logic-consistent if

{|x̄ − x| ≼ ∆Vx} (1)

∧ {|ū − u| ≼ ∆Vu}, (2)

where ∆Vx and ∆Vu denote the given estimation error and actuation
error, respectively, that a system can tolerate.

Eqn. (1) checks whether the cyber values, i.e., estimated states x̄,
can accurately capture the physical state x. Eqn. (2) checks whether
the cyber values, i.e., output ū of the control system, can be ac-

curately actuated to the plant. Some faults or attacks can make

cyber-physical states violate this logic-consistency. For example,

injection attacks [12], such as injecting malicious signals to sensors

or injecting malicious packets to the communication between sen-

sors and processors, can compromise sensor measurements, which

thus can cause estimated states far from real physical states.

The logic-consistency defined in Def. 1 is confined to values

of cyber-physical states. This is not enough for a control system,

where the correctness of results also relies on timing requirements.

For example, as shown in Fig. 2(a), we consider estimated state val-

ues x̄′ = [x̄1, x̄
′
2
, x̄3]

ᵀ
and physical state values x′ = [x1, x

′
2
, x3]

ᵀ
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(a) x̄′ does not satisfy Eqn. (3).
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(b) x̄ satisfies Eqn. (3).

Figure 2: An example illustrating Eqn. (3).
where x̄ ′

2
and x ′

2
are of (i − 1)th sampling period and other in-

dividual elements are of ith sampling period. Even if it satisfies

logic-consistency, i.e., |x̄′ − x′ | ≼ ∆Vx, individual elements of x̄′

are of different sampling periods and thus x̄′ may be not usable

for control. To address this, we will define consistency in terms of

timing aspects in the following.

3.2 Cyber-Physical Timing-Consistency
Definition 2 (Cyber-Physical Timing-Consistency). A cyber-

physical state c̄ = {x̄, ū} is timing-consistent if it satisfies
(1) Syn-Timing-Consistency:

{|max

∀i
t(x̄i ) − min

∀j
t(x̄ j )| ≤ ∆T x } (3)

∧{| max

∀j
t(ūj ) − min

∀i
t(x̄i )| ≤ Ts }, (4)

where ∆T x denotes the maximum difference of states’ time
stamps that a system can tolerate; Ts is the sampling period.

(2) Exp-Timing-Consistency:

q(c̄) ≥ h, (5)

where q(·) is the expire time of a cyber-physical state and h
denotes the current time.

We consider a discrete time model of the system. To deal with a

continuous-time plant, it is necessary to discretize the plant. Here,

the plant’s output is sampled (i.e., measured) with a period of Ts ,
and actuators apply the newly calculated input in each sampling

period. Based on this, Def. 2 is interpreted as follows.

1) Syn-Timing-Consistency. This consistency describes synchro-

nization between individual elements of a cyber-physical state.

Eqn. (3) expresses that time stamps of individual states (i.e., indi-

vidual element of x̄) should be close enough to each other. Their

difference should be not greater than the threshold (i.e., ∆T x ) that

a system can tolerate.

Fig. 2 shows an example that illustrates Eqn. (3). In Fig. 2(a), for

the estimated state x̄′, we know that |t(x̄1) − t(x̄3)| < ∆T x , but

meanwhile, |t(x̄1) − t(x̄ ′
2
)| > ∆T x and |t(x̄3) − t(x̄ ′

2
)| > ∆T x . Thus,

it is not syn-timing-consistent. In Fig. 2(b), for the estimated state

x̄, we know that |t(x̄1) − t(x̄2)| < ∆T x , |t(x̄1) − t(x̄3)| < ∆T x , and

|t(x̄2) − t(x̄3)| < ∆T x . Thus, it satisfies Eqn. (3). Yet, whether the

corresponding cyber-physical state is syn-timing-consistent is still

in question. We need to further check Eqn. (4).

Eqn. (4) expresses that a control input should be produced within

the same sampling periodwith the used estimated state. Fig. 3 shows

an example that illustrates Eqn. (4) of the syn-timing-consistency.

Control input ūj is produced at time t(ūj ). Then, it is applied to

the actuator until the new control input ū ′j is produced and applied.

We can see that |t(ū ′j ) − t(x̄i )| > Ts , i.e., ū
′
j and x̄i are in different
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Figure 3: An example illustrating Eqn. (4).

sampling periods, and thus it violates Eqn. (4) and is not syn-timing-

consistent. By contrast, ūj and x̄i are in the same sampling period,

i.e., |t(ūj ) − t(x̄i )| < Ts . If a cyber-physical state c̄ = {x̄, ū} satisfies
both Eqn. (3) and Eqn. (4), it is syn-timing-consistent.

As mentioned above, even though an estimated state is cyber-

physical logic-consistent, it may not satisfy syn-timing-consistency.

Some attacks can create such estimated states. For example, we

consider replay attacks [12] that capture a valid sequence of sensor

measurements and then retransmit that valid measurements with

some delay. By this manner, an attacker can feed legitimate looking

measurements while performing an attack that makes estimated

states violate syn-timing-consistency. Time stamps of individual

elements are different because of replay attacks.

2) Exp-Timing-Consistency. This timing-consistency is defined

based on the expiration time of a cyber-physical state. The rationale

behind this definition is that it is usually better to utilize cyber-

physical states that are freshly recordedwhen carrying out recovery.

(Refer to [7] for CPS recovery.) Using cyber-physical states stored

far from the current time may result in considerable control per-

formance degradation or violating time requirements. Thus, we

use a timing property q(c̄), i.e., an expiration time, to capture the

freshness of a cyber-physical state c̄. The expiration time is an ab-

solute time, after which the cyber-physical state cannot be used for

recovery. States stored earlier have earlier time stamps and thus

have smaller expiration times than states that are stored later.

We illustrate how to determine the expiration time of a cyber-

physical state with an example based on the CPS recovery frame-

work proposed in [7]. In that paper, we propose a roll-forward

recovery framework that handles compromised sensor measure-

ments or incorrect estimated states. The framework is defined as

rolling the system to the current time, starting from a historical

cyber-physical state. The essential operation is state prediction, i.e.,

predicting the current state based on a historical state. Please refer

to [7] for details of roll-forward recovery. We use a function д(c̄, λ)
to denote the predicted state of an amount λ of time later and based

on a cyber-physical state c̄. We further use a function ϵ(c̄, λ) to
denote the corresponding prediction error. Then, the expiration

time of the cyber-physical state c̄ is

q(c̄) = min

ϵ (c̄,λ)�E
λ + t(c̄), (6)

where E is the maximum error that a system can tolerate. As shown

in Fig. 4, the expiration time q(c̄) is the time point when some

element of ϵ(c̄, λ) becomes just greater than the corresponding

element of E.
Some distance metrics quantifying value discrepancy and timing

discrepancy have also been presented in previous works such as

[1, 8]. The difference is that they are focused on distance between

traces while our work targets that of states. In future work, we
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Figure 4: Illustration of determining the expiration time for
a cyber-physical state c̄. q(c̄) is the expiration time.
will study the expiration time of a cyber-physical state for more

concrete scenarios.

4 EVALUATION
To validate consistency definitions and highlight their utility when

carrying out recovery, we conduct extensive simulations and analy-

sis. We use Simulink to build a simulator, where a DC motor drives

an inertial load. DC motors are widely used in electric vehicles and

many autonomous car prototypes. We use the dynamic model of

the DC motor given as follows[
Ûi
Ûw

]
=

[
−R
L −

Kb
L

Km
J −

Kf
J

] [
i
w

]
+

[
1

L
0

]
v, (7)

where the current i and the angular velocity w are considered as

the two individual states of the system. The applied voltage v is

the control input, and the angular velocityw is the output of the

system. The resistance R and the self-inductance L are set as 1

and 0.5, respectively. Both the armature constant Km and the EMF

constant Kb are set as 0.01. The viscous friction constant Kf is set

as 0.1. The inertial load J is 0.01. The reference velocity or desired

speed is set as 1. the sampling period is set as 0.01. Sensor (of speed)

noise obeys Gaussian distribution with the variance of Θ = 0.0001.

We use a PID controller to supervise and control the motor’s

speed. The scenario considered for this experiment is that the opera-

tor specifies the desired motor (or vehicle) speed, and the controller

needs to ensure this speed even if the system performs roll-forward

recovery. However, this goal may be compromised if the recovery

is carried out based on inconsistent cyber-physical states.

4.1 Results for Cyber-Physical Consistency
We consider the recovery occurs at time 3. The recovery occurs

once, and during the recovery period, the system uses recovered

state for control. After recovery, i.e., from time 3.01, the system

comes back to utilize sensor measurements for control.

Fig. 5 demonstrates results for cyber-physical logic-consistency.

The recovery uses the cyber-physical state of one sampling period

back. Fig. 5(a) shows control performance if violating Eqn. (1). To

produce this violation, we add one to the original value of the mea-

sured speed. Base on this new value, the recovered state (i.e., motor

speed here), shown by the spike in Fig. 5(a), is large and far from

the actual value. That is, it is incorrect, i.e., it incorrectly reflects

the actual motor’s speed. Thus, the controller decelerates the motor,

as shown by the drift-off in this figure. Fig. 5(b) depicts control

performance for the case if violating Eqn. (2) . To produce this vio-

lation, we change the control input to a much smaller value, e.g.,

−800 here. Based on this new value, the recovered state (i.e., motor

speed here), shown by the sharp decrease in Fig. 5(b), also becomes

smaller and is far from the actual value. Thus, the controller accel-

erates the motor and make it drift off from the desired speed, as

shown in this figure. Based on these observations, we conclude that

3



(a) Violating Eqn. (1), one sampling period back recovery.

(b) Violating Eqn. (2), one sampling period back recovery.

Figure 5: Cyber-Physical Logic-Consistency.

Figure 6: Cyber-Physical Syn-Timing-Consistency.

(a) Ten sampling period back recovery.

(b) One hundred sampling period back recovery.

Figure 7: Cyber-Physical Exp-Timing-Consistency.

roll-forward recovery based on logic-inconsistent cyber-physical

states can significantly compromise control performance.

Fig. 6 shows control performance when violating cyber-physical

syn-timing consistency. The recovery uses the cyber-physical state

of the preceding sampling period. To make it violate syn-timing

consistency, we change the speed value of the cyber-physical state

to zero. This is the same as using the speed at time 0, which is

also zero. Doing this makes the two state variables i.e., speed and

current, have different time stamps. Based on this newly made state,

the recovered state, as shown by the sharp decrease in this figure,

becomes far smaller than the desired speed. Thus, the controller

accelerates the motor and make it drift off from the desired speed,

as shown in the figure. Hence, we can conclude that roll-forward

recovery based on syn-timing-inconsistent cyber-physical states

can also cause considerable control performance degradation.

Fig. 7 plots results for cyber-physical exp-timing-consistency.We

consider control performance degradation for carrying out one time

of recovery using cyber-physical states back to different sampling

periods. Fig. 7(a) shows control performance for the case if the

recovery uses the cyber-physical state of 10 sampling periods back.

We can see that for this case, the motor’s speed quite well tracks

the desired speed because the drift-off is very small. In other words,

using logic-consistent cyber-physical state that is fresh enough, to

carry out recovery results in little performance degradation. By

contrast, control performance compromises more when using the

cyber-physical state of 100 sampling periods before, as shown by

Fig. 7(b). From this figure, we can see that the recovered state/motor

speed is far from the realistic value. This causes the controller to

decelerate the motor considerably and thus much drifts off. These

observations demonstrate the key point as follows. Not all historical

cyber-physical states is appropriate to be used for recovery, and it

needs to utilize fresh enough states in order to guarantee control

performance. This further demonstrates the necessity to define and

attribute expiration time for cyber-physical states.

5 CONCLUDING REMARKS
We study consistencies for CPS roll-forward recovery. Speically, we

define 1) cyber-physical logic-consistency based on whether cyber

values can accurately reflect the corresponding physical state, 2)

cyber-physical syn-timing-consistency based on time stamp differ-

ence of individual elements of estimated states and control inputs,

and 3) cyber-physical exp-timing-consistency based on expiration

times of cyber-physical states. We build a simulator of PID con-

trolled DC motor to evaluate how control performance is affected

by these consistencies when conducting recovery.
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