
Demo: Verisig – verifying safety properties of hybrid systems
with neural network controllers

Radoslav Ivanov, James Weimer, Oleg Sokolsky, Insup Lee
University of Pennsylvania
Philadelphia, Pennsylvania

{rivanov,weimerj,sokolsky,lee}@seas.upenn.edu

ABSTRACT
This abstract presents Verisig, a scalable tool for verifying safety
properties of closed-loop systems with neural network (NN) con-
trollers. Verisig transforms the NN into an equivalent hybrid system
and composes this hybrid system with the plant’s. This abstract de-
scribes this transformation and outlines the tool’s building blocks.
ACM Reference Format:
Radoslav Ivanov, James Weimer, Oleg Sokolsky, Insup Lee. 2019. Demo:
Verisig – verifying safety properties of hybrid systems with neural network
controllers. In Design Automation for CPS and IoT (DESTION ’19), April
15, 2019, Montreal, QC, Canada. ACM, New York, NY, USA, 2 pages. https:
//doi.org/10.1145/3313151.3313164

1 INTRODUCTION
Recent years have seen a rapid rise in the popularity of deep neu-
ral networks (DNNs), driven by DNNs’ impressive performance
in challenging learning tasks such image processing and language
translation. In addition, DNNs are increasingly being used in safety-
critical systems such as autonomous vehicles and air traffic colli-
sion avoidance systems. Thus, it is important to assure the safety of
closed-loop systems with DNN components. However, it is challeng-
ing to develop analytic proofs about DNNs due to their complexity.

As a result, several formal verification approaches [3] have been
developed in order to reason about the safety of DNNs. These
techniques focus on verifying safety properties about the DNN’s
outputs given conditions on the inputs. Despite their impressive
performance, however, these tools cannot be straightforwardly
extended to reason about closed-loop systemswith DNN controllers,
except for special cases such as linear systems.

Different from existing approaches, Verisig [2] is developed to
verify safety properties with respect to closed-loop systems. Verisig
focuses on DNNs with sigmoid activation functions and exploits
the fact that the sigmoid is the solution to a quadratic differential
equation. This allows us to transform the DNN into an equivalent
hybrid system, which is in turn composed with the plant’s hybrid
system. Given the resulting hybrid system, we can use existing
hybrid system verification tools such as Flow* [1] in order to verify
safety properties of the closed-loop system.

To state the problem more precisely, consider a closed-loop sys-
tem where a plant P , described by a hybrid systemHP , is controlled
by a DNN controller h. We assume h is a feedforward neural net-
work with sigmoid/tanh activation functions. Given a property ξ

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
DESTION ’19, April 15, 2019, Montreal, QC, Canada
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6699-1/19/04.
https://doi.org/10.1145/3313151.3313164

on the initial states X0 of P , the problem, expressed as property ϕ,
is to verify a propertyψ of the reachable states x (t ) of P :

ϕ (X0,x (t )) ≡ ξ (X0) ⇒ ψ (x (t )), ∀t ≥ 0. (1)

We approach the problem by transforming the DNN into an
equivalent hybrid system, Hh , and in turn composing Hh with
HP . The key insight used in this transformation is the fact that
the sigmoid, f (x ) = 1/(1 + e−x ), can be expressed in terms of its
derivative, i.e., f ′(x ) = f (x ) (1 − f (x )). With this fact in mind, we
introduce the proxy function д(t ,x ) = f (tx ), such that д(1,x ) =
f (x ) and д̇(t ,x ) = xд(t ,x ) (1 − д(t ,x )). Thus, each neuron in the
DNN can be treated as a state in a dynamical system that evolves
according to the “dynamics” of д such that at t = 1, д is equal to
the sigmoid, i.e., by computing the reachable set for д at t = 1, one
obtains the reachable set for the sigmoid. Thus, the DNN can be
transformed into an equivalent hybrid system by mapping each
neuron to a state and each layer to a mode; transitions between
modes are triggered when t = 1. Finally, Hh is composed with HP
depending on how the controller is used; e.g., in a time-triggered
system, there would be a transition from each mode in HP to Hh
with a guard which is enabled when the controller is sampled.

We use Flow* to verify property ϕ about the composed hybrid
system S = Hh ∥HP . We chose Flow* to perform the hybrid system
verification since it scales to systems with a few hundred states.
Although the approximation error in Flow* might grow over time,
this issue can be alleviated by splitting the initiial condition into
subsets and verifying for each one, as described in Section 3.

2 DESIGN
As shown in Figure 1, Verisig is effectively a translation tool from a
closed-loop system description to a Flow* model. Since the trans-
lation itself is not time-consuming, Verisig is written in Python,
which also promotes code readability. Verisig takes as input four
items: 1) the DNN architecture; 2) the plant’s hybrid system de-
scription; 3) composition (glue) transitions between the DNN and
the plant and vice versa; 4) the property ϕ. The tool constructs the
closed-loop hybrid system and writes it to a model file that is sent
as input to Flow*. We describe each of these aspects next.

2.1 DNN Input
Verisig currently accepts two types of DNN descriptions. The first is
a Keras1 model. Keras is an open-source toolbox for training DNNs
and has gained popularity due to its extendability and ease of use.
If a Keras model is not available, Verisig also accepts a Python
dictionary where each layer maps to a two-dimensional array of
neuron weights and a one-dimensional array of neuron offsets (each
layer hi is defined as hi (x ) = a(Wix +bi ), whereWi are the weights,
bi are the offsets, and a is the activation function).

1https://github.com/keras-team

62

https://doi.org/10.1145/3313151.3313164
https://doi.org/10.1145/3313151.3313164
https://doi.org/10.1145/3313151.3313164


DESTION ’19, April 15, 2019, Montreal, QC, Canada Radoslav Ivanov, James Weimer, Oleg Sokolsky, Insup Lee

Figure 1: Design of Verisig.

2.2 Plant Hybrid System
The plant’s hybrid system description is currently provided as a
Python dictionary, where each mode index is mapped to a mode
description. A mode description is also a dictionary, where the keys
are the state dynamics, invariants and transitions for that mode.
Since Verisig is strongly tied to Flow*, Verisig supports only Flow*
syntax at the moment. We are developing a parser for a standard
hybrid system description language such as SpaceEx XML.

2.3 Glue
To compose the plant hybrid system with the DNN model, we in-
troduce two new transitions for each plant mode. The first one
leads from the plant mode to the initial mode of the DNN model.
The second transition leads from the final mode of the DNN model
back to the plant mode. To capture the nature of these transitions
(e.g., the DNN is a time- or event-triggered controller), the user
needs to specify transition guards, which determine when the DNN
is invoked, and resets that perform DNN-specific operations, e.g.,
normalization of DNN inputs. We are developing a simple language
that would allow us to concisely specify this information and au-
tomatically generate glue transitions. Alternatively, the user can
specify glue transitions explicitly using the Flow* syntax.

2.4 Safety property
The property ϕ is expressed in Flow* syntax. It specifies initial
conditions for all plant states as well as unsafe modes and states.

2.5 Flow* model
A Flow* model consists of four parts: 1) mode descriptions; 2) initial
conditions; 3) unsafe modes and states; 4) Flow* settings. Verisig
writes the first three based on the provided DNN architecture and
plant description (already in Flow* syntax). The Flow* settings in-
clude parameters such as precision, Taylor Model order, integration
step size, etc. Choosing the right settings is essential for the tool to
work well – Verisig uses default settings that work well in our case
studies but these might need to change for different case studies.

3 CASE STUDY: MOUNTAIN CAR
We now illustrate how to use Verisig in a reinforcement learning
case study, namely Mountain Car (MC). MC is a benchmark rein-
forcement learning problem, in which an underpowered car must
drive up a steep hill by driving back to an opposite hill and gather-
ing enough momentum so as to be able to climb the hill. The goal
of reinforcement learning is to train a DNN to learn this control
policy by applying different inputs and observing a reward after
each step. Once a DNN is trained, we use Verisig to verify that the
car will go up the hill starting from any initial condition.

In order to use Verisig in a case study, one needs to perform
three tasks: 1) train a DNN; 2) encode the plant dynamics into Flow*
syntax; 3) split the initial condition into small enough subsets such
that each one can be verified by Flow* with small approximation
error. We now explain the challenges involved in each step.

3.1 DNN Training
We use an Actor/Critic approach [4] to train a two-layer sigmoid-
based DNNwith 16 neurons per layer and a tanh-based output layer
with one neuron. Note that we constrain the sigmoid weights to
have norm less than 1; this constraint improves training and, more
importantly, allows Verisig to keep the approximation error small
when integrating the sigmoid dynamics. Since Flow* uses interval
analysis to bound the error during each integration step, bigger
weights result in more uncertainty and larger approximation error.

3.2 Encoding Plant Dynamics into Flow*
Flow* is very sensitive to the plant dynamics description. For ex-
ample, the MC plant dynamics contain a cosine function in discrete
time whereas Flow* only accepts cosine in continuous dynamics.
One way around this issue is to dedicate a separate plant mode to
compute the cosine in continuous dynamics. This trick comes at a
cost since Flow* would need to integrate the cosine dynamics as
well, thereby potentially introducing more approximation error.

3.3 Splitting the Initial Condition into Small
Subsets

This is the most manually-intensive part of Verisig. Since it is dif-
ficult to estimate a priori what initial condition size would result
in a small enough approximation error so as to verify the property
ϕ, the user has to pick a size and try. Note that large initial sets
may not only result in large approximation error but might also
add unnecessary branches in the hybrid system (e.g., due to the
car leaving the environment boundaries). At the same time, if the
initial set is too small, the number of calls to Verisig might become
prohibitively large. This challenge can be alleviated by parallelizing
these calls once an initial set size is chosen.

REFERENCES
[1] X. Chen, E. Ábrahám, and S. Sankaranarayanan. 2013. Flow*: An analyzer for non-

linear hybrid systems. In International Conference on Computer Aided Verification.
Springer, 258–263.

[2] R. Ivanov, J. Weimer, R. Alur, G. J. Pappas, and I. Lee. 2019. Verisig: verifying safety
properties of hybrid systems with neural network controllers. Proceedings of the
22nd International Conference on Hybrid Systems: Computation and Control (2019).

[3] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer. 2017. Reluplex: An
efficient SMT solver for verifying deep neural networks. In International Conference
on Computer Aided Verification. Springer, 97–117.

[4] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D.
Wierstra. 2015. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971 (2015).

63


	Abstract
	1 Introduction
	2 Design
	2.1 DNN Input
	2.2 Plant Hybrid System
	2.3 Glue
	2.4 Safety property
	2.5 Flow* model

	3 Case Study: Mountain Car
	3.1 DNN Training
	3.2 Encoding Plant Dynamics into Flow*
	3.3 Splitting the Initial Condition into Small Subsets

	References

