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ABSTRACT

Medical cyber-physical systems, such as the implantable cardioverter
defibrillator (ICD), require evaluation of safety and efficacy in the
context of a patient population in a clinical trial. Advances in com-
puter modeling and simulation allow for generation of a simulated
cohort or virtual cohort which mimics a patient population and can
be used as a source of prior information. A major obstacle to accep-
tance of simulation results as a source of prior information is the
lack of a framework for explicitly modeling sources of uncertainty
in simulation results and quantifying the effect on trial outcomes.
In this work, we formulate the Computer-Aided Clinical Trial

(CACT) within a Bayesian statistical framework allowing explicit
modeling of assumptions and utilization of simulation results at all
stages of a clinical trial. To quantify the robustness of the CACT
outcome with respect to a simulation assumption, we define δ -
robustness as the minimum perturbation of the base prior distri-
bution resulting in a change of the CACT outcome and provide a
method to estimate the δ -robustness.
We demonstrate the utility of the framework and how the re-

sults of δ -robustness evaluation can be utilized at various stages
of a clinical trial through an application to the Rhythm ID Goes
Head-to-head Trial (RIGHT), which was a comparative evaluation
of the safety and efficacy of specific software algorithms across
different implantable cardiac devices. Finally, we introduce a hard-
ware interface that allows for direct interaction with the physical
device in order to validate and confirm the results of a CACT for
implantable cardiac devices.
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1 INTRODUCTION

The evaluation of the safety and performance of complex devices
and systems is one of the fundamental challenges of cyber-physical
systems. For medical cyber-physical systems, such as the pacemaker
or implantable cardioverter defibrillator (ICD), the gold standard
for evaluating safety and efficacy of a device is in the context of
a patient population in a clinical trial. However, clinical trials can
cost $10-20 million and can last anywhere from 4-6 years. Despite
this, rigorously planned clinical trials obtain undesirable results
[13]. Even with a successful trial, medical devices are still subject
to recalls and safety alerts [21].
As medical devices increase in complexity, using clinical trials

alone to evaluate newer technologies will be increasingly insuf-
ficient. Computer models of physiology and simulation can po-
tentially be utilized in clinical trials by considering them as an
alternative source of prior information [11][9]. In such a trial, the
data that is measured and analyzed in a clinical trial, called end-
points, are simulated using a physiological model and subsequently
applied to either a device model or the physical device itself. How-
ever, physics-based models are difficult to develop and even when
they are available, incur large variability in the simulated endpoints
due to the uncertainty in the parameters [10]. Moreover, these sim-
ulations are based on assumptions and can cause large errors in the
evaluation of a device when the assumptions differ from reality.

A major obstacle in the usage of simulated endpoints as a source
of prior information in clinical trials is the lack of a method to
quantify the uncertainty caused by assumptions in a simulation
and the effect on clinical trials outcomes.

In [1], a Computer-Aided Clinical Trial (CACT) was defined as a
process in which high-level models of the human physiology are
used to evaluate device performance on virtual trial populations,
and the results of which are used to help plan a real clinical trial.
In this work, we expand the definition to include the utilization of
simulated endpoints obtained from the simulation of physiological
models in the planning, conduct and analysis of a clinical trial. This
definition reflects the potential for incorporating simulation results
in all stages of a medical device trial.

Problem: Given a process to generate a cohort of simulated end-
points and a CACT which utilizes the cohort in the outcome, we
wish to estimate the effect of assumptions made during simulation
on the outcome of the CACT.
If changes in a simulation assumption have little effect on the

overall outcome, then the CACT outcome can be considered ‘robust’
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with respect to that particular assumption. We aim to quantify this
notion of ‘robustness’ of the outcomes of a CACT for a medical
device and estimate the value through the following contributions:

(1) We provide a Bayesian statistical framework for modeling a
CACT and its outcome. The framework incorporates results
from simulated endpoints through the pre-clinical prior and
explicitly models simulation assumptions (Section 2).

(2) We define δ -robustness of a CACT to quantify the uncer-
tainty in the CACT outcome due to simulation assumptions
and present a method for estimating the value (Section 3).

(3) We apply the framework in a case study of a previous trial,
the Rhythm ID Goes Head-to-head Trial (RIGHT), which
evaluated the relative safety and efficacy of two software
algorithms in implantable cardiac devices, and confirm that
the results of the CACT align with the original trial. Further-
more, we demonstrate how the δ -robustness value can be
used in both the planning stage of a clinical trial and at trial
conclusion through the robustness plane (Section 4).

(4) We introduce a hardware testbed that enables a CACT for
ICDs to be automatically conducted through direct interac-
tion with the physical device (Section 5).

2 CACT BAYESIAN MODELING FRAMEWORK

2.1 Overview of CACTs for medical devices

A clinical trial evaluates a medical device through an inquiry in the
form of a hypothesis test about a parameter of interest, θ , with a set
of observations called endpoints, y = {y1,y2, . . .yN } from a patient
cohort of sample size N . Examples of endpoints include continuous
endpoints, such as the amount of blood pressure reduction, and dis-
crete endpoints, such as the number of inappropriate therapies. The
typical hypothesis test compares the likelihood of a null hypothesis,
H0, with one or more alternative hypotheses, H1,H2, . . . , etc. The
outcome of the trial is either the rejection of the null hypothesis in
favor of an alternative hypothesis or the failure to reject the null
hypothesis.
As shown in Fig. 1, the clinical trial can be divided into three

stages: trial planning, trial conduction, and trial conclusion. Two
general approaches to clinical trial evaluation exist. The standard,
frequentist approach to a clinical trial considers only the observed
endpoints of the trial cohort to answer the primary question. In
a Bayesian clinical trial, a prior distribution (e.g. non-informative
uniform prior) is placed on the parameter of interest during the
planning stage and then updated to form a posterior distribution
using observations from the trial. The trial outcome is determined
with this posterior distribution.

Similar to the standard clinical trial, a CACT is divided into three
stages paralleling the stages of a clinical trial: pre-clinical simu-
lation, interim-trial simulation, and post-trial simulation. During
pre-clinical simulation, a physiological model is used to generate a
virtual cohort of physiological signals (Fig. 1 2©) and is applied to a
device model in order to generate a cohort of size No of simulated
endpoints, yo = {yo1,yo2, . . . ,yoNo

}, called the virtual endpoint

cohort or virtual cohort (Fig. 1 3©).
These endpoints are used to update a non-informative prior

distribution to form an informed prior, which we call the pre-clinical
simulation prior distribution or pre-clinical prior (Fig. 1 4©). At the
pre-clinical simulation stage, the pre-clinical simulation prior is
used to predict the pre-clinical CACT outcome of the trial(Fig. 1 5©).
The pre-clinical prior is updated when data from real patients

become available during the trial conduction and at the conclusion.

The pre-clinical prior is weighted according to the similarity be-
tween the virtual cohort and the real patient cohort to form the
pre-clinical power prior (Fig. 1 6©).
During post-trial simulation, the post-trial simulation posterior

distribution is obtained by updating the pre-clinical power prior
(Fig. 1 7©). Finally, the overall post-trial simulation CACT outcome

is computed (Fig. 1 8©).
In the case of standard clinical trials, assumptions are made about

the target population in order to compute parameters of the trial,
such as the sample size. Similarly, in a CACT, simulation assump-
tions, such as the composition of conditions in a virtual cohort, are
modeled within the framework as the CACT prior distribution (Fig.
1 1©). Sec. 3 describes the concept of robustness of CACT outcomes

and how to evaluate the effect of the CACT prior on the CACT
outcome (Fig. 1 9©,10©).
In the next section, we formally define the concepts presented

in this section within a Bayesian statistical framework.

2.2 Bayesian modeling framework for CACTs

In order to draw conclusions about the parameter of interest θ , we
build upon the Bayesian framework for modeling a virtual cohort
proposed in [15]. In this work, we have expanded the framework in
order to reflect the different stages of a CACT and model sources
of uncertainty.
Given a set of simulated endpoints, yo = {yo1,yo2, . . .yoNo

},
where Yo ∼ fYo (yo | θo ;γo ) and a set of real patient cohort end-
points y = {y1,y2, . . .yN }, where Y ∼ fY (y | θ ), the conclusions
drawn from the CACT regarding θ rely on the following assumption
about the exchangeability of the two sets of endpoints:

Assumption 1 (Exchangeability of simulation endpoints).
The device model and the physiological model accurately capture the

variability of outcomes and generate simulated endpoints, yo , such
that,

θ = θo (1a)

and fYo (yo | θ ;γo ) = fY (y | θ ) (1b)

This implies that the information about the parameter of interest
obtained through the virtual cohort is the same as that of an actual
patient cohort. Moreover, (1b) implies that the distribution of the
endpoints is equivalent. (1a) and (1b) must be verified during and af-
ter the conduction of the trial when endpoints from real patients, y,
becomes available. Here, γo is a parameter related to the simulation
assumption which will be defined in the next section.

CACT pre-clinical simulation We first define the virtual cohort
and the relation to the simulation assumptions in the pre-clinical
stage and how the assumptions influence the pre-clinical trial out-
come. We assume the existence of a device model and an adequate
physiological model which generates a cohort of size No of physio-
logical signals, xo = {xo1,xo2, . . . ,xoNo

, } (Fig. 1 2©) and define the
virtual physiological cohort:

Definition 1 (Virtual physiological cohort). The virtual
physiological cohort or physiological cohort, xo , is a set of of size No

consisting of I.I.D. instances of the multivariate random variable, Xoi ,

where,

Xoi ∼ fXoi
(xoi | ψ ) (2)

fXoi
is the distribution ofXoi indexed by the parameterψ and is called

the distribution of physiological signals conditioned onψ . Therefore,
for the set Xo = {Xo1,Xo2, . . . ,XoNo

},
fXo

(xo | ψ ) = ΠNo

i=1 fXoi
(xoi | ψ ) (3)
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Figure 1: Overview of a Computer-Aided Clinical Trial (CACT) for medical devices and robustness evaluation. A CACT is divided into three

phases: pre-clinical simulation (trial design and planning), interim-trial simulation (trial conduct), and post-trial simulation (trial conclusion)

The physiological cohort represents a set of signals that are used
by the device, such as the cardiac electrograms for a pacemaker or
the blood glucose level in an insulin pump. Typically, there is no
closed form for fXo

, but samples can be obtained from the distribu-
tion by simulating the physiological model. The cohort generation
process is equivalent to obtaining samples from the distribution of
Xo for whichψ is a parameter setting in that process. For example,
if the physiological model generates k types of cardiac rhythms,
ψ = (ψ1,ψ2, . . . ,ψk ) can be the number of each rhythm type in
the physiological cohort. The proportion of each rhythm type in
a physiological cohort is an example of a simulation assumption.
This assumption is modeled within a Bayesian framework as a prior
distribution on the parameterψ , which we define as the CACT prior

distribution:

Definition 2 (CACT prior distribution ). The parameter Ψ
of the virtual cohort is a random variable such that,

Ψ ∼ π (ψ | γo ) := πγo (ψ ) (4)

where, γo is the set of parameters for the prior distribution. πγo (ψ ) is
defined as the CACT prior distribution.

πγo (ψ ) encodes information of simulation assumptions by speci-
fying the form of the function and parameters γo . This information
may be available from reports of previous clinical trials, otherwise
a conservative base prior may be selected, such as the uniform
distribution.
Using this prior, we define the marginal distribution of physio-

logical cohorts, fXo
(xo ;γo ) as:

fXo
(xo ;γo ) = EΨ(Xo ,Ψ) =

∫
fXo

(xo | ψ )πγo (ψ )dF (Ψ) (5)

This can be considered the predictive prior distribution in Bayesian
analysis. Note, the integration is over the support of the random
variable Ψ. For simplicity of notation, we will suppress the upper
and lower limits throughout the paper.

Intuitively, the marginal distribution obtains a weighted average
of xo , where the weight is determined by the CACT prior distribu-
tion, πγo (ψ ). The value of the parameter,γo , influences the marginal
distribution of cohorts.
A closed form of fXo

(xo ;γo ) is typically unavailable, but we as-
sume that obtaining instances from the distribution of physiological
cohorts, xo , is possible. Therefore, marginalization is implemented
using sampling schemes, such as Monte Carlo methods.

The virtual cohort, yo , (Fig. 1 3©) is obtained by applying each of
the signals in the physiological cohort to the device model:

Definition 3 (Virtual endpoint cohort). Given a physiolog-

ical cohort xo , the virtual endpoint cohort or virtual cohort, yo , is a
multivariate random variable Yo of dimension No , such that,

Yo ∼ fYo (yo | xo ,θo ;γo ) (6)

where fYo is the distribution of Yo indexed by θo and γo is the param-

eter value for the CACT prior distribution.

Here, θo is value of the parameter of interest that is obtained
with the virtual cohort. Note, the endpoints comprising the virtual
cohort are simulations of the outcomes in a patient cohort, such
as the number of inappropriate therapy for a device, and not the
physiological signals. As before, the marginal distribution fYo (yo |
θo ;γo ) is defined as:

fYo (yo |θo;γo )=EXo
(yo ,xo |θo ;γo ) =

∫
fyo (yo |xo ,θo ;γo )dF (Xo ) (7)

From the virtual cohort, we wish to obtain estimates of θ . Assum-
ing (1a) and (1b), for a single virtual cohort yo , we define the likeli-
hood function with respect to θ as L(θ | yo ;γo ) = fYo (yo | θ ;γo ).
Following a typical Bayesian procedure, we place a minimally-

informative prior on θ , πo (θ ), such as the uniform prior, and define
the posterior distribution of θ , πo (θ | yo ) for a single virtual cohort
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yo such that:

πo (θ | yo ;γo ) ∝ L(θ | yo ;γo )πo (θ ) (8)

In special cases when πo (θ ) and fYo are conjugates, then we
have the closed-form of the posterior:

πo (θ | yo ;γo ) = fYo (yo | θ ;γo )πo (θ ) (9)

As before, we marginalize out the uncertainty from yo to obtain
the pre-clinical prior distribution of θ (Fig. 1 4©):
Definition 4 (Pre-clinical simulation prior distribution).

For the parameter of interestθ and (4)with parameter set toγo , the pre-
clinical simulation prior distribution or pre-clinical prior distribution

for θ is defined as,

πo (θ ;γo ) =

∫
πo (θ | yo ;γo )dyo (10)

Similar to before, this can be thought of as a weighted average of
θ , where the weights are determined according to the distribution
ofyo . Note, (10) is an informed prior and is different from the CACT
prior.

Finally, the pre-clinical prior distribution is used to determine the
pre-clinical simulation outcome. Consider evaluating the assertion
θ ∈ ϕ0, i.e., the parameter of interest falls in the region ϕ0. For
instance, when evaluating two medical devices, this could mean:
the difference of inappropriate therapy rate of Device A and Device
B is non-negative (A is worse than B), i.e., θ ≥ 0. Here ϕ0 = [0,∞).
We define a function which encodes the results of evaluating

the assertion θ ∈ ϕ0 based on the posterior distribution of θ as the
outcome of pre-clinical simulation (Fig. 1 5©):
Definition 5 (Pre-clinical simulation CACT outcome).

H (ϕ0;π0 (θ ;γ0),α ) =
⎧⎪⎨⎪⎩
1 if P (π0 (θ ;γ0) ∈ ϕ0) ≥ 1 − α

0 o.w.
(11)

Here, an assertion of θ ∈ ϕ0 means that at least (1 − α )% of
the posterior distribution of θ is supported on ϕ0. The relation to
the assumption is denoted by γ0. For the previous example, with
α = 0.05, H (ϕ0;π0 (θ ;γ0),α ) = 1 means that the probability that
Device A has a higher inappropriate therapy rate than Device B is
at least 95%.
In addition to the outcome itself, (10) can be used to estimate

various statistics, such as the mean and variance of θ which is used
to derive parameters relevant to the design of the clinical trial, such
as the desired sample size N .

CACT interim simulation and post-trial simulation Next, we
describe how to combine the results from pre-clinical simulation
with endpoints from real patients available during trial conduct
and at the conclusion of the trial. In order to combine the virtual
cohort yo with the real cohort y, the power-prior framework [16]
is applied to virtual cohorts to define the pre-clinical simulation
power-prior distribution for a single cohort yo :

Definition 6 (Pre-clinical simulation power-prior distri-
bution for yo ). For a single virtual yo of size No and real patient

outcomes y, the pre-clinical simulation power-prior distribution for

yo is defined as,

πo (θ | yo ,no ;γo ) ∝ L(θ | yo ;γo )
no
No πo (θ ) (12)

whereno , the effective virtual cohort sample size is determined through

a discount function which evaluates the similarity of y and yo .

An example of a discount function and a method for determining
the parameters of the function is proposed in [14]. Fig. 2, illustrates

how the discount function monitors the similarity between the
virtual cohort and the real cohort by outputting a p-value. In the
example, the real cohort follows a Binomial distribution with pro-
portion parameter θ ranging from 0.45 to 0.6. When the virtual
cohort is sampled from a Binomial distribution Bin(N ,p = 0.6) the
p-value output from the increases as the real θ value approaches
0.6 and the effective sample size, no increases accordingly. Also, as
observed in Fig. 2, as the real cohort size is increased from 100 to
10000 the influence of the virtual cohort is only apparent when the
two cohorts are more similar.

The details of applying the procedure to this work is described in
Section 4. A discussion about choosing the appropriate parameters
for the discount function is provided in Sec. 5.1.
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Figure 2: Monitoring of CACT prior using discount function. As

the virtual cohort becomes similar to the real cohort, the p-value

increases and the corresponding effective sample size no increases.

With a larger real cohort, the effective sample size only increases

with a strong degree of similarity.

As in (7), the uncertainty in the virtual cohort yo is marginalized
out (Fig. 1 6©):
Definition 7 (Pre-clinical simulation power-prior distri-

bution).

πo (θ | no ;γo ) =
∫

L(θ | yo ;γo )
no
No πo (θ )dF (yo ) (13)

(13) can be interpreted as a weighted average over the different
virtual cohorts yo , where the weights are determined according to
the distribution of yo .
For the real patient outcomes y, we define the likelihood L(θ |

y) = fY (y | θ ), according to assumption (1b). L(θ | y) and (13) are
combined to form the post-trial posterior distribution (Fig. 1 7©):
Definition 8 (Post-trial simulation posterior distribu-

tion).

π (θ | y,no ;γo ) ∝ L(θ | y)πo (θ | no ;γo ) (14)

If fY (y | θ ) and πo (θ ;γo ) are conjugates then,

π (θ | y,no ;γo ) = fY (y | θ )πo (θ | no ;γo ) (15)

The effective sample size, no , can be interpreted as discounting the
influence of the virtual cohort yo on the overall posterior and the
outcome if y and yo differ greatly.
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Finally, based on the post-trial posterior distributionπ (θ | y,no ;γo ),
the post-trial outcome of the CACT is defined(Fig. 1 8©):
Definition 9 (Post-trial simulation CACT outcome).

H (ϕ0;π (θ ;γ0),α ) =
⎧⎪⎨⎪⎩
1 if P (π (θ ;γ0) ∈ ϕ0) ≥ 1 − α .

0 o.w.
(16)

In Sec. 4, we apply the framework to the Rhythm ID Goes Head-
to-head Trial (RIGHT). This trial sought to compare the perfor-
mance of the discrimination algorithm in ICDs from two different
manufacturers[4].
To quantify the influence of the CACT prior on the CACT out-

come, we next define the concept of δ -robustness and present a
method for estimating δ -robustness.

3 ESTIMATION OF THE δ-ROBUSTNESS
VALUE CACT OUTCOME

3.1 The δ-Robustness of CACT outcomes
Ideally, we would like a CACT outcome that is ‘robust’ to ’large’
perturbations in the CACT prior distribution. This would lead to
an increased confidence in the CACT outcomes. We formalize the
the concepts of large and robust by defining ϵ-perturbations and
δ -robustness.

The sensitivity of the CACT outcome to a base prior distribution
can be determined by ‘perturbing’ the prior distribution by an ϵ
amount and evaluating the effect on the outcome.

For parametric distributions, πγ , this is accomplished by perturb-
ing the parameter γ :

Definition 10 (ϵ-perturbation of πγo ). Let πγo be the base

distribution with base parameter γo and πγ (ϵ ) be the perturbed distri-
bution, with parameter set to γ (ϵ ). Given a distance measure between

two probability distributions D (P ,Q ), an ϵ-perturbation of πγo is a

set of parameters γ (ϵ ) such that,

D (πγo ,πγ (ϵ ) ) = ϵ (17)

From this, we define the robustness of a CACT outcome:

Definition 11 (δ -robustness of a CACT outcome). Given a

base prior distribution πγo (·) and the CACT outcome for a parameter

of interest θ , H (·,π (θ ;γo )), the CACT outcome has a robustness of δ
if the following condition holds:

∀γ ∈{γ (ϵ ) : ϵ ∈ [0,δ )},
H (·,π (θ ;γo )) = H (·,π (θ ;γ )) (18)

We now formally define the estimation problem as follows:

Problem (Estimation of the δ -robustness value of a CACT
outcome). Given a base prior distribution πγo (·) and function for

the CACT outcome H (·,π ), determine,

δ = argminϵH (·,π (θ ;γo )) � H (·,π (θ ;γ (ϵ ))) (19)

Here, the range of ϵ depends on the distance measure used. The result-

ing δ is defined as the δ -robustness value.

Intuitively, starting from a base prior distribution, theδ -robustness
value is the minimal perturbation of magnitude δ required to detect
a change in the CACT outcome. Fig. 3 depicts how the CACT out-
come with a base prior distribution is initially 1. As the magnitude
of perturbation (ϵ) increases, the outcome remains constant until
δo is reached. At δo , the outcome changes from the initial positive
outcome to 0. In this example, the δ -robustness for the CACT out-
come is δo . Our procedure for δ -robustness estimation is presented
in the next section.

H(·;π(·), α)

0 δo ε

1

Increase perturbation  

Figure 3: δ -robustness of outcome H (ϕ ; π ( ·), α ). Perturbations ϵ
of πγo are increased until a magnitude of δo , at which the outcome

differs from the initial outcome.

3.2 Procedure for estimation of δ-robustness
Depending on the choice of distance measure, as well as the form
of the base prior distribution, the δ -robustness value for a CACT
outcome will vary. In this work, we use the Hellinger distance [20]
between two discrete distributions, which is defined as follows:

Definition 12 (Hellinger distance between two discrete
distributions). For two discrete distributions πγo = (γo1 . . .γok )
and πγ = (γ1 . . .γk ), the Hellinger distance is defined as,

DH (πγ ,πγo ) =
1√
2

√√√
k∑
i=1

(
√
γi − √γoi )2 (20)

In this work, we estimate the δ -robustness with respect to the
base distribution (e.g. CACT prior) using the Hellinger distance.
One advantage to using the Hellinger distance include is that it
is a symmetric measure of distance, unlike the Kullback-Liebler
divergence. Other advantages are described in [22]. The functional
form of the distance also enables convenient numerical computation
of distributions which are at ϵ distance (see Appendix A for details).

Procedure

(1) Evaluate the CACT outcome with the base distribution πγo
(2) Starting from a small ϵ and gradually increasing the perturba-

tion over the range of ϵ ∈ (0, 1]), for each ϵ , sample multiple
perturbed distributions πγ (ϵ ) and evaluate the CACT out-
come.

(3) Continue until the CACT outcome differs from the initial
outcome.

There exist situations where the assumption of the CACT does
not affect the outcome, trivially. In this case, the robustness would
be infinite, which is ambiguous in meaning. For this reason, we
define the weighted δ -robustness:

Definition 13 (Weighted δ -robustness).

Weightedδ -robustness =
⎧⎪⎨⎪⎩
δW (δ ), ifW (δ ) > 0

N.A., otherwise
(21)

The weightW (δ ) can be defined such if the weight is zero, then
that means the assumption has no impact on the outcome.
In [22], the δ -local circular sensitivity Scγo (δ ) is defined as:

Scγo (δ ) = {
D (πγ (θ | y),πγo (θ | y))

δ
, for γ ∈ Gγo (δ )} (22)

A sensitivity value of 0 indeed indicates that the base prior distri-
bution has no influence over the posterior distribution.
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In this paper, we used the weighting function:

W (δ ) = E[Scγo (δ )] (23)

Therefore, the robustness value is weighted by the average of
sensitivity at a perturbation of δ . The weighted δ -robustness is zero
only if the average weight is zero, which can only happen if per-
turbations in the assumption have no effect on the outcome of the
CACT. This resolves the ambiguity for cases of infinite robustness.

4 CASE STUDY: CACT FOR RIGHT
(CACT-RIGHT)

In this section, we apply the CACT framework to the Rhythm ID
Goes Head-to-head Trial (RIGHT) [4] or Computer-Aided Clinical
Trial for RIGHT (CACT-RIGHT).

RIGHT was a large trial with 2187 patients lasting from 2005-
2010 and sought to compare the VT/SVT arrhythmia discrimination
algorithms used by two ICD models, one from Vitality 2 (V2) and
the other from Medtronic (MDT), with regards to the time-to-first
inappropriate therapy. At the conclusion of the CT, the effect di-
rection and size for the performance was opposite of what was
hypothesized, with V2 ICDs having a 34% increase in the risk of
inappropriate therapy compared to MDT ICDs .
For CACT-RIGHT, we generate a virtual cohort and apply the

signals to measure the inappropriate therapy rate for each device.

Definition 14 (Parameter of interest for CACT-RIGHT).
For each deviced , the inappropriate therapy rate for a cohort of sizeNo

isφd , where, d ∈ {0: Vitality II, 1: Medtronic Devices}. The parameter

of interest for CACT-RIGHT is the difference in inappropriate therapy

rate is defined as,

θ = φ0 − φ1 (24)

In this paper, we focus on the difference in inappropriate ther-
apy rate, unlike the original time-to-inappropriate therapy. This
difference was addressed in [17], where under certain assumptions,
the time-to-inappropriate therapy could be approximated and the
CACT outcome remained consistent with RIGHT.

4.1 Pre-clinical simulation for CACT-RIGHT

Physiological cohort generation. The physiological model con-
sists of a timing model and a morphology model. The details of
the physiological model and the signals that are generated can be
found in [17][18][19]. Here, we model the physiological cohort
xo of size No . The cohort consists of K = 8 different types of
electrogram (EGM) episodes listed in Table 1. For each type i , the
jth signal of type i is I.I.D. such that,

X
(j )
oi ∼ fXoi

(xoi | η) (25)

where η is the vector of parameters of the heart model to gen-
erate condition i . The model is then simulated to obtain a time-
series of the physiological signal. Fig. 4 shows such a signal with a
Ventricular Fibrillation (VF) of cycle length 286(ms).

CACT-RIGHT prior distribution A single cohort xo of size No

is generated as a composition of the different types according to
ψ = (ψ1,ψ2, . . . ,ψK ), whereψi is the number of episodes of type i
in the cohort.ψ is a multivariate random variable that is governed
by a multinomial distribution defined as,

Ψ ∼ π (ψ | γo ) = Mult (No ,γo ) (26)
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Figure 4: Example of a generated physiological signal of type VF
with VCL = 286(ms). The signals in the cohort are indexed by the

type of condition and the average VCL for a condition.

where γo = (γo1,γo2, . . . ,γoK ) is a discrete probability distribu-
tion representing the proportions of each type in the physiological
cohort. Setting γoi = 1/k , the CACT-RIGHT prior distribution
π (ψ | γo ) assumes a uniform composition of the K types of arrhyth-
mia in the cohort.

Together with the CACT-RIGHT prior distribution, the distribu-
tion of the cohort fXo

(xo | ψ ;γo ) becomes:

fXo
(xo | ψ ;γo ) =

K∏
i=1

ψi∏
j=1

fXoi
(xoi | η)πγo (ψ ) (27)

The marginal distribution of physiological cohorts is (5).

Device model and virtual cohort generation. The device model
for the two different devices is implemented according to the de-
scription of the algorithms in [6][7]. Each signal in the physiological
cohort xo is applied to the device model d to generate a cohort of
device outputs,yod . We assume that the device model is a determin-
istic function for a particular instance of the cohort xo . This allows
for the output yod for a cohort instance to be modeled as a bino-
mial random variable, where yod is the number of inappropriate
therapies in a cohort of size No :

Yod ∼ fYod (yod | xo ,φi ;γo ) = Bin(No ,φd ) = fYod (yod | φd ;γo )
(28)

where d ∈ {0, 1} (refer to Def. 14).
We define the likelihood function L(φd | yod ) = fYod (yod |

φi ;γo ) and assuming a non-informative Beta prior,πo (φd ) = Beta(1, 1),
by conjugacy, the posterior distribution for the inappropriate ther-
apy rate is a Beta distribution such that:

fφd (φd | yod ;γo ) =L(φd | yod )πo (φd )
=Beta(1 + yod ,No − yod + 1) (29)

Sampling over the many cohorts of yod , we obtain the marginal
distribution inappropriate therapy rate for device d :

fφd (φd ;γo ) =

∫
fφd (φd | yod ;γo )dF (yod ) (30)

(30) is a weighted mixture of Beta distributions, for which the
weighting is by the distribution of yod .

The conditional distribution of the pre-clinical prior distribution
of θ for the CACT-RIGHT can be defined as,

πo (θ | φ1,φ2;γo ) (31)

There is no closed form for this distribution, hence a sampling
scheme using ordinary Monte-carlo methods is employed. The
samples obtained from the posterior distribution form an empirical
distribution, as illustrated in Figure 5, from which we can then
evaluate the pre-clinical simulation CACT outcome.
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Figure 5: Example of marginalization using Monte Carlo methods
to obtain samples from pre-clinical simulation prior.

Composition of arrhythmia type in physiological cohort

Difference in inappropriate therapy rate

Difference distribution

(b)

(c)

Epsilon perturbation
(a)

Inappropriate therapy rate distributions (for MDT)

Base Prior
Perturbed Prior

Figure 6: Pre-clinical simulation robustness evaluation. As ϵ -

perturbations are increased in magnitude, the composition of the

cohort from the base uniform distribution is distorted. (b) As a

result of perturbation, the pre-clinical distribution shifts. (c) Pre-

clinical prior distribution (blue) and perturbed distribution of ϵ =

0.8(red). The pre-clinical prior has a large robustness and does not

shift. Color in online version.

CACT-RIGHTpre-clinical simulation outcome.The pre-clinical
outcome of CACT-RIGHT is defined with regards to an assertion
θ ∈ ϕ0 = {θ : θ < 0}, according to the trial. The assertion tests if
the inappropriate therapy rate of V2 ICDs is less than MDT ICDs.
See (24).

δ-Robustness estimation ofCACTpre-clinical simulation out-

come. The δ -robustness of the pre-clinical simulation outcome with
respect to (26) is estimated according to the procedure outlined in
Sec. 3.2.
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Figure 7: Pre-clinical simulation robustness plane.ManyCACTpri-
ors are evaluated as the base distribution in order to form the ro-

bustness plane. Less emphasis may be placed on recruiting patients

corresponding to regions of high robustness (star).

4.2 Pre-clinical simulation results

Fig. 6 shows the results of pre-clinical simulation. During pre-
clinical simulation, estimates of the inappropriate therapy rate for
Vitality II and Medtronic was 9.99± 0.04% and 3.88 ± 0.06%, respec-
tively. Despite the discrepancy in magnitude, the CACT-RIGHT
successfully predicted the effect direction as in RIGHT.

Fig. 6(b) illustrates how perturbing the parameters of the CACT
prior affects the distribution of simulated endpoints (inappropriate
therapy). From the initial base distribution (ϵ = 0), as the magnitude
of the ϵ-perturbation increases, the difference in inappropriate
therapy is more pronounced in the same direction. This indicates
the CACT-RIGHT outcome is robust with respect to the assumption
of a uniform distribution of conditions.

The resulting pre-clinical prior distribution and the distribution
after perturbation is shown in Fig. 6(c).With respect to the the
CACT-RIGHT prior (26), the δ -robustness value of the outcome
was 0.778. The maximum robustness in this case is 1, therefore we
can conclude that the outcome is relatively large, adding to the
confidence of the pre-clinical simulation outcome.

δ-Robustness plane of CACT pre-clinical simulation outcome.

For CACT-RIGHT, γo represents the average proportion of the
different types of arrhythmia in the physiological cohort and the
robustness value for other γo can be evaluated. For illustration, we

evaluated γo ∈ Rk , such that γoi , for i = 1, 2 was uniformly dis-
tributed in the interval (0, 0.5), and the remaining probability mass
was distributed evenly, such that γoj = (1 − (γo1 + γo2))/k, ∀j =
3, . . . ,k . The robustness value was computed for each instance of
γo and plotted to form the pre-clinical simulation robustness plane.
Fig. 7 shows the weighted δ -robustness plane.
A region on the robustness plane can be interpreted as a subset

of the population that exhibits similar proportions of arrhythmias.
The red star in the figure indicates a region of higher robustness.
Although the robustness value is related to the distribution space,
a point with a higher robustness value means there is a relatively
larger region in the parameter space of γo where the simulation
outcome will not change. From a trial planning perspective, this
implies that less effort could be put into recruiting patients that
correspond to this region, though not excluded entirely, as there is
more confidence in the simulation outcome.
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n episodes (% of total events)

Adjudicated Rhythm Vitality II Medtronic

Ventricular tachycardia 23(1.1) 90(4.6)

Ventricular fibrillation 705(34.9) 994(51.0)

Sinus tachycardia 59(2.9) 220(11.3)

Atrial fibrillation 431(21.3) 101(5.2)

Atrial flutter 66(3.3) 19(1.0)

Atrial tachycardia 20(1.0) 100 (5.1)

Other SVT 178(8.8) 325(16.7)

Sinus rhythm with PVC 18(0.9) 1(0.1)

Table 1: Summary of RIGHT[13] results. Inappropriate ther-

apy per condition for each of the devices.

Figure 8: Change in mean difference distribution as more patients
enroll. Initially, a small difference in inappropriate therapy rate be-

comes more pronounced as the cohort size reaches the size of the

cohort at the conclusion of RIGHT.

4.3 Interim trial simulation and final results

Simulation of real patient cohort endpoints Recruitment of the
real cohort was emulated by utilizing the results reported at the
conclusion of RIGHT [13], summarized in Table 1. By assuming
the inappropriate therapy rate will remain constant throughout the
trial, we sample from a binomial distribution Bin(N (t ),φd ), where
N (t ) is the number of inappropriate therapies at a time during the
trial and φd is the final inappropriate therapy rate reported for
device d .

The discount function based on the Weibull cumulative distribu-
tion F (p | κ, λ) is defined:

n0 = nmax ∗ F (p | κ, λ) (32)

where F (p | κ, λ) = 1 − e (
p
λ
)κ , p is the ‘p-value,’ and nmax is the

maximum effective sample size for the virtual cohort (refer to Def.
6). A discussion about selecting λ and κ is in Sec. 5.1.

Interim and final results of CACT-RIGHT. Fig. 8 shows the av-
erage difference in appropriate therapy rate where the number of
episodes increases up to the final number of episodes observed in
RIGHT. The figure shows how initially, the mean difference be-
tween V2 ICDs and MDT ICDs is less pronounced when the sample
size is small, but becomes more pronounced as the cohort size
reaches the final cohort size. The final difference 9.8±0.2 % is in
line with the actual difference in inappropriate therapy rate 10.1%
reported at the conclusion of RIGHT.

Vitality 2 Medtronic(a)

(b)
Figure 9: Results of post-trial simulation and robustness evalu-

ation for CACT-RIGHT. (a) Estimated inappropriate therapy rate

for each device. The difference is in line with actual RIGHT (b)

Post-trial robustness analysis. Similar to Fig. 6, the CACT outcome

demonstrates high robustness. Color in online version.
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Figure 10: Post-trial analysis robustness plane. Subsequent trial
may focus on areas of low robustness.

4.4 Post-trial simulation robustness analysis

At the conclusion of the trial, information about the CACT prior
(i.e. the incidence of the types of arrhythmia) would be available,
allowing for a post-trial robustness evaluation to assess how the
outcomes may change if a different cohort was observed. We set
the parameters for the CACT prior to the values according to Table.
1. The robustness evaluation, Fig. 9(c), shows that the posterior
outcome distribution is robust to changes in the CACT prior.
Fig. 10 shows the robustness plane for the post-trial simulation,

as derived in Sec. 4.2. The results could be used in two ways:
First, when planning a follow-up to the current trial, recruitment

efforts and resource allocation can be focused on regions of low
robustness.
Second, the robustness plane could be utilized for personaliza-

tion of treatments. For example, for new patients corresponding to
regions of high robustness, the outcome of the CACT could be used
to determine whether a patient should receive the device from one
manufacturer or another.
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Figure 11: Comparison of CACT, Bayesian approach withminimal
prior and frequentist approach in terms of power vs. sample size

of RIGHT. CACT requires a smaller cohort compared to the other

methods for the same power. Color in online version.

Figure 12: Comparison of CACT, Bayesian approach withminimal
prior and frequentist approach in terms of power vs true θ . In the

positive θ direction, theCACT increases in powermore rapidly than

other methods.

4.5 CACT vs other standard approaches

In order to assess the benefits of a CACT, three methods were
compared: A frequentist approach comparing only proportions, a
standard Bayesian approach using a minimally-informative prior,
and the CACT. Cohorts of endpoints were generated repeatedly
according to the inappropriate therapy rate reported for RIGHT.

While varying the size of the cohort, the power was estimated by
determining the proportion of times each method correctly detected
the relative difference in performance between the two devices. Fig.
11 shows how as the sample size increases, the power of the CACT
increases much more rapidly compared to the other approaches.
This implies that a CACT could achieve the same power as standard
approaches using a smaller cohort, which could lead to a significant
saving in costs due to the reduction in cohort size.
Fig. 12 shows the results of varying the underlying ’true’ differ-

ence in inappropriate therapy rate with fixed cohort size of 400. As
before, the power curve of the CACT increases rapidly compared
to the other methods, further demonstrating the advantages of the
CACT.

5 DISCUSSION

5.1 Parameter selection for simulation

In CACT-RIGHT, the parameters for the Weibull discount need to
be selected (see Sec. 4.3, (32)). The detailed procedure for evaluating
the Type I error and power can be found in[15]. For CACT-RIGHT,
a range of ‘true’ values for the parameter of interest, the difference
in inappropriate therapy, is assumed based on information from
clinical trials. For each of the true values, a cohort of endpoints
was generated according to the that value. The values for κ and λ
in (32) were set to a value within the range of 0.02 < κ < 1 and
0.5 < λ < 1, similar to [15]. For each value of κand λ, numerous
‘mock’ trials were run and the type I errors and type II errors were
tabulated. Note, here, we consider a type I error as when the true
value was within the range of the null hypothesis, but the CACT
concluded the opposite. Type II errors are defined similarly.
Fig. 13 shows an example of the Type I error and power over

the range of κ and λ when a difference of 10% in the inappropriate
therapy rate in favor of Vitality II is assumed. For CACT-RIGHT
κ = 0.05 and λ = 3 was chosen for a power and type I error of 80%
and 0.05%, respectively.

A similar procedure is used to determine the maximum effective
sample size of the virtual cohort, n0,max .

Figure 13: Results of parameter search for the Weibull dis-

count function.

5.2 Related work

Clinical trial simulation and modeling has been used extensively in
determining components of clinical trials[2]. These include testing
for statistical model selection, determining sample size, and also
predicting the outcome of clinical trials [12]. Additionally, work has
been presented regarding the incorporation of prior information
into the design of a prospective trial in the form of historical trials
[16][23]. Some notable examples of utilizing physiological models
as virtual endpoints include [14][8]. This work builds upon results
in Bayesian sensitivity analysis and a review of which can be found
in [5][22].

5.3 Limitations and extensions

The current method for evaluating robustness is limited in terms
of the scalability. For more complicated models and CACT prior
distributions, searching over the entire space of ϵ-perturbationsmay
not be feasible. Moreover, there are limitations in evaluating the
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robustness with regard to only one assumption at a time. However,
approaches to analyzing multiple parameters at once exist and may
be applicable to δ -robustness evaluation[3]. Finally, the procedure
for estimation of δ -robustness results in an upper bound for the
actual δ -robustness value, as a sampling scheme is used for the
computation. This could be improved using more sophisticated
sampling methods.

5.4 Hardware interface for CACT

In order to facilitate automated execution of a CACTwith the actual
physical device, a hardware interface was developed as shown in
Fig. 14. The interface allows inputs physiological signals to the
device and records the response automatically. Scenarios combining
several types of rhythms can be programmed and applied to the
device.

Device

Device Programmer

Hardware Interface

ICD

CACT
Platform

Figure 14: Hardware interface for conducting CACT for ICDs.

Episodes from physiological cohort can be applied to the physical

device. The interface can also be used for device model validation

6 CONCLUSION

We presented a method to quantify the uncertainty in the outcome
of Computer-Aided Clinical Trials (CACTs) due to simulation as-
sumptions in the form of a CACT prior. To this end, we formulated
a CACT within a Bayesian statistical framework and defined a no-
tion of perturbation in the assumptions, which we mapped to a
formal definition of robustness (δ -robustness) of the trial outcome
with respect to the CACT prior. We also presented a procedure to
estimate this quantity. Through a comparative study of an actual
clinical trial of two implantable cardiac devices, we demonstrated
how this notion can be used in the planning and design of a clinical
trial. We compared our CACT based approach to two other standard
methods, demonstrating the benefits. The framework provides a
quantitative and explicit pathway to integrate modeling and sim-
ulation as regulatory-grade evidence in evaluating the safety and
efficacy of medical devices at reduced cost and effort. Future work
will include, advancing the methodology to account for multiple
priors and applying the CACT to other closed-loop devices, such
as the target controlled infusion systems and fluid resuscitation
systems.
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A NUMERICAL COMPUTATION OF ϵ
PERTURBATIONS FOR DISCRETE
DISTRIBUTIONS

We solve the following feasibility problem to find the parameters
α ∈ Rn of a distribution that is ϵ Hellinger distance away from a
given distribution with parameters β ∈ Rn . Let γ ∈ Rn be such
that γi =

√
αi ∀i = 1, . . . ,n. The (non-convex) feasibility problem

then becomes:

minimizeγ 0, subject to,

1 � γ � 0 (33a)

γTγ = 1 (33b)

γTγ −
[
2
√
β1 2

√
β2 . . . 2

√
βn

]
γ + 1T β − 2ϵ2 = 0 (33c)

Here, 1 ∈ Rn (and 0) is a vector with all elements being 1 (and
0). Eqs. 33a and 33b ensure that αi = γ 2i ∀i form the parameters of
a probability distribution, i.e. are bounded between 0 and 1, and
sum up to 1 (respectively). Eq. 33c enforces the condition that the
square of the Hellinger distance between the distributions given by

α and β equals ϵ2. This follows directly from Def. 12.


