
Flamingo: Multi-Round Single-Server Secure Aggregation
with Applications to Private Federated Learning

1

Yiping Ma1 Jess Woods1 Sebastian Angel1,2 Antigoni Polychroniadou3 Tal Rabin1

1University of Pennsylvania
 2Microsoft Research

 3J.P. Morgan AI Research & AlgoCRYPT CoE

Data-driven applications nowadays

2

Service providers collect and analyze user data
in order to provide customized functionalities.

Data-driven applications nowadays

3

Centralized vs. decentralized training

4

Centralized Decentralized

(“hotel”, not spam)

(“hacked”, spam)

(“malicious”, spam)

=
(“hacked”, spam)
(“hotel”, not spam)
(“malicious”, spam)

Train()

Data never leaves user devices!

“Federated learning” [McMahan et al. in 2016]

Many clients (users) collaboratively train a
model under the orchestration of a central
server (service provider).

Centralized vs. decentralized training

5

Centralized Decentralized

(“hacked”, spam)

(“malicious”, spam)

(“malicious”, spam)

=
(“hacked”, spam)
(“hotel”, not spam)
(“malicious”, spam)

Train()

Update= (
(“hotel”, not spam)Update= (

(“hacked”, spam)Update= (

Local weights

(“hotel”, not spam)
)
)

)

Centralized vs. decentralized training

6

Centralized Decentralized

(“hacked”, spam)

(“malicious”, spam)

=
(“hacked”, spam)
(“hotel”, not spam)
(“malicious”, spam)

Train() = + +

Global weights

(“hotel”, not spam)
(“malicious”, spam)Update()
(“hotel”, not spam)Update()

Update (“hacked”, spam)()

Centralized vs. decentralized training

7

Centralized Decentralized

=

(“hacked”, spam)
(“hotel”, not spam)
(“malicious”, spam)
(“apple”, not spam)
(“dog”, not spam)
(“lottery”, spam)
(“random”, spam)

Train()

= + +

A few hundreds to a few
thousands of clients

Centralized vs. decentralized training

8

Centralized Decentralized

=

(“hacked”, spam)
(“hotel”, not spam)
(“malicious”, spam)
(“apple”, not spam)
(“dog”, not spam)
(“lottery”, spam)
(“random”, spam)

Train()

= + +

Centralized vs. decentralized training

9

Centralized Decentralized

=

(“hacked”, spam)
(“hotel”, not spam)
(“malicious”, spam)
(“apple”, not spam)
(“dog”, not spam)
(“lottery”, spam)
(“random”, spam)

Train()

= + +

Federated learning: steps forward

10

• Weights do not necessarily hide data: inference attack
[Zhu et al. 2019]

• Training does not need individual weights; only the sum is needed

(“hacked”, spam)

Federated learning: steps forward

11

• Weights do not necessarily hide data: inference attack
[Zhu et al. 2019]

• Training does not need individual weights; only the sum is needed

(“hacked”, spam)

Secure aggregation for federated learning

• Secure aggregation (A special case of MPC [Yao 1986])

12

𝑥#

𝑥$

𝑥%

Only learns 𝑥# + 𝑥$ + 𝑥%

Some
interactions

Many works under different communication
models, cryptographic assumptions, etc.

• Secret sharing
 [KRKR 2020], [DSQG+ 2022], …
• Threshold homomorphic encryption

[SGA 2021], [SHYL+ 2022], …
• Pairwise masking
 [BIKM+ 2017], [BBGLR 2020], …
• Other styles
 [SSVR+ 2022], [GPSBB 2022], …

Secure aggregation for federated learning

• Secure aggregation (A special case of MPC [Yao 1986])

13

𝑥#

𝑥$

𝑥%

Only learns 𝑥# + 𝑥$ + 𝑥%

Some
interactions

Many works under different communication
models, cryptographic assumptions, etc.

• Secret sharing
 [KRKR 2020], [DSQG+ 2022], …
• Threshold homomorphic encryption

[SGA 2021], [SHYL+ 2022], …
• Pairwise masking
 [BIKM+ 2017], [BBGLR 2020], …
• Other styles
 [SSVR+ 2022], [GPSBB 2022], …

Concrete efficiency but not asymptotics

Federated learning has complex setting

14

• From the federation side—restricted clients (mobile devices)
• Limited computation power
• Unstable network connection

• From the machine learning side—large parameters
• Inputs: model weights, e.g., ~500K in popular models for CIFAR100
• Participants: 100-5000 per iteration
• Training: many iterations, e.g., ~300 for CIFAR100

Federated learning has complex setting

15

• From the federation side—restricted clients (mobile devices)
• Limited computation power
• Unstable network connection

• From the machine learning side—large parameters
• Inputs: model weights, e.g., ~500K in popular models for CIFAR100
• Participants: 100-5000 per iteration
• Training: many iterations, e.g., ~300 for CIFAR100

Lightweight client computation

Tolerate dropouts at any point

Federated learning has complex setting

16

• From the federation side—restricted clients (mobile devices)
• Limited computation power
• Unstable network connection

• From the machine learning side—large parameters
• Inputs: model weights, e.g., ~500K in popular models for CIFAR100
• Participants: 100-5000 per iteration
• Training: many iterations, e.g., ~300 for CIFAR100

Reasonable efficiency

Prior designs are not the best fit for a full training

17

• From the federation side—restricted clients (mobile devices)
• Limited computation power
• Unstable network connection

• From the machine learning side—large parameters
• Inputs: model weights, e.g., ~500K in popular models for CIFAR100
• Participants: 100-5000 per iteration
• Training: many iterations, e.g., ~300 for CIFAR100

One summation: multiple round trips, some of which are expensive

Having fewer round trips is important

18

• Reduce bias and improve quality

• Reduce run time
 Will discuss in evaluation section
 why round trips matter a lot

𝑥#
𝑥$

𝑥%

Obtains 𝑥# + 𝑥$

Some
interactions

• From the federation side—restricted clients (mobile devices)
• Limited computation power
• Unstable network connection

• From the machine learning side—large parameters
• Inputs: model weights, e.g., ~500K in popular models for CIFAR100
• Participants: 100-5000 per iteration
• Training: many iterations, e.g., ~300 for CIFAR100

We propose Flamingo

19

Same threat model as in prior work: a malicious adversary controlling
the server and a subset of the clients

Lightweight client computation

Tolerate dropouts at any point

Can practically run for
a full training session

Flamingo has two key ideas

• A fault-tolerant private sum protocol
based on pairwise secrets and threshold decryption

• A way to reuse pairwise secrets over many iterations

20

A fault-tolerant private sum protocol

21

Alice

Bob Charlie

𝒙𝟏

𝒙𝟐 𝒙𝟑

𝒙𝟏𝒗𝟏 = + 𝐏𝐑𝐆 𝒔𝟏𝟐 + 𝐏𝐑𝐆(𝒔𝟏𝟑)𝒔𝟏𝟐 𝒔𝟏𝟑

𝒔𝟐𝟑

BIKM+ 2017,
BBGLR 2020Pairwise secrets

Take some cost
to set them up

Semi-honest

A fault-tolerant private sum protocol

22

𝒙𝟏𝒗𝟏 = + 𝐏𝐑𝐆 𝒔𝟏𝟐 + 𝐏𝐑𝐆(𝒔𝟏𝟑)

BIKM+ 2017,
BBGLR 2020Pairwise secrets

𝒙𝟐𝒗𝟐 = − 𝐏𝐑𝐆 𝒔𝟏𝟐 + 𝐏𝐑𝐆(𝒔𝟐𝟑)

𝒙𝟑𝒗𝟑 = − 𝐏𝐑𝐆 𝒔𝟏𝟑 − 𝐏𝐑𝐆(𝒔𝟐𝟑)

Alice

Bob Charlie

𝒙𝟏

𝒙𝟐 𝒙𝟑

𝒔𝟏𝟐 𝒔𝟏𝟑

𝒔𝟐𝟑

Take some cost
to set them up

Semi-honest

A fault-tolerant private sum protocol

23

𝒙𝟏𝒗𝟏 = + 𝐏𝐑𝐆 𝒔𝟏𝟐 + 𝐏𝐑𝐆(𝒔𝟏𝟑)

BIKM+ 2017,
BBGLR 2020Pairwise secrets

𝒙𝟐𝒗𝟐 = − 𝐏𝐑𝐆 𝒔𝟏𝟐 + 𝐏𝐑𝐆(𝒔𝟐𝟑)

𝒙𝟑𝒗𝟑 = − 𝐏𝐑𝐆 𝒔𝟏𝟑 − 𝐏𝐑𝐆(𝒔𝟐𝟑)

!
!"#

$

𝑣! =!
!"#

$

𝑥!

Efficient despite large inputs

Alice

Bob Charlie

𝒙𝟏

𝒙𝟐 𝒙𝟑

𝒔𝟏𝟐 𝒔𝟏𝟑

𝒔𝟐𝟑

Take some cost
to set them up

Semi-honest

Alice

Bob Charlie

𝒙𝟏

𝒙𝟐 𝒙𝟑

𝒙𝟏𝒗𝟏 = + 𝐏𝐑𝐆 𝒔𝟏𝟐 + 𝐏𝐑𝐆(𝒔𝟏𝟑)

𝒙𝟐𝒗𝟐 = − 𝐏𝐑𝐆 𝒔𝟏𝟐 + 𝐏𝐑𝐆(𝒔𝟐𝟑)

A fault-tolerant private sum protocol

24

Went offline…

𝒔𝟏𝟐 𝒔𝟏𝟑

𝒔𝟐𝟑

Reveal the secrets
to the server!

Semi-honest

Pairwise secrets

A fault-tolerant private sum protocol

25

Threshold decryption

Alice

Bob

𝒙𝟏

𝒙𝟐 𝒙𝟑

𝒗𝟏

𝐄𝐧𝐜 𝑷𝑲, 𝒔𝟏𝟐
𝐄𝐧𝐜(𝑷𝑲, 𝒔𝟏𝟑)

𝒙𝟏= + 𝐏𝐑𝐆 𝒔𝟏𝟐 + 𝐏𝐑𝐆(𝒔𝟏𝟑)𝒔𝟏𝟐 𝒔𝟏𝟑

𝒔𝟐𝟑
Charlie

Semi-honest

A fault-tolerant private sum protocol

26

Threshold decryption

Alice

Bob

𝒙𝟏

𝒙𝟐 𝒙𝟑

𝑺𝑲𝟏

Decryptors

𝑺𝑲𝟐

𝑺𝑲𝟑

𝒔𝟏𝟐 𝒔𝟏𝟑

𝒔𝟐𝟑
Charlie

Semi-honest

𝒗𝟏

𝐄𝐧𝐜 𝑷𝑲, 𝒔𝟏𝟐𝐄𝐧𝐜(𝑷𝑲, 𝒔𝟏𝟑)

𝒔𝟏𝟑

A random (small) subset of clients

Recovery is lightweight

𝒗𝟏 𝒙𝟏= + 𝐏𝐑𝐆 𝒔𝟏𝟐 + 𝐏𝐑𝐆(𝒔𝟏𝟑)

𝒙𝟐𝒗𝟐 = − 𝐏𝐑𝐆 𝒔𝟏𝟐 + 𝐏𝐑𝐆(𝒔𝟐𝟑)

A fault-tolerant private sum protocol

27

Threshold decryption

Alice

Bob Charlie

𝒙𝟏

𝒙𝟐 𝒙𝟑

𝒔𝟏𝟐 𝒔𝟏𝟑

𝒔𝟐𝟑

Semi-honest

𝒗𝟏 𝒗𝟐 𝒔𝟏𝟑 𝒔𝟐𝟑

𝒗𝟏 𝒙𝟏= + 𝐏𝐑𝐆 𝒔𝟏𝟐 + 𝐏𝐑𝐆(𝒔𝟏𝟑)

𝒙𝟐𝒗𝟐 = − 𝐏𝐑𝐆 𝒔𝟏𝟐 + 𝐏𝐑𝐆(𝒔𝟐𝟑)

− 𝐏𝐑𝐆 𝒔𝟏𝟑 − 𝐏𝐑𝐆(𝒔𝟐𝟑)

A fault-tolerant private sum protocol

28

Threshold decryption

𝑣# + 𝑣% − 𝐏𝐑𝐆 𝒔𝟏𝟑 − 𝐏𝐑𝐆(𝒔𝟐𝟑) = 𝑥# + 𝑥%

Alice

Bob Charlie

𝒙𝟏

𝒙𝟐 𝒙𝟑

𝒔𝟏𝟐 𝒔𝟏𝟑

𝒔𝟐𝟑

Semi-honest

Reusing the secrets

29

Essentially OTP

𝒙𝟏𝒗𝟏 = + 𝐏𝐑𝐆 𝒔𝟏𝟐𝒕 + 𝐏𝐑𝐆(𝒔𝟏𝟑𝒕)

𝐄𝐧𝐜 𝑷𝑲, 𝒔𝟏𝟐𝒕

𝐄𝐧𝐜(𝑷𝑲, 𝒔𝟏𝟑𝒕)Iteration 𝒕: 𝒔𝟏𝟐𝒕 = 𝐏𝐑𝐅(𝒔𝟏𝟐, 𝒕)

Simple idea, but cannot work for [BBGLR 2020] due
to a crucial design difference for fault tolerance

Alice

Bob Charlie

𝒙𝟏

𝒙𝟐 𝒙𝟑

𝒔𝟏𝟐 𝒔𝟏𝟑

𝒔𝟐𝟑

Semi-honest

With the two key ideas →

30

Do the costly setup once,
and run the lightweight sum many times

More details in the paper

• How decryptors work
• Selection
• Sharing of 𝑆𝐾
• Switching decryptors over time

• How setup is done
• How to achieve malicious security
• Efficient instantiation of cryptographic primitives, system-

level optimizations

31

Evaluation results

• What is the right factor to look at?
• Computation cost was the focus: [BIKM+ 2017] → [BBGLR 2020]
• When computation is made cheap, what matters is the “waiting time”

32

Evaluation results

• What is the right factor to look at?
• Computation cost was the focus: [BIKM+ 2017] → [BBGLR 2020]
• When computation is made cheap, what matters is the “waiting time”

33

Waiting to collect messages… Process messages Waiting to collect messages…

One round trip in the protocol

Evaluation results

• Feasibility of training a neural network on CIFAR100
• Simulation using a multi-agent messaging system ABIDES

34

6 RTTs, with all clients

3 RTTs, only 1 RTT with all clients

1 RTT with all clients

ABIDES

(malicious version)

Summary

• This work: A secure aggregation system that handles real-world
federated training tasks
• Many interesting future directions
• Validation of client inputs
• Stronger security, e.g., adaptive adversary

35

Thanks!

paper code

Backup Slides

36

37

𝒗𝟏

𝐄𝐧𝐜 𝑷𝑲, 𝒔𝟏𝟐
𝐄𝐧𝐜(𝑷𝑲, 𝒔𝟏𝟑)

𝒗𝟐

𝐄𝐧𝐜 𝑷𝑲, 𝒔𝟏𝟐
𝐄𝐧𝐜(𝑷𝑲, 𝒔𝟐𝟑)

Alice Bob

𝑺𝑲𝟏

Decryptors𝑺𝑲𝟐

𝑺𝑲𝟑

Malicious security
Alice

Bob Charlie

𝒙𝟏

𝒙𝟐 𝒙𝟑

𝒔𝟏𝟐 𝒔𝟏𝟑

𝒔𝟐𝟑

38

𝒗𝟏

𝐄𝐧𝐜 𝑷𝑲, 𝒔𝟏𝟐
𝐄𝐧𝐜(𝑷𝑲, 𝒔𝟏𝟑)

𝒗𝟐

𝐄𝐧𝐜 𝑷𝑲, 𝒔𝟏𝟐
𝐄𝐧𝐜(𝑷𝑲, 𝒔𝟐𝟑)

Alice Bob

𝑺𝑲𝟏

Decryptors𝑺𝑲𝟐

𝑺𝑲𝟑

Malicious security
Alice

Bob Charlie

𝒙𝟏

𝒙𝟐 𝒙𝟑

𝒔𝟏𝟐 𝒔𝟏𝟑

𝒔𝟐𝟑

39

𝑺𝑲𝟏

𝑺𝑲𝟐

𝑺𝑲𝟑

Alice

Bob Charlie

𝒙𝟏

𝒙𝟐 𝒙𝟑

𝒔𝟏𝟐 𝒔𝟏𝟑

𝒔𝟐𝟑

Key idea:
Honest decryptors agree on what to decrypt

𝑺𝑲𝟏

𝑺𝑲𝟐

𝑺𝑲𝟑

𝐄𝐧𝐜(𝑷𝑲, 𝒔𝟐𝟑)

𝐄𝐧𝐜(𝑷𝑲, 𝒔𝟏𝟑)

𝐄𝐧𝐜 𝑷𝑲, 𝒔𝟏𝟐
𝐄𝐧𝐜(𝑷𝑲, 𝒔𝟐𝟑)

A cross-check round

A fault-tolerant sum with malicious security

40

𝒙𝟏 𝒙𝟐 𝒙𝟑

𝑣% 𝑣& 𝑣'

𝒔𝟏𝟐𝒕

𝒔𝟏𝟑𝒕
𝒔𝟏𝟑𝒕

𝒔𝟐𝟑𝒕
𝒔𝟏𝟐𝒕

𝒔𝟐𝟑𝒕

Waiting… Process…
𝑣! + 𝑣"

𝑺𝑲𝟏

𝑺𝑲𝟐

𝑺𝑲𝟑

𝐄𝐧𝐜 𝑷𝑲, 𝒔𝟏𝟐𝒕

𝐄𝐧𝐜(𝑷𝑲, 𝒔𝟏𝟑𝒕)

Waiting… Process…

𝑣! + 𝑣"
−𝐏𝐑𝐆 𝒔𝟏𝟐𝒕

−𝐏𝐑𝐆(𝒔𝟏𝟑𝒕)

𝑥! + 𝑥"

Process…

𝑺𝑲𝟏

𝑺𝑲𝟐

𝑺𝑲𝟑

Waiting…

Partial
decryptions

