
Flamingo: Multi-Round Single-Server Secure Aggregation 
with Applications to Private Federated Learning

1

Yiping Ma1 Jess Woods1 Sebastian Angel1,2 Antigoni Polychroniadou3 Tal Rabin1

1University of Pennsylvania
 2Microsoft Research

 3J.P. Morgan AI Research & AlgoCRYPT CoE



Data-driven applications nowadays
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Service providers collect and analyze user data 
in order to provide customized functionalities.
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Centralized vs. decentralized training
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Centralized Decentralized

(“hotel”, not spam)

(“hacked”, spam)

(“malicious”, spam)

=
(“hacked”, spam)
(“hotel”, not spam)
(“malicious”, spam)

Train( )

Data never leaves user devices!

“Federated learning” [McMahan et al. in 2016]

Many clients (users) collaboratively train a 
model under the orchestration of a central 
server (service provider).



Centralized vs. decentralized training
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Centralized Decentralized

(“hacked”, spam)

(“malicious”, spam)

(“malicious”, spam)

=
(“hacked”, spam)
(“hotel”, not spam)
(“malicious”, spam)

Train( )

Update= (
(“hotel”, not spam)Update= (

(“hacked”, spam)Update= (

Local weights

(“hotel”, not spam)
)
)

)



Centralized vs. decentralized training
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Centralized Decentralized

(“hacked”, spam)

(“malicious”, spam)

=
(“hacked”, spam)
(“hotel”, not spam)
(“malicious”, spam)

Train( ) = + +

Global weights

(“hotel”, not spam)
(“malicious”, spam)Update( )
(“hotel”, not spam)Update( )

Update (“hacked”, spam)( )



Centralized vs. decentralized training
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Centralized Decentralized

=

(“hacked”, spam)
(“hotel”, not spam)
(“malicious”, spam)
(“apple”, not spam)
(“dog”, not spam)
(“lottery”, spam)
(“random”, spam)

Train( )

= + +

A few hundreds to a few 
thousands of clients



Centralized vs. decentralized training

8

Centralized Decentralized

=

(“hacked”, spam)
(“hotel”, not spam)
(“malicious”, spam)
(“apple”, not spam)
(“dog”, not spam)
(“lottery”, spam)
(“random”, spam)

Train( )

= + +



Centralized vs. decentralized training

9

Centralized Decentralized

=

(“hacked”, spam)
(“hotel”, not spam)
(“malicious”, spam)
(“apple”, not spam)
(“dog”, not spam)
(“lottery”, spam)
(“random”, spam)

Train( )

= + +



Federated learning: steps forward
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• Weights do not necessarily hide data: inference attack 
[Zhu et al. 2019]

• Training does not need individual weights; only the sum is needed

(“hacked”, spam)
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• Weights do not necessarily hide data: inference attack 
[Zhu et al. 2019]

• Training does not need individual weights; only the sum is needed

(“hacked”, spam)



Secure aggregation for federated learning

• Secure aggregation (A special case of MPC [Yao 1986])
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𝑥#

𝑥$

𝑥%

Only learns 𝑥# + 𝑥$ + 𝑥% 

Some 
interactions

Many works under different communication 
models, cryptographic assumptions, etc.

• Secret sharing
     [KRKR 2020], [DSQG+ 2022], …
• Threshold homomorphic encryption

[SGA 2021], [SHYL+ 2022], …
• Pairwise masking
     [BIKM+ 2017], [BBGLR 2020], …
• Other styles
     [SSVR+ 2022], [GPSBB 2022], …
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• Secure aggregation (A special case of MPC [Yao 1986])
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𝑥#

𝑥$

𝑥%

Only learns 𝑥# + 𝑥$ + 𝑥% 

Some 
interactions

Many works under different communication 
models, cryptographic assumptions, etc.

• Secret sharing
     [KRKR 2020], [DSQG+ 2022], …
• Threshold homomorphic encryption

[SGA 2021], [SHYL+ 2022], …
• Pairwise masking
     [BIKM+ 2017], [BBGLR 2020], …
• Other styles
     [SSVR+ 2022], [GPSBB 2022], …

Concrete efficiency but not asymptotics



Federated learning has complex setting
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• From the federation side—restricted clients (mobile devices)
• Limited computation power
• Unstable network connection

• From the machine learning side—large parameters
• Inputs: model weights, e.g., ~500K in popular models for CIFAR100
• Participants: 100-5000 per iteration
• Training: many iterations, e.g., ~300 for CIFAR100
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Lightweight client computation

Tolerate dropouts at any point



Federated learning has complex setting
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• From the federation side—restricted clients (mobile devices)
• Limited computation power
• Unstable network connection

• From the machine learning side—large parameters
• Inputs: model weights, e.g., ~500K in popular models for CIFAR100
• Participants: 100-5000 per iteration
• Training: many iterations, e.g., ~300 for CIFAR100

Reasonable efficiency



Prior designs are not the best fit for a full training
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• From the federation side—restricted clients (mobile devices)
• Limited computation power
• Unstable network connection

• From the machine learning side—large parameters
• Inputs: model weights, e.g., ~500K in popular models for CIFAR100
• Participants: 100-5000 per iteration
• Training: many iterations, e.g., ~300 for CIFAR100

One summation: multiple round trips, some of which are expensive 



Having fewer round trips is important
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• Reduce bias and improve quality 

• Reduce run time
    Will discuss in evaluation section
    why round trips matter a lot

𝑥#
𝑥$

𝑥%

Obtains 𝑥# + 𝑥$ 

Some 
interactions



• From the federation side—restricted clients (mobile devices)
• Limited computation power
• Unstable network connection

• From the machine learning side—large parameters
• Inputs: model weights, e.g., ~500K in popular models for CIFAR100
• Participants: 100-5000 per iteration
• Training: many iterations, e.g., ~300 for CIFAR100

We propose Flamingo
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Same threat model as in prior work: a malicious adversary controlling 
the server and a subset of the clients

Lightweight client computation

Tolerate dropouts at any point

Can practically run for 
a full training session



Flamingo has two key ideas

• A fault-tolerant private sum protocol 
based on pairwise secrets and threshold decryption

• A way to reuse pairwise secrets over many iterations
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A fault-tolerant private sum protocol
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Alice

Bob Charlie

𝒙𝟏

𝒙𝟐 𝒙𝟑

𝒙𝟏𝒗𝟏 = + 𝐏𝐑𝐆 𝒔𝟏𝟐 + 𝐏𝐑𝐆(𝒔𝟏𝟑)𝒔𝟏𝟐 𝒔𝟏𝟑

𝒔𝟐𝟑

BIKM+ 2017,
BBGLR 2020Pairwise secrets

Take some cost 
to set them up

Semi-honest 
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𝒙𝟏𝒗𝟏 = + 𝐏𝐑𝐆 𝒔𝟏𝟐 + 𝐏𝐑𝐆(𝒔𝟏𝟑)

BIKM+ 2017,
BBGLR 2020Pairwise secrets

𝒙𝟐𝒗𝟐 = − 𝐏𝐑𝐆 𝒔𝟏𝟐 + 𝐏𝐑𝐆(𝒔𝟐𝟑)

𝒙𝟑𝒗𝟑 = − 𝐏𝐑𝐆 𝒔𝟏𝟑 − 𝐏𝐑𝐆(𝒔𝟐𝟑)

Alice
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𝒙𝟏

𝒙𝟐 𝒙𝟑

𝒔𝟏𝟐 𝒔𝟏𝟑

𝒔𝟐𝟑

Take some cost 
to set them up

Semi-honest 
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BIKM+ 2017,
BBGLR 2020Pairwise secrets
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!
!"#

$

𝑣! =!
!"#

$

𝑥!

Efficient despite large inputs

Alice

Bob Charlie

𝒙𝟏

𝒙𝟐 𝒙𝟑

𝒔𝟏𝟐 𝒔𝟏𝟑

𝒔𝟐𝟑

Take some cost 
to set them up

Semi-honest 
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𝒙𝟏

𝒙𝟐 𝒙𝟑
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A fault-tolerant private sum protocol
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Went offline…

𝒔𝟏𝟐 𝒔𝟏𝟑

𝒔𝟐𝟑

Reveal the secrets 
to the server!

Semi-honest 

Pairwise secrets



A fault-tolerant private sum protocol
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Threshold decryption

Alice

Bob

𝒙𝟏

𝒙𝟐 𝒙𝟑

𝒗𝟏

𝐄𝐧𝐜 𝑷𝑲, 𝒔𝟏𝟐
𝐄𝐧𝐜(𝑷𝑲, 𝒔𝟏𝟑)

𝒙𝟏= + 𝐏𝐑𝐆 𝒔𝟏𝟐 + 𝐏𝐑𝐆(𝒔𝟏𝟑)𝒔𝟏𝟐 𝒔𝟏𝟑

𝒔𝟐𝟑
Charlie

Semi-honest 



A fault-tolerant private sum protocol
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Threshold decryption

Alice

Bob

𝒙𝟏

𝒙𝟐 𝒙𝟑

𝑺𝑲𝟏

Decryptors

𝑺𝑲𝟐

𝑺𝑲𝟑

𝒔𝟏𝟐 𝒔𝟏𝟑

𝒔𝟐𝟑
Charlie

Semi-honest 

𝒗𝟏

𝐄𝐧𝐜 𝑷𝑲, 𝒔𝟏𝟐𝐄𝐧𝐜(𝑷𝑲, 𝒔𝟏𝟑)

𝒔𝟏𝟑

A random (small) subset of clients

Recovery is lightweight



𝒗𝟏 𝒙𝟏= + 𝐏𝐑𝐆 𝒔𝟏𝟐 + 𝐏𝐑𝐆(𝒔𝟏𝟑)
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A fault-tolerant private sum protocol
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Threshold decryption

Alice

Bob Charlie

𝒙𝟏

𝒙𝟐 𝒙𝟑

𝒔𝟏𝟐 𝒔𝟏𝟑

𝒔𝟐𝟑

Semi-honest 

𝒗𝟏 𝒗𝟐 𝒔𝟏𝟑 𝒔𝟐𝟑



𝒗𝟏 𝒙𝟏= + 𝐏𝐑𝐆 𝒔𝟏𝟐 + 𝐏𝐑𝐆(𝒔𝟏𝟑)

𝒙𝟐𝒗𝟐 = − 𝐏𝐑𝐆 𝒔𝟏𝟐 + 𝐏𝐑𝐆(𝒔𝟐𝟑)

− 𝐏𝐑𝐆 𝒔𝟏𝟑 − 𝐏𝐑𝐆(𝒔𝟐𝟑)

A fault-tolerant private sum protocol
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Threshold decryption

𝑣# + 𝑣% − 𝐏𝐑𝐆 𝒔𝟏𝟑 − 𝐏𝐑𝐆(𝒔𝟐𝟑) = 𝑥# + 𝑥%

Alice

Bob Charlie

𝒙𝟏

𝒙𝟐 𝒙𝟑

𝒔𝟏𝟐 𝒔𝟏𝟑

𝒔𝟐𝟑

Semi-honest 



Reusing the secrets
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Essentially OTP

𝒙𝟏𝒗𝟏 = + 𝐏𝐑𝐆 𝒔𝟏𝟐𝒕 + 𝐏𝐑𝐆(𝒔𝟏𝟑𝒕 )

𝐄𝐧𝐜 𝑷𝑲, 𝒔𝟏𝟐𝒕

𝐄𝐧𝐜(𝑷𝑲, 𝒔𝟏𝟑𝒕 )Iteration 𝒕: 𝒔𝟏𝟐𝒕 = 𝐏𝐑𝐅(𝒔𝟏𝟐, 𝒕)

Simple idea, but cannot work for [BBGLR 2020] due 
to a crucial design difference for fault tolerance

Alice

Bob Charlie

𝒙𝟏

𝒙𝟐 𝒙𝟑

𝒔𝟏𝟐 𝒔𝟏𝟑

𝒔𝟐𝟑

Semi-honest 



With the two key ideas →
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Do the costly setup once, 
and run the lightweight sum many times



More details in the paper

• How decryptors work
• Selection
• Sharing of 𝑆𝐾
• Switching decryptors over time

• How setup is done
• How to achieve malicious security 
• Efficient instantiation of cryptographic primitives, system-

level optimizations

31



Evaluation results

• What is the right factor to look at?
• Computation cost was the focus: [BIKM+ 2017] → [BBGLR 2020]
• When computation is made cheap, what matters is the “waiting time”
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Waiting to collect messages… Process messages Waiting to collect messages…

One round trip in the protocol



Evaluation results

• Feasibility of training a neural network on CIFAR100
• Simulation using a multi-agent messaging system ABIDES
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6 RTTs, with all clients

3 RTTs, only 1 RTT with all clients

1 RTT with all clients

ABIDES

(malicious version)



Summary

• This work: A secure aggregation system that handles real-world 
federated training tasks
• Many interesting future directions
• Validation of client inputs
• Stronger security, e.g., adaptive adversary
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Thanks!

paper code
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𝒗𝟏

𝐄𝐧𝐜 𝑷𝑲, 𝒔𝟏𝟐
𝐄𝐧𝐜(𝑷𝑲, 𝒔𝟏𝟑)

𝒗𝟐

𝐄𝐧𝐜 𝑷𝑲, 𝒔𝟏𝟐
𝐄𝐧𝐜(𝑷𝑲, 𝒔𝟐𝟑)

Alice Bob

𝑺𝑲𝟏

Decryptors𝑺𝑲𝟐

𝑺𝑲𝟑

Malicious security
Alice

Bob Charlie

𝒙𝟏

𝒙𝟐 𝒙𝟑

𝒔𝟏𝟐 𝒔𝟏𝟑

𝒔𝟐𝟑



38

𝒗𝟏

𝐄𝐧𝐜 𝑷𝑲, 𝒔𝟏𝟐
𝐄𝐧𝐜(𝑷𝑲, 𝒔𝟏𝟑)

𝒗𝟐

𝐄𝐧𝐜 𝑷𝑲, 𝒔𝟏𝟐
𝐄𝐧𝐜(𝑷𝑲, 𝒔𝟐𝟑)

Alice Bob

𝑺𝑲𝟏

Decryptors𝑺𝑲𝟐

𝑺𝑲𝟑

Malicious security
Alice

Bob Charlie

𝒙𝟏

𝒙𝟐 𝒙𝟑

𝒔𝟏𝟐 𝒔𝟏𝟑

𝒔𝟐𝟑
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𝑺𝑲𝟏

𝑺𝑲𝟐

𝑺𝑲𝟑

Alice

Bob Charlie

𝒙𝟏

𝒙𝟐 𝒙𝟑

𝒔𝟏𝟐 𝒔𝟏𝟑

𝒔𝟐𝟑

Key idea: 
Honest decryptors agree on what to decrypt

𝑺𝑲𝟏

𝑺𝑲𝟐

𝑺𝑲𝟑

𝐄𝐧𝐜(𝑷𝑲, 𝒔𝟐𝟑)

𝐄𝐧𝐜(𝑷𝑲, 𝒔𝟏𝟑)

𝐄𝐧𝐜 𝑷𝑲, 𝒔𝟏𝟐
𝐄𝐧𝐜(𝑷𝑲, 𝒔𝟐𝟑)

A cross-check round



A fault-tolerant sum with malicious security
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𝒙𝟏 𝒙𝟐 𝒙𝟑

𝑣% 𝑣& 𝑣'

𝒔𝟏𝟐𝒕

𝒔𝟏𝟑𝒕
𝒔𝟏𝟑𝒕

𝒔𝟐𝟑𝒕
𝒔𝟏𝟐𝒕

𝒔𝟐𝟑𝒕

Waiting… Process…
𝑣! + 𝑣"

𝑺𝑲𝟏

𝑺𝑲𝟐

𝑺𝑲𝟑

𝐄𝐧𝐜 𝑷𝑲, 𝒔𝟏𝟐𝒕

𝐄𝐧𝐜(𝑷𝑲, 𝒔𝟏𝟑𝒕 )

Waiting… Process…

𝑣! + 𝑣"
−𝐏𝐑𝐆 𝒔𝟏𝟐𝒕

−𝐏𝐑𝐆(𝒔𝟏𝟑𝒕 )

𝑥! + 𝑥"

Process…

𝑺𝑲𝟏

𝑺𝑲𝟐

𝑺𝑲𝟑

Waiting…

Partial 
decryptions


