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Private Information Retrieval (PIR) [CGKS95, KO97]

Database server has 𝑥 = 0, 1 𝑛

Client wants to get the entry 𝑥𝑖

without revealing the index 𝑖 

Query Answer
A trivial solution: 

download all entries
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Database server has 𝑥 = 0, 1 𝑛

Client wants to get the entry 𝑥𝑖

without revealing the index 𝑖 

Query Answer
Solutions that we are interested in: 

communication sublinear in 𝑛

Private Information Retrieval (PIR) [CGKS95, KO97]
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PIR in two flavors

Information-theoretic Computational
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Managing multiple storage 
spots has high cost when 

databases are large
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PIR in two flavors

Information-theoretic

• Secure against unbounded adversaries 

• Require database replication across 
multiple servers

• Enforce non-collusion amongst the 
database servers

• Efficient in practice (no cryptographic 
operations)

• Schemes with short query size enable 
efficient preprocessing => sublinear 
server computation

Computational

• Secure against polynomial-time adversaries

• No database replication, a single server 
suffices

• No need for non-colluding assumption on 
the database server

• Expensive server cost because of 
cryptogaphic operations

• Query size depends on the computational 
security parameter
• No “trivial” solution for efficient preprocessing

• Exists efficient preprocessing in non-trivial ways 

Existing single-server solutions with sublinear computation: 
Either require per-client preprocessing [CHK22]; or utilize 
strong assumptions + VBB obfuscations [BIPW17, CHR17]
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Best of both worlds?

Information-theoretic

• Secure against unbounded adversaries 

• Require database replication across 
multiple servers

• Enforce non-collusion amongst the 
database servers

• Efficient in practice (no cryptographic 
operations)

• Schemes with short query size enable 
efficient preprocessing => sublinear 
server computation

Computational

• Secure against polynomial-time adversaries

• No database replication, a single server 
suffices

• No need for non-colluding assumption on 
the database server

• Expensive server cost because of 
cryptogaphic operations

• Query size depends on the computational 
security parameter
• No “trivial” solution for efficient preprocessing

• Exists efficient preprocessing in non-trivial ways 
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• Security must hold for even a single client 
The only way out—requires 𝑛 bits communication

• New hope: relaxation by considering multiple clients

Best of both worlds? 

The shuffle model [IKOS06]
Component 1: Many clients make queries simultaneously
Component 2: The queries are shuffled before reaching the server

“The standard model”

16



• Security must hold for even a single client 
The only way out—requires 𝑛 bits communication

• New hope: relaxation by considering multiple clients

Best of both worlds? Yes, in the shuffle model

The shuffle model [IKOS06, BEMM+17, BBGN20, …]
Component 1: Many clients make queries simultaneously
Component 2: The queries are shuffled before reaching the server

“The standard model”

- Construction based on a specific PIR protocol
  - Nonstandard computational assumption
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• Security must hold for even a single client 
The only way out—requires 𝑛 bits communication

• New hope: relaxation by considering multiple clients

Best of both worlds? Yes, in the shuffle model

“The standard model”

This work: general constructions for single-server PIR in the shuffle model 
that has information-theoretic security and sublinear communication
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• Security must hold for even a single client 
The only way out—requires 𝑛 bits communication

• New hope: relaxation by considering multiple clients

Best of both worlds? Yes, in the shuffle model

“The standard model”

Theorem (Informal).
For every 𝛾 > 0, there is a single-server PIR in the shuffle model such that, on 
database size 𝑛, has 𝑂(𝑛𝛾) per-query communication and 1/poly(𝑛) statistical 
security, assuming poly(𝑛) clients simultaneously accessing the database.
If further assuming one-time preprocessing, per-query computation is also 𝑂(𝑛𝛾).

Throughout this talk, we omit polylog 𝑛 
factors.
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If further assuming one-time preprocessing, per-query computation is also 𝑂(𝑛𝛾).

Throughout this talk, we omit polylog 𝑛 
factors.
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• Background
• The shuffle model

• “Split and mix”

• Our results
• General constructions

• Lower bound: the security we get in the general constructions is “tight”

• An interesting orthogonal problem: hiding record size without padding

• Discussion and open questions

Rest of this talk
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• Purpose: anonymization

• An existing notion in many literatures
• Anonymous communication, e.g., [HLZZ15]

• Differential privacy, e.g., [BBGN20]

• Secure aggregation, e.g., [IKOS06]

• In our setting: 
assume a two-way anonymous channel

The shuffle model

A shuffler
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• Purpose: anonymization

• An existing notion in many literatures
• Anonymous communication, e.g., [HLZZ15]

• Differential privacy, e.g., [BBGN20]

• Secure aggregation, e.g., [IKOS06]

• In our setting: 
assume a two-way anonymous channel

The shuffle model

An observer

A shufflerStrong assumption?

27



• Purpose: anonymization

• An existing notion in many literatures
• Anonymous communication, e.g., [HLZZ15]

• Differential privacy, e.g., [BBGN20]

• Secure aggregation, e.g., [IKOS06]

• In our setting: 
assume a two-way anonymous channel

• Instantiation: 
stay tuned for discussion!

The shuffle model

An observer

A shuffler
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PIR in the shuffle model
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• Anonymization does not trivialize the PIR problem!

PIR in the shuffle model
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• Anonymization does not trivialize the PIR problem!

PIR in the shuffle model

𝑉𝑖𝑒𝑤 𝑖1, 𝑖2, … , 𝑖𝐶 𝑉𝑖𝑒𝑤 𝑖1
′ , 𝑖2

′ , … , 𝑖𝐶
′

𝑖1
′ 𝑖2

′  … 𝑖𝐶
′𝑖1 𝑖2  … 𝑖𝐶Anonymity does not imply message privacy:

It hides who sends what,
but does not hide which action is performed
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• Privacy from anonymity [IKOS06]: Secure sum from “split and mix”

PIR in the shuffle model

Take a large enough 𝑝, each client splits its inputs into 𝑘 shares in ℤ𝑝

5               1              0              3             8
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• Privacy from anonymity [IKOS06]: Secure sum from “split and mix”

PIR in the shuffle model

𝑝 = 20, 𝑘 = 3
5               1              0              3             8

4+10+11   6+14+1  16+2+2  14+2+7  17+2+9

Shuffle the shares

Get the sum without learning any individual’s input
33



• Privacy from anonymity [IKOS06]: Secure sum from “split and mix”

PIR in the shuffle model

10     2      2      1       1 4       4      4       4      0

Any two different 
configurations with 

equal sum

Each input is split to 𝑘 shares

𝑉𝑖𝑒𝑤 10, 2, 2, 1, 1 𝑉𝑖𝑒𝑤 4, 4, 4, 4, 0

Split and mix can provide statistical security against the observer
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• Privacy from anonymity [IKOS06]: Secure sum from “split and mix”

PIR in the shuffle model

10     2      2      1       1 4       4      4       4      0

Any two different 
configurations with 

equal sum

Each input is split to 𝑘 shares

𝑉𝑖𝑒𝑤 10, 2, 2, 1, 1 𝑉𝑖𝑒𝑤 4, 4, 4, 4, 0

Can “split and mix” help in the PIR problem?
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• Privacy from anonymity [IKOS06]: “split and mix”

𝑖1             𝑖2              𝑖3            𝑖4            𝑖5

4+10+11   6+14+1  16+2+2  14+2+7  17+2+9

Split each index into 
additive shares?

Answer to each share  

Split and mix in PIR

36



• A two-server “additive PIR” [BIK04] 

Split and mix in PIR

The sub-queries 𝑞1, 𝑞2 are 
additive shares of (the encoding of) index 𝑖

𝑎2𝑎1

𝑎1 ← 𝑃𝑥(𝑞1) 𝑎2 ← 𝑃𝑥(𝑞2)

𝑥 = 0, 1 𝑛 𝑥 = 0, 1 𝑛

𝑞2
𝑞1

𝑖 ∈ [𝑛]

Takeways: 1. Sub-queries are additive shares
                          2. Answer algorithm is simply 𝑃𝑥(share)

𝑂(log 𝑛) query size

37
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• A construction from the two-server “additive PIR”  

Split and mix in PIR

𝑖1 𝑖2 𝑖3 𝑖4 𝑖5

Query using the two-server 
“additive PIR” protocol

An instance of 2-share split and mix!

Are we done?

𝑞1 𝑞2𝑞1 𝑞2 𝑞1 𝑞2 𝑞1 𝑞2 𝑞1 𝑞2

Only learns the sum of all sub-queries but nothing else 
38



• 2-share is not enough to provide privacy: a simple example in ℤ2 

All clients with input 0  v.s.  All clients with input 1

            0 can be split to 0+0  or  1+1           1 can only be split to 0+1

Split and mix in PIR

Exactly equal #0s and #1s 
in the shares!

#0s and #1s may not be 
exactly equal

Similar attack also 
generalizes to ℤ𝑝
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• Can we do more share? Yes, but worse efficiency:

The 𝑘-server “additive PIR” gives communication 𝑂(𝑛
𝑘−1

𝑘 )

      

Split and mix in PIR

Our technique:
Randomize the query index for the “additive PIR” 

using an outer layer of PIR

Communication 𝑂(𝑛
1

2 polylog(𝑛))
40



General constructions: an “inner-outer” paradigm

𝑖1 𝑖2 𝑖3

Recall the problem

∈ [𝑛]

When 𝑖1, 𝑖2, … , 𝑖𝐶  and 𝑖1
′ , 𝑖2

′ , … , 𝑖𝐶
′  are far apart,  e.g., 1 1 1 1 1 v.s. 2 2 2 2 2

𝑉𝑖𝑒𝑤 𝑖1, 𝑖2, … , 𝑖𝐶   and 𝑉𝑖𝑒𝑤 𝑖1
′ , 𝑖2

′ , … , 𝑖𝐶
′  are also far apart

Given any set of query indices

Learns nothing 
(except the sum)
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General constructions: an “inner-outer” paradigm

𝑖1 𝑖2 𝑖3

A step forward

∈ [𝑛]

If we can make 𝑖1, 𝑖2, … , 𝑖𝐶  and 𝑖1
′ , 𝑖2

′ , … , 𝑖𝐶
′  closer, e.g., 1 2 3 4 4 v.s. 1 2 3 4 5

Would 𝑉𝑖𝑒𝑤 𝑖1, 𝑖2, … , 𝑖𝐶   and 𝑉𝑖𝑒𝑤 𝑖1
′ , 𝑖2

′ , … , 𝑖𝐶
′  be close?

Given any set of query indices

Learns nothing 
(except the sum)

Our proof technique

1 1 1 1 1 v.s. 2 2 2 2 2
$

Our construction technique
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General constructions: an “inner-outer” paradigm

𝑖1 𝑖2 𝑖3How to randomize the indices?

𝑞1
𝑞2 𝑞3

Let 𝒬 be the space that consists of all 
possible sub-queries

An important observation

Consider PIR query algorithm:
 (𝑞1, 𝑞2, 𝑞3) ← 𝑄𝑢𝑒𝑟𝑦(𝑖; 𝑟)

For any given 𝑖 ∈ [𝑛], each sub-query 𝑞 is 
uniformly random over 𝒬

∈ [𝑛]

“Outer PIR”
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General constructions: an “inner-outer” paradigm

𝑖1 𝑖2 𝑖3

𝑖1
∗ 𝑖2

∗ 𝑖3
∗ 𝑖1

∗ 𝑖2
∗ 𝑖3

∗ 𝑖1
∗ 𝑖2

∗ 𝑖3
∗

∈ [𝑛]

Run outer PIR query algorithm

What we get from outer PIR

𝑞1 𝑞2 𝑞3 𝑞1 𝑞2 𝑞3 𝑞1 𝑞2 𝑞3 ∈ 𝒬

How to randomize the indices?

Sort all sub-queries in 𝒬

A list with size 𝑛∗ = |𝒬|

Interpret as indices

0000  0001  0010  0011       …                                                                  1111    

0001

2

1        2         3        4           …                                                                     𝑛∗  

IT-PIR with O(log 𝑛) query size

Each random in 𝒬

Each random in [𝑛∗] ∈ [𝑛∗]
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General constructions: an “inner-outer” paradigm

𝑖1 𝑖2 𝑖3

𝑖1
∗ 𝑖2

∗ 𝑖3
∗ 𝑖1

∗ 𝑖2
∗ 𝑖3

∗ 𝑖1
∗ 𝑖2

∗ 𝑖3
∗

∈ [𝑛]

Run outer PIR query algorithm 𝑞1 𝑞2 𝑞3 𝑞1 𝑞2 𝑞3 𝑞1 𝑞2 𝑞3 ∈ 𝒬

How to randomize the indices?

𝑃𝑥(0000)

Inner PIR with random query indices

Inner PIR database size 𝑛∗ = |𝒬| 

∈ [𝑛∗]

𝑃𝑥(1111)𝑃𝑥(0001) … 

Use the two-server “additive” PIR

Recall: not secure if doing 
”additive PIR” directly here 

Answers in outer PIR
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General constructions: an “inner-outer” paradigm

𝑖1 𝑖2 𝑖3

𝑖1
∗ 𝑖2

∗ 𝑖3
∗ 𝑖1

∗ 𝑖2
∗ 𝑖3

∗ 𝑖1
∗ 𝑖2

∗ 𝑖3
∗

∈ [𝑛]

Run outer PIR query algorithm 𝑞1 𝑞2 𝑞3 𝑞1 𝑞2 𝑞3 𝑞1 𝑞2 𝑞3 ∈ 𝒬

How to randomize the indices?

Inner PIR with random query indices
∈ [𝑛∗]

The distributions of the shuffled additive shares 
from any index configurations are close 

(with some tweaks)
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General constructions: an “inner-outer” paradigm

𝑖1 𝑖2 𝑖3

𝑖1
∗ 𝑖2

∗ 𝑖3
∗ 𝑖1

∗ 𝑖2
∗ 𝑖3

∗ 𝑖1
∗ 𝑖2

∗ 𝑖3
∗

∈ [𝑛]

Run outer PIR query algorithm 𝑞1 𝑞2 𝑞3 𝑞1 𝑞2 𝑞3 𝑞1 𝑞2 𝑞3 ∈ 𝒬

On any query indices

∈ [𝑛∗]

Use inner PIR for retrieve answers;
Inner PIR sub-queries are shuffled

A brief summary

Interpret as indices for inner PIR

𝑃𝑥(0000) 𝑃𝑥(1111)𝑃𝑥(0001) … Size 𝑛∗ The server prepares this in advance

Outer PIR: Any 𝑘-server protocol (𝑘>2)

Inner PIR: The two-server 
“additive PIR”

A single server!
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General constructions: an “inner-outer” paradigm

Theorem (Informal).
On any database size 𝑛, the “inner-outer” construction with any outer PIR and the 
two-server additive inner PIR, gives a single-server PIR in the shuffle model that 
has 1/poly(𝑛) statistical security and 𝑂( 𝑛) per-query communication, assuming 
poly(𝑛) clients simultaneously accessing the database. 

Corollary (Informal).
Using fancier inner PIR (“CNF PIR”), on any database size 𝑛, for every constant 𝛾, 
there is a PIR construction that has
• Per-query communication and computation 𝑂 𝑛𝛾 ,
• Server storage 𝑂 𝑛1+𝛾 ,
assuming one-time preprocessing.
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• Background
• The shuffle model

• “Split and mix”

• Our results
• General constructions

• Lower bound: the security we get in the general constructions is “tight”

• An interesting orthogonal problem: hiding record size without padding

• Discussion and open questions

Rest of this talk
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• To deploy PIR in real-world applications…

PIR with variable-sized records

Database records in practiceDatabase entries of PIR in theory

Often assume the same 
size, mostly 0, 1 𝑛

They have 
different lengths
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• To deploy PIR in real-world applications…

PIR with variable-sized records

Database records in practiceDatabase entries of PIR in theory

Often assume the same 
size, mostly 0, 1 𝑛

They have 
different lengths

To retrieve privately, it is necessary to hide record size
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• Padding solves the problem: how about efficiency?

   

   

PIR with variable-sized records

Database records in practice

The discrepancy between the smallest and the largest record can be huge
Majority of the records are small
Most users access the small records much more often than the large records

Features

52



• Padding solves the problem: how about efficiency?

   

   

PIR with variable-sized records

Database records in practice

The discrepancy between the smallest and the largest record can be huge
Majority of the records are small
Most users access the small records much more often than the large records

Waste of server storage 
(though can virtually store)

Features Client who retrieves the small record has to 
pay the cost of retrieving the largest record
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• In the “standard” model, there is no way out

• In the shuffle model: yes, we can
• No server storage overhead

• Client communication proportional to the length of the retrieved record

• Leak only the total size of all queried records

PIR with variable-sized records
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• A toy protocol

PIR with variable-sized records

Concatenate

An 𝑛-bit database

𝑇 database records
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• A toy protocol

PIR with variable-sized records

Concatenate

An 𝑛-bit database
Query a size-ℓ record: 
Make ℓ PIR queries, 

each for one bit

𝑇 database records
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• A toy protocol

PIR with variable-sized records

Concatenate

An 𝑛-bit database
Query a size-ℓ record: 
Make ℓ PIR queries, 

each for one bit

𝑇 database records No server storage overhead

Communication is proportional to 
the queried length instead of the 

maximum length
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• A toy protocol

PIR with variable-sized records

Concatenate

An 𝑛-bit database
Query a size-ℓ record: 
Make ℓ PIR queries, 

each for one bit

𝑇 database records No server storage overhead

Communication is proportional to 
the queried length instead of the 

maximum length

Can we do better?
Yes, from ℓ PIR queries to polylogℓ PIR queries
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• Revisit the toy protocol

PIR with variable-sized records

Concatenate

An 𝑛-bit database
Query a size-ℓ record: 
Make ℓ PIR queries, 

each for one bit

𝑇 database records Why not retrieve more bits
in each PIR query?
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• Splitting records to the powers of two

PIR with variable-sized records

The 𝑛-bits concatenated database

Secure or not?

Deterministic splitting is not secure
(unless split down to 1)

60

Server (logically) preprare log 𝑛 databases: 
the 𝑗-th database is partitioned to 2𝑗  bits per entry



• Splitting records to the powers of two

PIR with variable-sized records

Consider 5   1   1   1                             v.s.                          2   2   2   2 
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• Our approach: recursive splitting

PIR with variable-sized records

The 𝑛-bits concatenated database

For each block, toss a coin
Head: stay
Tail: split
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• Our approach: recursive splitting
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• Our approach: recursive splitting

PIR with variable-sized records

The 𝑛-bits concatenated database

For each block, toss a coin
Head: stay
Tail: split

The final blocks that the client will retrieve (using PIR)
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• A complication of recursive splitting: fully split the highest log 𝐶 levels 

PIR with variable-sized records

Consider 5   1   1   1                             v.s.                          2   2   2   2 

With 1/2 probability, there will be a block
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• A complication of recursive splitting: fully split the highest log 𝐶 levels 

PIR with variable-sized records

Consider M-3   1    1    1                      v.s.          M/4    M/4    M/4   M/4 

With 1/2 probability, there will be a block
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• A complication of recursive splitting: fully split the highest log 𝐶 levels 

PIR with variable-sized records

Consider M-3   1    1    1                      v.s.          M/4    M/4    M/4   M/4 

69

As long as there are sufficient number 
of blocks at this level



• Splitting records to the power of two

PIR with variable-sized records

= + +

The multi-set of record lengths 
from all clients will not leak any 

individual queried length

= +

The largest block ≥ maximum record size/2
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• Background
• The shuffle model

• “Split and mix”

• Our results
• General constructions

• Lower bound: the security we get in the general constructions is “tight”

• An interesting orthogonal problem: hiding record size without padding

• Discussion and open questions

Rest of this talk
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• Two-way anonymous channel
• A way given in DP literature: two or more non-colluding (network) servers 

holds a permutation

Discussion

1. Easier to enforce
2. No storage overhead
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Discussion

• We want minimum assumptions

• Yet, in order to gain something (e.g., efficiency), you have to make 
assumptions, e.g., 
• Hardness assumptions

• Non-colluding assumptions

• Meanwhile, guaranteeing different assumptions does not require the 
same amount of effort: system efforts, law efforts, etc.

• The likelihood of assumptions being compromised in real-world 
scenarios may vary

73



• PIR in the shuffle model: where do we stand

Open questions

IKOS06

Based on a nonstandard 
computational assumption

(for shuffling) 

Target on differential 
privacy (weaker notion)

RGI16, DRMK22 Our work

Statistical security, 
but 1/poly(n)

Statistical security, 
negligible? 

Computational setting, 
standard assumption?

Better parameters
(e.g., less #clients)
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• PIR in the shuffle model: where do we stand

Open questions

IKOS06

Based on a nonstandard 
computational assumption

(for shuffling) 

Target on differential 
privacy (weaker notion)

RGI16, DRMK22 Our work

Statistical security, 
but 1/poly(n)

Statistical security, 
negligible? 

Computational setting, 
standard assumption?

Better parameters
(e.g., less #clients)
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Negligible security 𝑂(1/𝑛log 𝑛) with 

slightly sublinear communication 𝑂(
𝑛

log 𝑛
)



Backup slides
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Proof idea for recursive splitting

16      8       4       2       1

Place the original length at the corresponding bin
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• Randomized splitting: a recursive approach 

Proof idea for recursive splitting

Place the original length at the corresponding bin

For each level: 
        For each ball:
                Toss a coin and decide whether to split

16      8       4       2       1

16      8       4       2       1

78



• Randomized splitting: a recursive approach

Proof idea for recursive splitting

Place the original length at the corresponding bin

For each level: 
        For each ball:
                Toss a coin and decide whether to split

16      8       4       2       1

16      8       4       2       1

Send PIR queries for each of these balls

Are we done?
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• Tweaks to the recursive approach

Proof idea for recursive splitting

16    1    1    1    1 8    8    2    1    1

16      8       4       2       1 16      8       4       2       1

The resulting multi-set

Queried lengths
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• Tweaks to the recursive approach

Proof idea for recursive splitting

M-4    1    1    1    1 M/5    M/5    ...     M/5

M/2      M/4       M/8      …

The resulting multi-set

Queried lengths

Fully split for at least log 𝐶 levels

M/2      M/4       M/8      …
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• Analysis: “Toy in the sand”

Proof idea for recursive splitting

M/2      M/4       M/8      …

The resulting multi-set

Fully split for at least log 𝐶 levels

…

As long as there are many balls at the “highest” level, then after the recursive 
splitting, any configuration at the lower levels will be smoothed out

Configurations at the 
lower levels
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Proof idea for the inner-outer construction

• Step 0. Understand shuffling: balls-and-bins formulation

• Step 1. A hammer for analysis: edit distance

• Step 2. Understand the histogram: outer PIR sub-queries, inner PIR 
sub-queries, and the relation between them

• Step 3. “Toy in sand” problem: hiding the shape of the toy
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Proof idea for the inner-outer construction

• Step 0. Understand shuffling: balls-and-bins formulation

𝒬OPIR  bins 𝒬IPIR  bins

𝒬OPIR: sub-query space of outer PIR                  𝒬IPIR: sub-query space of inner PIR
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Proof idea for the inner-outer construction

• Step 0. Understand shuffling: balls-and-bins formulation

• Step 1. A hammer for analysis: edit distance

• Step 2. Understand the histogram: outer PIR sub-queries, inner PIR 
sub-queries, and the relation between them

• Step 3. “Toy in sand” problem: hiding the shape of the toy
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Proof idea for the inner-outer construction

• Step 0. Understand shuffling: balls-and-bins formulation

• Step 1. A hammer for analysis: edit distance
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Proof idea for the inner-outer construction

• Step 0. Understand shuffling: balls-and-bins formulation

• Step 1. A hammer for analysis: edit distance
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Proof idea for the inner-outer construction

• Step 0. Understand shuffling: balls-and-bins formulation

• Step 1. A hammer for analysis: edit distance
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Proof idea for the inner-outer construction

• Step 0. Understand shuffling: balls-and-bins formulation

• Step 1. A hammer for analysis: edit distance

• Step 2. Understand the histogram: outer PIR sub-queries, inner PIR 
sub-queries, and the relation between them

• Step 3. “Toy in sand” problem: hiding the shape of the toy
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Proof idea for the inner-outer construction

• Step 2. Understand the histogram of outer PIR sub-queries

𝑖1
′ 𝑖2

′  … 𝑖𝐶
′𝑖1 𝑖2  … 𝑖𝐶

𝒬OPIR  bins 𝒬OPIR  bins

Edit distance at most 𝐶

Edit distance 

bounded by 𝐶
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Proof idea for the inner-outer construction

• Step 2. inner PIR sub-queries resultant from outer PIR sub-queries

Resultant histograms after the 2-share

𝒬IPIR  bins 𝒬IPIR  bins

If edit distance is 𝛿

The 2-share histograms: 

edit distance 𝛿

Plug in the previous result: 

edit distance bounded by 𝐶
1

4
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Proof idea for the inner-outer construction

• Step 0. Understand shuffling: balls-and-bins formulation

• Step 1. A hammer for analysis: edit distance

• Step 2. Understand the histogram: the relation between outer PIR 
sub-queries and inner PIR sub-queries

• Step 3. “Toy in sand” problem: hiding the shape of the toy

𝒟𝑖 𝒟𝑗

SD 𝒟𝑖, 𝒟𝑗 ≤
#𝑏𝑖𝑛𝑠

#𝑏𝑎𝑙𝑙𝑠
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Proof idea for the inner-outer construction

• Step 0. Understand shuffling: balls-and-bins formulation

• Step 1. A hammer for analysis: edit distance

• Step 2. Understand the histogram: the relation between outer PIR 
sub-queries and inner PIR sub-queries

• Step 3. “Toy in sand” problem: hiding the shape of the toy

SD 𝒟𝑖, 𝒟𝑗 ≤
#𝑏𝑖𝑛𝑠

#𝑏𝑎𝑙𝑙𝑠
=

𝑄

𝐶
⇒ SD 𝒟, 𝒟′ ≤ 𝐶

1
4 ⋅

𝑄

𝐶
=

𝑄
1
2

𝐶
1
4

Edit distance 𝐶
1

4 

Let inner PIR sub-query 
space be 𝑄 
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