
The EXODUS Optimizer Generator

Goetz Graefe
David J DeWltt

Computer Sciences Department
University of Wisconsm

ABSTRACT

This paper presents the design and an mmal perfor-
mance evaluation of the query ophrmzer generator designed
for the EXODUS extensible database system. Algetic
transformaaon rules are translated mto an executable query
optmuzer. which transforms query trees and selects methods
for executmg operattons accordmg to cost funcaons associ-
ated with the methods The search strategy avoids exhaus-
ave search and it mties Itself to take advantage of past
expenence Computattonal results show that an opmzer
generated for a relational system produces access plans
almost as good as those produced by exhaushve search, ~rlth
the search tune cut to a small fraction

1 Introduction
In recent years, a number of new data models have

been proposed mcludmg Daplex [SHIPSl], ABE [KLUG82],
GEM [ZANISJ], GEMSTONE [COPE84], IRIS [LYNG86],
Probe [DAYA85, MANO863, Postgres [STON86], and LDL
[TSUR861 Unfortunately, Implementmg a database system
for a new data model 1s a difficult and labonous task The
goal of the EXODUS project 1s to ease the burden of the
database unplementor (DBI) EXODUS 1s designed to assist
the DBI m both creatmg a system for a new data model and
111 augmentmg an exlstmg system For example, one rmght
first use EXODUS to construct a database system for a new
data model Later, one mtght extend this system by addmg a
new access method or a new dgonthm for an exlsMg opera-
tor m the query language To achieve tlus, the EXODUS
design consists of a powerful, highly efficient storage sys-
tem, the database tmplementation language E, which pro-

Thus research was pamally supported by the Defense
Advanced Research Projects Agency under contract
NOOO14-85-K-0788, by the Nauonal Sctence Foundahon
under grant DCR-8402818, and by a grant from the
~croelectromc and Computer Technology Coxpolatlon

PermIssion to copy wlthout fee all or part of this material 1s granted
provided that the copies are not made or dlstrlbuted for direct
commercial advantage, the ACM copyright notice and the title of
the pubhcatlon and Its date appear, and notlce IS given that copying
1s by permlsslon of the Association for Computmg Machmery To
copy otherwlse, or to repubhsh, reqmres a fee and/or specfic
permIssIon

@ 1987 ACM 0-89791-236-5/87/0005/016~ 756

vldes language constructs spe&ically designed to assist 111
database Implementatton, a type manager, which mamtams
state and locatton mformmon about the types and pro-
cedures de&d m the system, and an optumzer generator
In the future, we plan on investlgatmg generators for user
mterfaces An 0veMew of the atchttecture of EXODUS can
be found m [CARE86b] The design of the storage manager
and file system 1s presented m [CARE86aJ The E program-
mmg language 1s described m [RICH871 In ths paper, we
descnbe the optmuzer generator

Untd very recently, query opnmtzers [SELl79,
WONG76, KOOI80] have been designed and unplemented
w-ah a spectiic data model and database system m mmd The
operators and then algorithms, the access methods, and the
cost model were. all known when the database system was
bemg nnplemented Consequently, the 0ptMlzatlon process
could also be tailored to the target data model and its Imple-
mentaaon Only the Postgres opamtzer [STON86] allows
the mcorporanon of new access methods into the optumza-
tton process

Smce EXODUS does not support a smgle conceptual
data model, tt would impossible to provtde a single opam-
lzer for all target apphcauons As a solution we
hypothesned [CARE853 that d the query ophrmzer were
orgamzed as rule-based system, then as new operators,
access methods, etc , were added to the database system, the
oparmzer could be informed of their propemes by addmg
new rules to its rule base As we began to mveshgate the
concept of such an optmuzer tt became clear that the fean-
blllty of such a designed hinged on bemg able to separate
cleanly the data model specific parts of the 0pMllzer from
the common components The common components constst
pnmanly of the search mechamsm and its supportmg
software The pteces specfic to the data model include spe-
clal types (e g BOX), operators, the algonthms for unple-
mentmg these operators, the cost functions for the algonthms
and the catalog management software Makmg tt easy to
spectfy these pteces 1s obviously cnacal m makmg the
optmuzer generator successful In the followmg sections we
demonstrate that using a rule based approach makes specify-
mg these components smghtforward. Furthermore, our
prehmmary performance results demonstrate that the access
plans obtamed are competitive wtth those produced by
exhausuve search techmques while talang only a fraction of
the me to produce

One way to find the optunal access plan for a query IS

to sunply generate all possible access plans, estnnate their
respecuve processmg costs, and output the least expenstve

160

one In the System R optlrmzer [SELI79] this basic strategy
1s augmented wtth a prunmg techmque that deletes all but
the cheapest of a set of equivalent subplans at each step of
the optmuzaaon process Wlthout prunmg, the oparmzer
would be unacceptably slow Followmg the System R
example, a rule-based optmuzer should employ certam laws
or “musts” (eg whenever possible use a Jam operator rather
than a CartesIan product followed by a selecaon) and heuns-
tics (eg move selecttons before jams) 111 its search strategy
m order to reduce the number of access plans considered

The remamder of dus paper is orgamzed as follows
In Section 2, we present the design of our rule based opum-
ner generator We also descnbe the operation of an ophm-
izer produced urltb the generator The search strategy
employed by a generated opmzer and how it improves
itself by 1-g 1s presented m Section 3 Section 4 gwes
some computauonal results obtamed ~rlth an opmzer gen-
era&d for a restncted relational model In !&non 5, we
compare and contrast our work wtth related research Future
duections are outlmed m Secnon 6 Our conclusions can be
found m &non 7

2. Design of the Optmuzer Generator

2.1. OvervIew
In order to be sufficiently general, an optmnzer gen-

erator must be based on an abstmctlon of opnrmzahon smt-
able for most data models We declded that quenes and
access plans should be expressed as trees, because we
beheve that operator trees are general to all set ortented data
models m which complex quenes are composed by nesMg a
tite set of procedures The nodes of the query bees are
labeled ~nth an operator and its arguments, eg a selection
pre4itcate There are two alternative ways of transferring
data between operators temporary iiles and pipehnes
WIthout precludmg the use of either one, we sllnply refer to
them subsequently as mputs or streams

Before a query can be ophmtzed, an mmtuil operator
tree must be constructed In EXODUS, this IS done by the
user mterface and parser The output of the opmzer, the
access plan, can e&er be mterpreted by a recurswe pro-
cedure or lt can be further transformed Both approaches
have been used successfully 111 exlsMg database systems In
Gamma [DEWI86], for example, the operators m the access
plan are mterpreted (though the pre&cates themselves are
complied mto machme language) In System R [SELI79],
the access plan was complied mto machme language Frey-
tag wY85, FREY86a] suggests applymg rule-based tech-
niques for tis step

In most database systems, there are frequently
several altemauve algonthms for the same logcal operaaon
For example,’ the relanonti JO~ operator can be Imple-
mented usmg several alternattve JOT methods Our model
&SMgWheS between operators, correspondmg to pnmmves
provtded by the data model, and methods, that are specific
Implementations of the operators The access plans pro-
duced by the optlrmzer are also trees, wltb a method and tts
argument m each node In this model of quenes and access

1 A word about the examples m this paper Fmt, exam-
ples based on the xelaaonal data model were chosen because
they are eastiy understood We firmly believe that the ldeas
presented here apply to most other data models Second,
larger examples are ended wltb a R

plans, query optumza~on consists of query tree reordenng
and method selection Smce this optnmzation scheme 1s
centered around the algebra of the data model, we refer to It
as algebratc optvnuanon

As example, consider the query tree and a
conespondmg access plan shown m Figure 1 Notice that m
producing the access plan on the nght from the query tree on
the left, two types of rules are apphed to the tree Frst, the
operators are rearranged by pushmg the selection before the
JOHI Second, each operator is replaced by a method that
unplements It

select Aa < 100

I

hash-JomAb=Bb

]omAb=Bb 1 \

i \
filescan A filescan B

SMllA SCXIIB
Y:*@

Figure 1

As proposed m [CARE85], we mlhally intended to
implement a rule-based optmuzer usmg an AI language hke
Prolog [wARR77, CLOC81],OPS5 [FORG81], or LOOPS
[BOBR83] as those languages prowde pattern matchmg and
a search engme, and since umficatron can be used elegantly
to bmld new query trees from old ones In addmon. these
languages allow augmentation of the rule base at run-tune
This capablbty 1s desnable for two reasons Fn%, m a data-
base system that permtts the &&on of new abstract data
types, access metbods, etc. It 1s necessary to mfonn the
optmnzer about those changes Second, when the optmuzer
-finds that certam sequences of transfonnanons occur fre-
quently together, the opmzer could augment the rule set by
addmg a smgle rule that combmes the sequence of transfor-
mahons In successive optumzanons, the whole sequence of
transformations could then be done m a smgle step

We mplemented and expenmented wtth a prototype
m Prolog, which, unfortunately, had to be abandoned This
prototype had two serious problems Fast, Prolog has a
6xed search strategy, depth first search We found that we
needed to augment the search strategy dynarmcally wlule the
optlrmzer was nmmng, a fauly cumbersome task Second,
our Implementation (C-Prolog mterpreter) was slower than
we were wdlmg to accept

Havmg abandoned this prototype we decided to pur-
sue the Idea of lmplementmg a rule-based optmuzer genera-
tor Whfle bmldmg an optnrnzer generator 111 C qmred
more work mtaally, it left us ~rlth the freedom to nnplement
exactly the desired functtonahty and a search strategy tuned
to the process of optmuzmg algebratc quenes Furthermore,
we were able to expenment ~rltb altematlve designs m a
stnughtfoxward manner The pnnclpal dtsadvantage of the
generator approach 1s that the optlrmzer cannot be changed
while runmng, a feature other researchers have found useful
[STON86j

The input mto the EXODUS optnmzer generator
consists of a set of operators, a set of methods, algebratc
rules for rransfonmng the query trees, and rules descnhng
the correspondence between operators and methods Tlus
mformanon IS contamed 111 the model descnption file Fig-
ure 2 gwes an ovennew of the use of the opmzer genera-
tor When the database system 1s constructed, the generator
produces a data model specfic optmuzer from the descnp-

161

model descnpuon file
1 I

Database System
Generabon Tune

QuerY

bon At run nme, each query is transformed mto an operator
tree by the user mterface, optmuzed by the generated optnn-
lzer, and then interpreted or transformed mto a Program

The generated optmuzer transforms the mitral query
tree step by step, mamtammg mformation about all the alter-
natives explored so far 111 a data structure called MESH
MESH 1s also used to hold access plans for each query tree
that has not been pruned from the data structure At any
ame durmg the optmuzatlon process there can be a huge set
of possible next transformations These arc collected m a
data structure called OPEN2 which 1s mamtamed as a pnor-
lty queue OPEN 1s nutlahzed to be the set of transforma-
tions that can be applied to the iniWil query tree
The general opfimtzatlon algorithm can now be described as
follows

while (OPEN is not empty)
Select a transformation from OPEN
Apply it to the correct node(s) m MESH
Do method selectton and cost analysis for the new nodes
Add newly enabled transformations to OPEN

The rules govermng query tree transformations and method
selection are spe&c for the data model and must be defined
111 the model descnption file

2 2 The Input to the Optutuxer Generator
To implement a query optnmzer for a new data

model. the DBI writes a model descnption file and a set of C
procedures If the new model resembles one for which an
optnmzer has already been generated, it rmght bc more con-
vement to augment an exlstmg model descnptlon file The
generator program transforms the descnptlon file into a C
program This 1s complied and lmked ~th the set of C pro-
cedures Wntten by the DBI to form a data model spectic
optlmlzer

In the model descnpaon file, the DBI hsts the set of
operators of the data model, the set of methods to be con-

2 OPEN 1s a standard name for the set of possible next
moves m AI search algonthms IBARR

p Execution Tme

Figure 2

sidered when bmldmg and comparmg access plans, the rules
definmg legal transformanons of query trees, termed
transformahon rules, and the rules defining the correspon-
dence between operators and methods, termed implementa-
tion rules

The model descnptlon file has two reqmred parts and
one optional part The first reqmred part 1s used to declare
the operators and the methods of the data model It can also
include C code and C preprocessor declarattons to be used m
the generated code The second part consists of transforma-
tion rules and implementahon rules The optional thud part
contams C code that is appended to the generated code
These parts will be discussed m further detad below In
ad&non, we til Illustrate how the pieces fit together
through a senes of examples

In the first part of the model descnpuon file, called
the declaration part, the operators and the methods of the
data model are declared The keywords Sbopemfor and
%method are followed by a number to mdrcate the anty and
by a hst of operators or methods with this anty
Example

%operator 2 Join
%method 2 hashAom 1oopsJom Cartesian-product

In tlus example, an operator ~oln and three methods
hashAotn, loops JOW, and carteslan-product an? declared
The 2’s signal the generator that the JOT operator and the
three methods each reqmre. two input streams Cl

Besides operator and method declaranons, the first
part of the descnpaon file can also mclude C code that ti
be wntten into the output file for the optmnzer before any
generated code This capablhty 1s used to provide data
model specific defimaons for four types used by the optim-
izer generator These are OPER-ARGUMENT,
METH-ARGUMENT, OPER-PROPERTY, and
METH-PROPERTY These types are used m the structure
deiinmon of nodes for query trees, access plans, and MESH
to store the arguments of operators and methods, eg pr&-
cates, and “pzvpemes” that the DBI can associate w& a
node In each MESH node, the proper operator arguments

162

and method arguments are mserted by calhng procedures
prowded by the DBI. and they are stored m memory loca-
ttons of type OPER-ARGUMENT for the operator and of
type METH-ARGUMENT for the method If the DBI
wishes to do so, it 1s possible to store mformatton about a
subtree m tts root node, eg relation cardmahty, tuple width,
etc In each node m MESH, there ate two fields provtded for
this mformatton, opergroperty of type OPER-PROPERTY
and mefhyroperiy of type MBTH_pROPERTY The con-
tents of the former field depends only on the operator whtle
the latter depends on the method chosen for the node For
example, 111 our relanonal prototypes we store the schema of
the mtermedlate relation 111 oper_property and the sort order
111 meth-Property

The second part of the descnption file, called the rule
part, contams the transformatton rules and the unplementa-
tton rules A rule consists of two expressions and an
optional condlhon Between the expresslons 1s the keyword
b>, for Implementation rules and an arrow for transformatton
rules The arrow in&cates the legal duecttons of the
transformatton The arrow can point to the left, to the nght,
or can be double-sided If a one-sided arrow has an excla-
mation mark wtth it, the transformation cannot be apphed to
a query tree generated by thts transformation Whtle useful
for an optumzer’s performance, tt should never be necessary
to use thts feature for correctness A typical situation where
It can improve the optumzer’s performance is a commuta-
hvity rule Usmg commutattvtty twice results in the ongmal
query tree, if a query tree is generated that is exactly hke one
generated earlier, the duphcanon 1s detected and the new
query tree is removed Thus, not allowmg commutahvlty to
be apphed twtce 1s only a performance and not a correctness
issue

Each expression in a transformation rule and the
expression on the left side of an implementation rule consists
of an operator and a parameter hst Each parameter can be
another expresston or a number A number m&cates an
input stream or a subquery The expression on the nght side
of an lmplementa~on rule consists of a method and a hst of
mputs
Example

JOlll(1,2) ->’ JOln (2, 1).
join (1.2) by hashJoin (1,2).

The first hne of this example is the Join commutaavlty rule
Since applymg tt twtce results 111 the ongmal form, the
once-only arrow (~rlth exclamaQon mark) 1s used The
second lme m&cates that hashAom 1s a suitable lmplemen-
tatton method for Join El

Somettmes the same operator name appears twtce m
the same expression, for example, m an assoctauvity rule In
thus case, It IS necessary to identify the operators so that
arguments (eg Jam predtcates) can be transferred correctly
when the transformation 1s apphed For identification,
operators m an expresston can be followed by a number If
the same number appears with an operator on the other side
of the arrow, the arguments are copied between these two
operators If the DBI wishes a default acnon other than SKI-
ple copymg, a function name COPY-ARG can be declared to
the C preprocessor, replacuig the default actton If some-
thmg other than simply copymg arguments from the mlnal
query mto MESH and from MESH mto the final access plan
1s needed, the DBI can define the functions COPY-IN and
COPY-OUT If this argument passmg scheme is not

sufficient, a procedure name can be Dven with a transforma-
tion or Implementation rule Instead of using the default
mechanism, this procedure 1s called to transfer (and possibly
mod@ the arguments

ExaLple
project (hashJom (1,2)) by

hashJom-proJ (1,2) combine_hJp,

Thts rule m&cates that there 1s a special form of hash Join,
called hashAotnproJ, that can be used when a hash Join IS
followed by a project operator When hash-Jam-pmJ is
chosen, the opturuzer wfl call the the DBI supphed pro-
cedure cornbm-hjp to combme the projection list and Join
predicate to form the argument of hash_lOZflpWJ 0

Both transformanon rules and implementation rules
may have a condmon associated ~nth them Condttlons are
wntten as C procedures and are executed after the opmzer
has determmed that a subquery matches the pattern of a rule
(ie that subquery has the same operators m the same posl-
nons as the rule) When the con&non is not met, the special
action RESECT 1s provtded If a REJECT action 1s not exe-
cuted, the transformation 1s added to OPEN The con&non
code can access the arguments and pmperttes of the opera-
tors and the inputs of the expresston m pseudo vanables
defined by the generator These vanables are called
OPERATOR-l, OPERATOR-2, etc , and INPUT-l,
INPUT-2, etc The numbers 111 these vanables are the same
as those used to tdenhfy operators and mputs Each vanable
1s actually a structure (record) and includes the fields
operproperty, oper_argument, methproperty, and
meth-argument In the case of a transformation rule that can
be used m both tiecoons, the condmon code is mserted
hme mto the opmzer code To Qstmgutsh these cases at
compile ttme, C preprocessor names FORWARD and BACK-
WARD are defined for use m the condmon code

Example
Jam 7 (Join 8 (1,2), 3) <-> JOT 8 (l,~oln 7 (2,s))
((
tfdef FORWARD
If (NOT cover-pr&cate (OPERATOR-7 oper-argument,

mmT-2 ope~property, INPUT-3 oper-property))
REJECT,

enti
lfdef BACKWARD
tf (NOT cover-predtcate (OPERATOR-8 oper-argument,

INPUT-1 oper-property, INPUT-2 oper-property))
REJECT,

endlf
1)

This example illustrates the Join assoclanvlty rule and the
use of condmons to control the applicanon of a transforma-
tion Since the Join operator appears twice m each expres-
non, the numbers 7 and 8 are appended to dtstmgutsh the
two instances of the operator This allows the opurmzer to

transfer correctly the Join prerllcates between the two opera-
tors as the transformation rule is applied The con&non
code, the lmes between ((and 1 I, 1s copied twice into the
optmnzer code Nevertheless, only one if statement from the
condmon code 1s executed for each duectlon (the other one
1s removed by the C preprocessor) The Boolean function
coverpredrcate 1s assumed to determme whether all the

163

attrrbutes occumng m the prerllcate that 1s the first argument
to the funcnon are atmbutes of the relations described by the
second and thud arguments Cl

The rule set must have two formal propemes - it
must be sound and complete Sound means that It allows
only legal transformanons If the condmon cede 1s not
correct, there 1s nothmg the generator can do about lt, and
the generated optlrmzer ill not work properly Complete
means that the rule set must cover all possible cases, such
that all equivalent query trees can be derived from the m&al
query tree usmg the transformanon rules If the rule set 1s
not complete, the op~zer ill not be able to find optnnal
access plans for all queues On the other hand, the rule set
can be redundant. In fact, rf the DBI foresees that a certam
combmation of rules wdl be used t?equently, It 1s morn-
mended (but not reqmred) that thus combmanon be spec6ied
as a smgle rule tis vvlll speed up the optmuzanon process,
but it will not affect its results, unless the search parameters
(described m Section 3) are set too restnchvely

Besides the model descnptlon lile. the DBI must pro-
vlde a set of C procedures These are the property pro-
cedures, the cost funcuons, and some support functions The
name for a property or cost funchon 1s the concatenation of
the word prop&y or cost and the operator or method name
The names for the support funcaons m fixed For each
operator. one property function 1s reqmred For each
method, a property function and a cost funcnon 1s requued
Support fimc0ons mclude argument companson, memory
allocaaon/deallocaaon, and formattmg procedures for pro-
perty and argument fields The memory funchons an used
for mtermdate data structures and the access plans The
formattmg procedures are used by the bmlt-m debuggmg
factiiues mcludmg an mteractive graphics program3 Pro-
perty functions for operators allow the DBI to cache mfor-
mation m mdtmdual nodes of the mtermtiate query trees to
speed up condmon and argument processmg For example,
m our relational prototype, the schema of each mtermtiate
relation 1s cached Property functions for methods allow the
DBI to denve and cache mformatton that depends on the
selected method, eg physical sort order Cost functions
determme the processing cost for each method, dependmg on
the operator argument and the mput streams

ti scheme of using DBI functions to complement
the automatically generated optmuzer has a very desn-able
side effect The DBI 1s basically forced to wane the code m
a structured, modular way The various DBI routmes can be
wntten independently. meaning that they can be wntten at
tiferent Stages of a development proJect The same is true
about the transformation and Implementation rules Each
rule can be specified mdependently of other rules The gen-
erator bmlds the necessary connections and control smc-
tures Agam, incremental development and enhancement of
a database system and its optnruzer component 1s supported
For example, imagme the DBI wants to explore how useful a
newly proposed index structure 1s To have the optmuzer

3 Adnuttedly, these tools were used when debuggmg the
oparmzer generator and the code lmplementmg the search
strategy, but they also proved invaluable when debuggmg
the DBI code for our prototype implementanon The graph-
ICS capabdmes were first implemented for a demonstration,
but they are very useful for quick understandmg and debug-
gmg Includmg the debuggmg tools mto the optmuzer 1s a
command lme swtch of the generator program

consider this new mdex structure for all future optmuzatlons,
all the DBI has to do IS wnte a few implementation ties, a
property functton, and a cost funcaon4

The generator produces the somce code for the
optmnzer m a smgle pass over the descnptton file Wule
Rag the declarahon part, it bmlds a symbol table of
operators and methods and copies C sowe hnes mto the
output file For the rule part, It mamtams three temporary
tiles for the procedures match, apply, and analyze Match
takes a subquery and adds all applrcable transformattons to
OPEN Apply actually perfotms a transformanon after It has
been selected from OPEN Analyze determmes the cheapest
possible method for the mot of a subquery by matchmg It
agamst the Implementation rules and by callmg the cost
funtions For buiuecaonal transformation rules, the code
generahon procedure is invoked Wee for match and apply,
once for each dtrechon Thus, a blduectional rules appears
as two rules m the generated oparmzer

For each transformation rule, three tests are mserted
mto the procedure match Fn%, a s&query cannot be
transformed by a rule if the rule 1s a once-only rule and the
subquery has been generated by this rule, or If the rule 1s
bltichonal and the subquery has been generated by the
opposite dvecuon Second, a rule cannot be apphed to a
subquery If the patterns do not match The patterns match If
there are the same operators at the same positions m the rule
and m the subquery Thn& a rule cannot be apphed If there
IS a con&hon and the condmon 1s not met.

To apply a transf~hon. all necessary new nodes
are generated and operators, operator arguments, and inputs
are Cllcd m For each new node, a procedwe 1s called which
either 6nds an exmmg eqmvalent node or mvokes property
cachmg and method selectton for the node Tlus process 1s
described m more deli below For each lmplementanon
rule, code is added to the procedure analyze If a subquery
and a rule pattern match, this code calls the cost funcnon of
the appropnatc method and compares the result to the least
expensive unplementaaon found so far for the subquery

When the parser finds the end of the rule part, these
procedures and a hbrary of support mutmes are appended to
the output file The support routines Mplement the control
structure and mamtam the OPEN data structure Fmally, the
thud part of the model descnption iile 1s appended to the
optlrmzer source code

2 3. Operation of a Generated Optimizer
The cost model that the optnmzer supports 1s simple

but powerful The cost for a query tree is the sum of the
costs of all methods m its access plan One rmght cnm2.e
ths model at Grst as bemg too muve smce it does not allow
the mcorporatton of buffermg effects that potentially reduce
the I/O cost of m&m&ate files However, If such effects
exist, they can and should be mcorporated mto the cost func-
tions This 1s one of the reasons why all avrulable mforma-
tton 1s passed as arguments to the cost func0ons that are
wntten by the DBI

As menhoned earher, mformafion about the query
trees and access plans explored so far is stored m a data
structure called MESH MESH 1s a network of nodes that

4 There remams, of course, the non-mma.l problem of
codmg the operations on the new mdex structure
EXODUS eases this task W&I its database implementanon
language E [RICH871

164

select Aa < 100 - pmAb=Bb - pmBc=Cc
:

Figure 3

I
sclectB.a<100 - JomAb=Bb

A
--__ \ ----- _________--________ ___ ____________________ ’

___ __----.-------- -----’

B C
Figure 4

JotnAb=Bb - pmBc=Cc

selcctBac100 C

B
Flgtue 5

represents both alternattve query trees and access plans
Smce the me of each node 1s at least 100 bytes,’ aud since
there can be many query trees to consider, It was important
that MESH be designed to avoid any unnecessary redun-
dancy Also, smce we Hrlsh to avoid redundant processmg, It
seems natural to share as many nodes as possible between
query ~XCS To acheve thts, the optumzer allocates nodes
only when necessary dunng a transformatton, shanng copies
whenever feasible W~tb tlus nnplementatlon, typ~ally as
few as 1 to 3 new nodes an? reqmred for each transforma-
tion, mdependent of the size of the query tree

Example Consider Ftgure 3 The hold arrows denote
transformanons, sobd lmes show the mput streams (which
flow upward), and dotted lmes pomt to subtrees that are
bemg reused. The first transformation pushes the selectton
down the query tree The second transformanon apples JO~
commutatlvlty 0

More precclsely, a node 1s created for each operator
that appears 111 the transformaaon rule on the “new” side
The optmuzer then traverses the new nodes bottom-up and
mes to replace each one by an exlstmg eqmvalent node

’ TUB 1s the muumal sue The actual size depends on
the stze of the data structures defined by the DBI, and on the
maximal anty of the operators and methods m the data
model In our current Implementations. each node 1s almost
200 bytes long

Two nodes a~ eqmvalent if they have the sdme operator, the
same operator argument, and the same input(s) A hashmg
scheme 1s employed to make the search for eqmvalent nodes
extremely fast This scheme to detect eqmvalent nodes is
heady used when the uuual query tree 1s copled mto
MESH, so that common subexpxesslons 111 the query are
recognized as early as possible If a new node cannot be
replaced by an exlstmg duplicate, it 1s matched agamst the
unplementahon rules 111 order to find the optimal access plan
for the new subquery rooted at thy node Furthermore. It is
matched agamst the transformation rules, and any applicable
transformanons are added to OPEN Then, all parent nodes
of the old subquery (those that pomt to the old subquery or
au eqmvalent subquery as one of theu mput streams) are
matched agamst the Implementanon rules to propagate the
cost unprovement obtamed by the transformahon performed
We term thus reanalyzing Fmally, the parent nodes are
matched agamst the transformatton rules, as there mtght now
be some (new) possllnhttes for fur&r trausfotmattons This
is called rematching

Example Consider Figure 4 The !irst two transforma-
ttons push the selecfion down the query tree, reustng
nodes where possible To apply JOIII assocm~~ty, the
node labeled I must be rematched vvlth the node labeled
II as Its right input, resultmg in an entry m OPEN that
wll eventually lead to the transformation shown 111 Rg-
ures cl

165

3 Search Strategy and Learmng
Since the number of possible transformations m

OPEN can be very large for a complex query, If such quenes
are to be opt~rmzed m a reasonable amount of tune It 1s crm-
cal that the optumzer avoid applymg most of these transfor-
mations To find the optimal access plan qmckly, the search
must be ticted [BARR811 To do this, the “nght” transfor-
matlon must be selected from OPEN at each step of fie
opnrmzaaon process The ideal situation would be to select
only those transformations that are necessary to transform
the initial query into the query tree correspondmg to the
~phmal access plan Unfortunately, this 1s not feasible as the
optimal access plan and the shortest sequence of transforma-
tions are not known Instead, the optizer selects the
transfonnahon which pronuses the largest cost improvement
Pronuse is calculated using the current cost (before the
transformation) and mfortnation about the transformation
rule mvolved To measure the pronuse of a transformation
rule, an expected cost factor 1s associated wrth each
transformanon rule Buhrectional transformation rules have
two expected cost factors, one for each direction The
interpretatton of this factor is as follows if the cost before
the transformation IS c and the expected cost factor of the
transformation rule is f, then the cost after the transformation
1s c*f If a rule 1s a good heurrstlc, hke pushing selections
down in the tree, the expected cost factor for dus rule should
be less than 1 If, however, a rule 1s neutral on the average,
(eg Join commutatwlty), its value should be 1

The concept of expected cost factors rruses two
important issues Fast, 1s such a factor vahd? That is, 1s tt
possible to associate a value with a rule independent of the
database and the quenes to be opmzed? Second, how can
these factors be detertnmed? We wdl address the second
quesuon first

We decided that it is too Mficult (and too error
prone) to let the DBI set the expected cost factors On the
other hand, smce we do not know the data model and the
rules a future DBI rmght implement, we cannot set these cost
functions either Thus, they should be determmed automati-
cally by the optmuzer by learnmg from its past expenence
An adequate method is to use the average of the observed
cost quotients for a particular rule Recall that the expected
cost factor is an estimate for the quotient of the costs before
and after applymg the transformaaon rule Thus, it is smt-
able to approximate the factor with the observed quouents
for the rule

The simplest averagmg method is to take the anth-
metlc average of all applications of the rule smce the optnn-
lzer was generated However, If the query pattern or the
database changes, usmg the average of all observed quo-
tients rmght be too ngd One alternative would be the aver-
age of the last N apphcauons (for some suitable N) This 1s
fiurly cumbersome to implement, however, as the last N
values must be stored for each rule A second alternative 1s
to calculate a shdmg average for each rule The shdmg aver-
age 1s the weighted average of the current value of the
expected cost factor and the newly observed quotient, and 1s
quite easy to implement efficiently Fmally, smce we aver-
age over quotients, a geomemc average may be more
appropnate than an anthmetlc average In our tests, we
evaluated the following four averagmg formulae

geomemc slidmg average geomemc mean
1 1

f + (fx*$i f + (f’*q)2i

anthmehc shdmg average mhmeac mean

fc% fc*

In these formulae, f is the expected cost factor for the rule
under consideration, q is the cunent observed quotient of
new cost over old cost, c 1s the count of how many tunes dus
rule has been applied so far, and K 1s the shdmg average
constant As wdl be Qscussed below, all of these averagmg
formulas lead to statistically valid constructs, and the perfor-
mance Merences between them are fmly small

In many cases, we ~11 find that a beneficial rule 1s
possible only after another (perhaps even negatively
beneficial) rule has been appbed To reflect this III the
search Strategy, the optnmzer actually adjusts the expected
cost factor of hvo rules after an advantageous transformanon
Fmt, it recalculates the factor for the rule Just apphed using
one of the techniques described above Second, it also
adjusts the factor of the precedmg rule that was apphed,
using the same formula but wth only half the weight Thus,
a rule that frequently enables subsequent beneficial transfor-
mations ~11 have an expected cost factor lower than 1 (the
neutral value), and will be preferred over other neutral rules
without tis in&t benefit We call this mdrrect adJust-
ment Fmally, If a cost advantage 1s reahzed while reanalyz-
ing the parent nodes after a transformation, the rule’s
expected cost factor is also adjusted with half the normal
weight We call tlus propagation adjustment

Ordenng the transformations 111 OPEN by the
expected cost decrease has a negative effect m some sltua-
tions If OPEN contams two eqmvalent subquenes with ti-
ferent costs each of which can be transformed by the same
rule with an expected cost factor less than 1, the transforma-
uon of the more expensive query tree will be selected iirst
Thu IS, of course, countermtmtwe, and not a good search
strategy To offset this effect, the optmuzer subtracts a con-
stant from the expected cost factor when estlmatmg the cost
after a transfoxmation of a part of the currently best access
plan The lowered expected cost factor increases the
expected cost improvement, such that the currently best
subquery is transformed before the other equivalent
subquery

The expected cost factors are used to tit the
search, so the optmuzer finds the “optunal” access plan
qmckly Once the optimal access plan has been found, the
opmrnzer could ignore all the remammg transformations in
OPEN, and output the plan Unfortunately, it 1s Impossible
to know when the currently best plan is indeed the optunal
one Our soluaon 1s to let the optu~llzer keep searchmg, but
to hrmt the set of new transformations that are apphed To
do this, the cost improvement expected by applying a
transformation is compared with the cost of the best
equivalent subquery found so far If tis improvement 1s
wlthm a certam multiple of the current best Cost, the
transformation 1s applied, otherw~, It IS ignored and
removed from OPEN Usmg the analogy of finding the
lowest pomt m a ten-am, but someames havmg to go uphill
to reach an even lower valley, tlus techmque IS termed hill

166

climbing The multiple mentioned above 1s the blll chmb-
mg factor Typical values are 1 01 to 1 5 If It 1s less than
1, neutral rules wdl never be apphed, even though they
mght be necessary to explore the complete search space
On the other hand, the expenments described later show that
for the relational model hill chmbmg factors close to 1 work
well

Fmally, there IS a reanalyzing factor Recall the
importance of reanalyzmg from Figures 4 and 5 If the cost
of the newly generated subquery is s$#icantly higher than
its best eqmvalent subquery, reanalyzing 1s probably wasted
effort Only If the cost of a newly generated subquery is
mthin a mulnple of Its best eqmvalent suhquery are all the
parent nodes (le those contammg the old suhquery as one of
thm Inputs) matched agamst the transformanon and nnple-
mentanon rules with the old subquery replaced by the new
one

Unfortunately, the appmpnate values for the htil
chmbmg and xeanalyzmg factors seem hkely to depend on
the data model Thus, hke the expected cost factors, they too
should be learned by the optmuzer We have not, however,
implemented this feature yet

4 Computational Results from a Relational Prototype
In this sectron, we report some p&mmary results

obtamed with an optmuzer generated for a subset of the rela-
honal model This model 1s resmcted to select and Join
operators We Implemented this model first because produc-
mg the optimal Jam tree IS reportedly the major problem in
relattonal query optirmzatlon [SELI79. WONG76, KOOISO]
For the leaves of the query trees, we introduced an art&d
operator, called get Get reads a file from Qsk and transfers
it to the next operator It was introduced for convenience as
it allows us to wnte the cost functions for the other opera-
tors’ methods without regard to whether their input streams
come !?om &Sk or from other operators It also makes It
easy to express the fact that the input for methods based on
m&ces must be a stored relation

The test quenes for our expenments were generated
randomly as follows to generate a query tree, the tOD
operator 1s selected A pnon probabtines are assigned to
Join, select, and get, m our test 0 4,0 4, and 0 2 respectively
If a JOT or select 1s chosen, the input query trees are bmlt
recursively usmg the same procedure If a pxedefined lnmt
of Join operators (here 6) m a gven query 1s reached, no
further Join operators are generated m this query The Join
argument 1s an equahty constramt between two randomly
plcked atmbutes of the mputs The selection argument 1s a
comparison of an attnbute and a constant, with tbe atmbute,
comparison operator, and constant plcked at random The
database consists of 8 relations with 1000 tuples each Each
relauon has 2 to 4 attnbutes The schema 1s cached in mam
memory durmg the optmuzer test run The schema of each
mtermehate relation 1s cached m the query tree node m
MESH as an operator property The only method property
consldered m our system is sort order

Our transformafion rules mcluded JOIII commutatmty

and assoclahmty, commutati~ty of cascaded selects, and the
select-Jam rule This last rule allows pushmg selects down
the query tree, but only on the left branch If the selection
clause must be apphed to the nght branch, JOm commuta-

ttvlty must be apphed first We used only the left-branch
form of the select-jam rule because It forces the optmum to
perform rematching and m&t adJustment The rule also

allows the optnmzer to push JOTS down m the tree, smce It 1s
a brdu-ectional rule For Joins, we considered four methods
nested loops, merge JOM, hush ~oorn, and r&x jam A merge
Jam reqmres the Inputs to be sorted on the respective Join
atmbute An mdex Join reqmres that the nght mput be a per-
manent relaaon with an index on the Join attnbute Selec-
tion is done either ~rlth a jilter, which is a method ~rlth one
Input stream and one output stream, or wtth a scan We con-
sidered file scans and index scans A scan can implement
any conJunctwe clause, ie a cascade of selects with a get
operator at the bottom The cost calculation eshmates
elapsed seconds on a 1 MIPS computer with data passed
between operators as buffer addresses When speclfymg the
algebra descnption, we reahzed several shortcommgs of the
generator Some of them have since been corrected, and oth-
ers are descnhed in the secnon on future work

The first tests were used to ensure that the generated
optmuzer transforms the query correctly and produces the
optunal or a near-opnmal query plan One way to test this is
to duphcate an exlstmg opurmzer and to compare the query
plans produced However, this would have reqmred lrmtat-
mg all of its cost funcnons, which 1s not easily accessible
mfonnauon More unportantly, It would have resmcted us
to its particular set of operators and methods, leavmg httle
room for mdficanon and expenmentanon Thus, we
decided to compare our optnmzaaon results with those of an
exhaustive search of all possible access plans We mod&d
the optmuzer to do unduected exhaustive search To avotd
thrashmg on the tune-shared computer used for these expen-
ments. however, we aborted optimuaoon of a query when
MESH contamed 5,000 nodes That lmphed that OPEN con-
tamed about 5,000 to 10,000 elements, and that the heap area
had grown to about 3 megabytes

The followmg tables summanze typical results for a
sequence of 500 randomly generated queues The quenes m
this sequence contam 805 JOIII operators and 962 select
operators The reanalyzmg factor 1s set equal to the hdl
chmbmg factor We report the results for three values for
the hill chmbmg and reanalyzmg factors to demonstrate the
effects of search effort on the quahty of the resultmg access
plans A hill chmbmg factor of 00 m&cates undn=ected
exhaustive search This allows the comparison of the res-
meted search strateges ~rlth unresmcted search All
remammg runs used duected hnuted search The wand
column, labeled ‘total nodes generated’, indrcates the
amount of mam memory used for MESH The average size
of MESH 1s l/500 of the gwen numbers The thud column
1s the sum of the MESH sizes at the tunes when the best
access plans were found 6 The fourth column shows the sum
of the estrmated execution costs of the 500 generated access
plans The last column states the CPU time (in seconds)
spent optnmzmg the enhre sequence of 500 queries’

With mcreasmg search effort (ie larger hti chmbmg and
reanalyzmg factors) the CPU time increases as the cost of

6 This IS done by assoclatmg with the currently best plan
(of which there is only one) the number of nodes m MESH at
the tnne the plan was generated

’ The umes are gwen m seconds m user mode on a
Gould 9080 runmng UTX/32, version 13 The times were
measured usmg the getrusage system call This machme
has Tao CPU’s rated at about 5 MIPS each The optlrmzer
usually ran uninterruptedly on the second CPU

167

Table 1 Summary of 500 quenes

Total Nodes Nodes before Sum of Es-ted CPU I
Chmbmg Generated Best Plan

101 4309 1813
Execuuon Costs Tme

9837 50

Table 2 Summary of 338 quenes not aborted m exhaustive search

the access plans decreases Notice that the sum of costs for
“exhaustive” search 1s actually higher than for resmcted
search This is due to the fact that optlrmzations had to be
aborted because the memory reqtnrement for exhaustive
search turned out to be excessively high, 1e the exhaustive
search could sometunes not be completed so only a subop-
tunal plan was prcduced It 1s mteresMg to resmct atten~on
to those quenes that were not aborted m the undnected
exhaustive search When resmcted to the 338 quenes for
which the exhausnve search succeeded, Table 1 becomes
Table 2
When companng table 1 and table 2, the reader wdl unm&-
ately notice the substannal differences 111 resource consump-
non, both for CPU ame and memory Nevertheless, for
more than 310 of the 338 quenes the &fferent search stra-
teges produce access plans Hrlth exactly the same cost as the
optimal plan The followmg table gves a more detaded plc-
Me of the cost dfferences

Cost Difference Number of Quenes
Relative to Hdl Cbmbmg Factor
Exhausave

Search 101 103 105
no &fference 314 315 315
morethanO% 24 23 23
morethan5% 20 20 19
more than 10% 20 20 19
more than 25% 9 9 9
more than 50% 1 1 1

Table 3 Frequencies of &fferences m 338 quenes
For only 20 out of the 338 quenes does the cost of the access
plans &ffer by more than 5% The worst case is a query
with exactly double the cost These results m&cate that
unhected exhausuve search 1s mfenor to the search strategy
presented m this paper, and that the search strategy
employed by our rule based optumzer generally does qmte
well

As described earher, we associate an expected cost
factor ~rlth each rule to dnect the search mto the most
pronusmg &ecnon We considered it necessary to test
whether the expected cost factor 1s a vahd construct If there
really 1s such a factor for each rule, it should be the same
mdependent of the quenes being optirmzed To test this
hypothesis, 50 sequences of 100 quenes each were optnn-
tzed 111 mdependent runs of the optu~llzer, and the expected

cost factors for each rule at the end of the run were com-
pared For each of these sequences; we selected a d&rent
combmanon for the select, JOHI, and get probabdmes used to
generate the random queries, and a d&rent hrmt was set on
the number of JOTS allowed in a single query Wh& the
expected cost factors show some vanance, they fall around
the mean for each rule m a normal &smbution Gur stamn-
cal testmg m&cated that, for our sets of test quenes, the
equahty hypothesis 1s true with a 99% confidence

Next we attempted to determme which of the four
averagmg methods is best suited for use in the optimm~
The results, however, were not conclusive All four averag-
ing techniques worked equally well ~ntb the query
sequences tested This 1s not &scouragmg, however It only
means that the Qfferences among the adJusMent formulae
are mslgmficant The differences between &ted search
and untited search remam

Since reordenng JOIII trees 1s considered the mayor

problem m relational query optlrmzaaon, we deagned an
expenment which spectically addresses tlus issue We
created several batches of 100 quenes each The quenes 111
the first batch have one JOUI operator each, two 111 the second,
etc. up to 6 Jams per query The opmzaaon results are
gwen m the table below The hdl chmbmg and reanalyzing
factor was set to 1005 Gpmzahon was aborted when the
number of nodes 111 MESH reached 10,000, or when MESH
and OPEN together contamed 20,000 enmes

Jams per Total Nodes Nodes before Quenes CPU
Query Generated Best Plan Aborted Ttme

1 500 100 0 3 28

Table 4 Optmuzauon of senes of 100 quenes each

When N ItlatIOnS are homed in &query, the number
of possible Jam trees 1s of the order of 8 The fact that nel-
ther the number of nodes nor the CPU m grow as rapidly
demonstrates the effectiveness of sharmg nodes between
quenes and plans The most unportant result of tis expen-
ment 1s that the optnmzer 1s able to handle fatly complex
quenes It becomes obvious, however, that the search stra-
tegy could be enhanced ngmlicantly If semanhc mformahon
were mcorporated when tiMg the search Such mforma-

168

non can be bmld mto the condmon code, le those transfor-
matrons which are techmcally correct are prevented If it 1s
hkely that they ti not lead to the opti query tree and
access plan

The above optmuzanons consldcred all possible
trees Many optnmzers, eg those of System R [SELI79] and
Gamma pEWI86], conslder only left-deep Jam trees In a
left-deep JOIII tree, the nght mputs of all fom nodes ate scans
on base relauons A tree which 1s not left-deep IS called It a
bushy tree If only leftdeep trees am considered, it is possi-
ble that the ophmal access plan for some quenes wtll be
mmed [ROSE861 On the other hand, m many systems the
resmctton to left-deep trees 1s justified because scheduhng
operators becomes easier, spoohng temporary files to &Sk
can be avoided, and it 1s possible to guarantee that operators
of one query do not compete for scarce resources, eg buffer
space Optlrmzahon becomes easier, too, because there are
sqtuficantly fewer ~otn trees for a @ven query when only
left-deep trees are considered as the number of possible left-

deep JOIII trees grows w~tb the order of 2N [SEW91 In
Table 5, we s mmanze how the optmuzer performed on the
quenes used for Table 4 when only left-deep Join trees are
consldenzd

rollls per Total Nodes Nodes before Quenes CPU
Query Generated

1 500
Best Plan

100
korted Time

0 3 68
2 956 553 0 443
3 1569 1148 0 5 85
4 2382 1912 0 842
: 3699 5228 4631 3220 0 0 2193 13 30

Table 5 Left-deep optnmzahon of senes of 100 quenes each

When small queues (1 or 2 JOTS) are optnrnzed,
approxnnately the same number of nodes m MESH and the
same CPU ame 1s used for bushy and left-deep trees For
larger quenes, the tierences are up to several orders of
magmtude, IeflecMg the different growth rates for the
number of possible JO~I trees The anficlpated cost of the
generated access plans, however, 1s larger If only left-deep
trees are considered The mam reason 1s that the cost model
used 1s based on the assumption that all m-ate results
can be ptpelmed between operators vvlthout bemg wrmen to
dlsk

These dtfferences have mspued two duections for
further research One 1s to mcorporate spoohng costs mto
the cost model for bushy trees, and determme whether data-
base systems hke System R and Gamma should mcorporate
bushy trees Thts issue 1s mterestmg m its own right,,
mdependent from the issues concermng the optumzer gen-
erator The other Idea we mtent to examme 1s to break the
optnmzafion mto several phases, ie to use the result of the
fast left-deep-only ophnuzatlon as a startmg pomt for optlm-
lzatlon mcludmg bushy Join trees

5 Related Work
Many of the techniques employeed by the op~llzer

generator are based on a variety of earher efforts m the
query opmmzaaon area. ploneenng work was done in the
System R proJect [ASTR76, SELI791, In the Ingres proJect
[STON76, WONG76, YOUS791 and by Snuth and Chang
[SMIT75] Optmmhon usmg algebmc ldenaties was first
used 111 comptlers for programmmg languages, but seems to

have only been used once for database oparmzatron, in the
MICROBE relational dtsmbuted database system
[NGUY821 Freytag assumes m his work on code generation
[FFtEY85, FREY86al for access plans that query plans for
set-onented data models can be expressed as trees
Recently, Freytag has begun work on deslgnmg a rule-based
ophmmmon scheme for the relauonal model [FREY86b]
Search strateges have been used m the areas of deduction
and theorem provmg, and learnmg has been used to nnorove
a programs perfoniance, eg ii game playmg pm&ams
[BARR811

M&t of the query opnrmzahon research done to date,
as surveyed by Jarke and Koch [JARK84], deals with rela-
honal systems and theu extensions For the designers of pre-
VIOUS query opmzafion programs, the data model has been
a @ven fact For example, when reordermg jam trees,
ISELI and [KOOI801 assume that the order m which
Jams are executed makes no semannc d&rence In the
EXODUS optmuzer generator, on the other hand, the opera-
tors and ther semanucs are left open, thus allowmg the DBI
to design and expenment ~rlth new data models

Algebmc transformanon laws have also been used m
the design and implementation of the opturnzer for the dlsm-
buted relational database system MICROBE [NGUY82]
The goal of the MICROBE rule based opmzauon step was
to numm~ze the number of operators and the amount of data
to be shpped between operators A set of transformation
rules was formulated and proven to guarantee a deterrmmstlc
result, mdependent of the actual sequence of transforma-
hens The MICROBE optumzer takes at most o(N log N)
steps, where N is the number of operators m the query
Then transformahon rules were hand-coded m Pascal, the
implementation language of the protect.

Our approach differs from the MICROBE approach
111 three mportant ways Fast, we do not assume a certam
Cxed data model Second, we only assume soundness and
completeness of the rule set, reqmnng no further propemes
Provmg determuusnc results for a set of rules 1s slgmficantly
harder, perhaps not be possible for all data models and alge-
bras, and would be askmg too much from the DBI Thud,
the procedures that transform the query are generated m our
approach, allowmg the DBI to concentrate on their correct-
ness The approaches are sumlar m that they both try to use
formal propemes of the algebra and to do query optnnuanon
“along” the theory of the data model

From an AI standpomt, our search program is a de&
cated search algonthm with some adapave learnmg capablh-
hes We would have hked to use a promse function and a
search strategy ~rlth stronger theoretical propemes Since
the optnruzer generator is not aware of the targer&ata model.
we were unable to use search algonthms hke A @AR%81
wluch would have guaranteed the ophmal access plan for all
quenes Even for the specml case of the relational model,
we were not able to fmd a way to calculate the pronuse of a
transformaaon,, such that we can guarantee the propemes
needed for A and sull dmzt the search m a reasonably
effectwe manner
6. Future Work

One mteresMg design issue that mnam 1s to pry-
wde general support for @cates as some form of @-
cates are hkely to be appear m all data models Wntmg the
DBI code for wcates, and operator arguments m general,
was the hardest part of developmg our optumzer prototypes
The current design IS that the DBI must design his or her

169

own data structures, and provide all the operations on them
for both rule condmons and argument transfer functions It
may be dtfficult to mvent an all-around sattsfymg defimtton
and support for pdcates, but it would be a stgmficant
improvement to the optmuzer generator The fact that pr&-
cates are a spectal case of arguments poses an addmonal
challenge, smce the over all design of the argument data
structure must sttll remam wth the DBI

The hll cbmbmg and the reanalyzmg factors have a
sigmficant effect on the amount of CPU time spent optnmz-
mg a query These values are almost surely model and alge-
bra dependent. Thus, they must either be set by the DBI or
must be determmed automattcally We feel that the former
altemahve reqmres a level of soptisticatton or tune for
expenmentation that cannot be expected from the DBI In
order to provide the DBI (or DBA) wtth some control over
the opmzanon process, we mtend to leave some contml
over the tradeoff between the quality of resultmg access plan
and the cost of optumzatton

Our expenments m&cate that, mdependent from the
hill clunbmg factor, the reanalyzmg factor, and the averag-
mg method, more than half of the nodes are typically gen-
erated after the best plan has been found An addmonal
stopping cntenon mtght help to avoid a large part of tis
wasted effort after the best plan has been found In commer-
cial INGRES, a comparison between the optmuzation time
and the expected query execution time 1s introduced If the
ophnuzation has consumed a certam fracaon of the time
estunated for executmg the best plan found so far, further
opturnzatton is abandoned and this plan is executed We
mtend to explore two other cntena besides tis one The
first involves the grtient of the last improvements Imagme
a graph with the hme spent on optmuzation on the honzontal
axis, and the e&mated execution tune of the currently best
plan on the verhcal axrs tis curve certamly flattens out
durmg the opturuzauon process Instead of going all the way
to its end, It rmght be possible to stop when tt has been flat
for some length of tune Another termmanon con&non we
plan on evaluatmg is the number of nodes generated for a
single query before optmuzation is preempted In our
expenments so far, we set a fixed hrmt for all quenes We
intend to calculate a reasonable llrmt for each query m&vt-
dually This lmut wdl probably have to be exponenttal m
the number of operators m the query

We also plan on makmg several changes m the gen-
erated optumzers The first is to recognize common subex-
presslons when the final access plan 1s extracted from
MESH Common subexpresslons are detected 111 MESH and
optmnzed only once, but the procedure which extracts the
access plan from MESH does not exploit this feature Furth-
ermore, the cost of common subexpressions is not spread
over the vanous occurences When common subexpressions
are sattsfactonly supported, opmzatlon of multtple quenes
in a single ophrmzer run will be easy to implement The
other future change 1s to implement nested method expres-
sions to allow the defimtton of method classes, with one
operator, eg exact-match m&x look-up, berg used m all
implementation rules reqmnng index look-up, eg &ex JOT,

rndex selection, etc Thts would be useful when addmg a
new access method to a system In the current design, an
Implementation rule has to be added once to the model
descnpuon iile for each rule where the new access method
can be used Instead, by usmg a method class, the new
access method only has to be added once, to the class

We mtend on explormg the idea of lmprovmg the
search strategy through the mtroductton of phases mto the
search process In the first phase, only proven heunsacs
would be used (le rules wtth very low expected cost factors)
~rlth a very lirmted amount of hill chmbmg and reanalyzmg
When tis search has ended, the query tree has hopefulry
mqnwed significantly, and the currently best cost now
establishes an upper bound for the second phase This phase
1s a broader search, basically what was described as the
search here, but startmg with the result of the first phase
mstead of the mlhal query tree Fmally, the thnd phase
would do work analogous to peep hole optmuzation m com-
pder technology, eg predtcate clause reordenng [HANA77]
Other assignments of tasks to phases could be designed as
well The idea of phases is qmte slrmlar to (actually a gen-
eralization of) ua idea of a “pfiot pass” [ROSE861

The first real test for the optumzer generator ~rlll
come when it 1s used for a real system The EXODUS pro-
Ject team intends to implement a relational database system
The first teal system wtll be relahonal because relational
technology is suffictently known and systems exist for per-
formance comparison purposes With other data models, we
would work on and expenment wtth EXODUS and the
model stmultaneously, which 1s probably not a good idea
We Hrlll then be able to assess more reahtdly whether the
general design 1s useful, and where its most stgmficant
shortcommgs are The second real test Hrlll be when we set
out to design an opmzer for one of the recently proposed
new data models, eg ABE [KLUG82], Daplex [SHIPSl],
Probe [DAYA85, MANO861, or LDL [TSUR86]

Fmally, we realize that the optumzer generator works
largely on the syntacac level of the algebra The semanttcs
of the data model are left to the DBI’s code Thts has the
advantage of allowmg the DBI maxnnal freedom ~rlth the
kmd of data model to implement, but it has the hsadvantage
of leavmg a slgmficant amount of uximg to the DBI We
therefore would hke to incorporate some semantic
knowledge of the data model mto the descnphon file How-
ever, dus 1s a long term goal which we have not yet gven
much attention

7. Conclusion
The most unportant result demonstrated by dus work

on rule-based optlrmzer generators 1s that it s possible to
separate the search strategy of an optnmzer from the data
model Thus, It 1s possible to unplement a genenc optmuzer
and search algonthm that 1s smtable for many data models
The model of optumzaaon chosen, algebnuc opmzanon, is
expected to fit most modem (set-onented) data models

The architecture of the EXODUS 0ptumze.r generator
enforces a modular, extensible design of the DBI’s query
optmnzer code The transfotmation and lmplementatlon
rules are mdependent from one another, and the property and
cost funcaons are well defined, hmtted programmmg tasks
for the DBI As a consequence, mcremental design and
evaluatton of a new data model’s opumtzer is encouraged
While most of the generator’s mputs are frurly easy to design
and to code, some pieces can be tricky For example,
dependmg on the design of the arguments, wntmg rule con-
dmons and argument transfer functions can be fatly burden-
some More work 1s needed to achieve adequate support for
the DBI m dus area

Our prehmmary performance evaluauon of an optlm-
lzer generated for a subset of the relaaonal data model,

170

demonstrates that it is not necessary to use exhaushve search
in the query optrrmzahon process While our expenments
cover only one data model, we believe that this generahza-
non is ~usafied Also, the DBI does not have to tune the
search strategy Instead, a good part of the tumng can be
done automatically by the system In terms of both
optnmzaaon speed and quahty of access plans produced, a
generated opnrmzer appears compentive with a hand-coded
optnmzer With the exception of a few cases, we found that
the access plans found by our prototype for the relational
model were as good as those produced by exhaustive search
We are currently designing a set of quenes to compare sys-
tematically a generated optlrmzer for the complete relational
model with an existmg commercial relanonal query optim-
lzer

Acknowledgements
The authors appreciate the encouragement and the

helpful suggestions by the other EXODUS proJect members
Mchael Carey, Daniel Frank, Joel hchardson, Eugene
Shelata, and M Murahknshna

References

[ASTR76] MM Astrahan, et al, “System R Relational
Approach to Database Management,” ACM Transac-
tions on Database Systems, Vol l(2), pp 97-137,
(June 1976)

[BARR811 A Barr and E A Fetgenbaum, The Handbook
of Arbfiaal Intelligence, Wdham Kaufman, Inc ,
Los Altos, CA (1981)

[BOBR83] DG Bobrow and M Steiik, “The LOOPS
Manual,” m LOOPS Release Notes, XEROX, Palo
Alto, CA (1983)

[CARE851 M J Carey and D J Dewitt, “Extensible Data-
base Systems,” Proceedmgs of the Islamorada
Workshop, (Feb 1985)

[CARE86al M J Carey, D J DeWltt, J E I&ha&on, and
E J Shelata, “ObJect and Rle Management m the
EXODUS Extensible Database System,” Proceedmgs
of 1986 VLDB Conference, pp 91-100 (Aug 1986)

[CARE86b] M J Carey, D J DeWm, D Frank, G Graefe,
J E Richardson, E J Shelata, and M Murahknshna,
“The Architecture of the EXODUS Extensible
DBMS A Prehmmary Report,” Pmceedmgs of the
Intemahonal Workshop on ObJect-tiented Database
Systems, (Sep 1986)

[C~ocSl] W Clocksm and C Melhsh, Pmgramrmng m
Prolog, Sprmger-Verlag, New York (1981)

[COPE841 G Copeland and D Mater, “Malung Smalltalk a
Database System,” Proceedings of ACM SIGMOD
Conference, pp 316-325, (June 1984)

[DAYA85] U Dayal and JM Srmth, “PROBE A
Knowledge-Onented Database Management Sys-
tem,” Proceedmgs of the Islamorada Workshop, (Feb
1985)

[DEWI D J Dewitt, R H Gerber, G Graefe, ML
Heytens, K B Kumar, and M Murahknshna,
“GAMMA - A mgh Performance Dataflow Database
Machine,” Proceedmgs of 1986 VLDB Conference,
pp 228-237, (Aug 1986)

FORG81] C L Forgy, “OPS5 Reference Manual,” Com-
puter Science Technical Report 135, Camegle-
Mellon Umverslty, (1981)

[FREY851 C F Freytag, “Translatmg Relauonal Quenes mto
Iterative Programs,” Ph D Thesis, Harvard Umver-
slty, (Sep 1985)

[FREY86al C F Freytag and N Goodman, “Translating
Relational Quenes mto Iterative Programs Using a
Program Transformanon Approach,” Proceedmgs of
ACM SIGMOD Conference. (June 1986)

[FREY86b] C F Freytag, “A Rule-Based View of Query
Optnmzation”. subnutted for publication, (Ott
1986)

[HANA77] MZ Hanam, “An Opnmal Evaluation of
Boolean Expressions m an Online Query System,”
Commumcahons of the ACM, Vol 20(5) pp 344-
347, (May 1977)

[HART681 P E Hart, NJ Ndsson, and B Raphael, “A For-
mal Basis for Heunsnc. Determmatlon of Mmnnum
Path Cost,” IEEE Transactions on SSC, Vol 4, pp
100-107 (1968)

[JARK84] M Jarke and J Koch, “Query Optnmzanon m
Database Systems,” ACM Computmg Surveys, Vol
16(2) pp 111-152, (June 1984)

[KLUG82] A Klug, “Access Paths m the ABE Statistical
Query Facility.” Pmceedmgs of ACM 1982 SIG-
MOD Conference, pp 161-173, (June 1982)

[KLUG82a] A Klug, “Equwalence of Relanonal Algebra
and Relational Calculus Query Languages Havmg
Aggregate Functions.” Journal of the ACM, Vol
29(3), pp 699-717. (July 1982)

[KOOI80] R P Kool, “The Optmuzahon of Quenes m Rela-
tional Databases,” Ph D Thesis, Case Western
Reserve Umvernty, (Sept 1980)

[LYNG86], P Lyngback and W Kent, “A Data Modehng
Methodology for the Design and Implementanon of
Information Systems,” Proceedmgs of the Intema-
uonal Workshop on ObJect-Onented Database Sys-
tems, (Sep 1986)

[MAN0861 F Manola and U Dayal, “PDM An ObJect-
Onented Data Model,” Proceedmgs of the Intema-
tional Workshop on ObJect-OrIented Database Sys-
tems, (Sep 1986)

171

[NGUY82] G T Nguyen, L Ferrat, and H Galy, “A figh-
Level User Interface for a Local Network Database
System,” Proceedmgs of IEEE Infocom, pp 96-105,
(1982)

[RICH871 J E Rxhardson and M J Carey, “Programmmg
Constructs for Database System Implementauon in
EXODUS,” Proceedmg of ACM SIGMOD Confer-
ence, (1987)

[ROSE861 A Rosenthal, U Dayal, and D Remer, “Fast
Query Optlrmzauon over a Large Strategy Space
The Pdot Pass Approach,” unpublished manuscnpt

[SELI79] P Gnffiths Sehnger, MM Astrahan, DD
Chamberhn, RA Lone, and TG Prxe, “Access
Path Selection 111 a Relational Database Management
System,” Prcceedmgs of 1979 ACM SIGMOD
Conference, (June 1979)

[SHIP81] D W Shopman, “The Functional Data Model and
the Data Language DAPLEX.” ACM Transacuons on
Database Systems, Vol 6(l), pp 140-173, (Mar
1981)

[SMIT75] JM Srmth and P Y.T Chang, “Optmuzmg the
Performance of a Relational Algebra Database Inter-
face,” Commumca~ons of the ACM, Vol 18(10). pp
568-579, (1975)

[STON76] M Stonebraker, E Wong, P Kreps, and GD
Held, “The Dengn and Implementation of INGRES,”
ACM Transactions on Database Systems, Vol l(3),
pp 189-222, (Sept 1976)

[STON86] M Stonebrsker and L A Rowe, ‘The Design of
POSTGRES.” Pmceedmgs of 1986 SIGMOD
Conference, pp 340-355, (May 1986)

[TSUR86] S Tsur and C Zamolo, “LDL A Lqqc-Based
Data-Language,” MCC Techmcal Report, @B-026-
86)MCC. (Feb 1986)

[wARR77] D H D Warren, L M Peremx, and F Pereua,
“PROLOG - The language and its unplementatlon
compared wth Lisp,” Proceedmgs of ACM
SIGART-SIGPLAN Symp on AI and Programmmg
Languages, (1977)

[wONG76] E Wong and K Youssefi, “Decomposl~on - A
Strategy for Query Processmg,” ACM Transacttons
on Database Systems, Vol l(3). pp 223-2.41, (Sept
1976)

[YOUS79] K Youssefi and E Wong. “Query processmg m a
relauonal database management system,” Proceed-
mgs of 1979 VLDB Conference, pp 409-417, (Ott
1979)

[ZANI83] C Zamolo, “The Database Language GEM,”
Proceedmgs of 1983 ACM SIGMOD Conference,
(May 1983)

172

