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ABSTRACT 

This paper presents the design and an mmal perfor- 
mance evaluation of the query ophrmzer generator designed 
for the EXODUS extensible database system. Algetic 
transformaaon rules are translated mto an executable query 
optmuzer. which transforms query trees and selects methods 
for executmg operattons accordmg to cost funcaons associ- 
ated with the methods The search strategy avoids exhaus- 
ave search and it mties Itself to take advantage of past 
expenence Computattonal results show that an opmzer 
generated for a relational system produces access plans 
almost as good as those produced by exhaushve search, ~rlth 
the search tune cut to a small fraction 

1 Introduction 
In recent years, a number of new data models have 

been proposed mcludmg Daplex [SHIPSl], ABE [KLUG82], 
GEM [ZANISJ], GEMSTONE [COPE84], IRIS [LYNG86], 
Probe [DAYA85, MANO863, Postgres [STON86], and LDL 
[TSUR861 Unfortunately, Implementmg a database system 
for a new data model 1s a difficult and labonous task The 
goal of the EXODUS project 1s to ease the burden of the 
database unplementor (DBI) EXODUS 1s designed to assist 
the DBI m both creatmg a system for a new data model and 
111 augmentmg an exlstmg system For example, one rmght 
first use EXODUS to construct a database system for a new 
data model Later, one mtght extend this system by addmg a 
new access method or a new dgonthm for an exlsMg opera- 
tor m the query language To achieve tlus, the EXODUS 
design consists of a powerful, highly efficient storage sys- 
tem, the database tmplementation language E, which pro- 
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vldes language constructs spe&ically designed to assist 111 
database Implementatton, a type manager, which mamtams 
state and locatton mformmon about the types and pro- 
cedures de&d m the system, and an optumzer generator 
In the future, we plan on investlgatmg generators for user 
mterfaces An 0veMew of the atchttecture of EXODUS can 
be found m [CARE86b] The design of the storage manager 
and file system 1s presented m [CARE86aJ The E program- 
mmg language 1s described m [RICH871 In ths paper, we 
descnbe the optmuzer generator 

Untd very recently, query opnmtzers [SELl79, 
WONG76, KOOI80] have been designed and unplemented 
w-ah a spectiic data model and database system m mmd The 
operators and then algorithms, the access methods, and the 
cost model were. all known when the database system was 
bemg nnplemented Consequently, the 0ptMlzatlon process 
could also be tailored to the target data model and its Imple- 
mentaaon Only the Postgres opamtzer [STON86] allows 
the mcorporanon of new access methods into the optumza- 
tton process 

Smce EXODUS does not support a smgle conceptual 
data model, tt would impossible to provtde a single opam- 
lzer for all target apphcauons As a solution we 
hypothesned [CARE853 that d the query ophrmzer were 
orgamzed as rule-based system, then as new operators, 
access methods, etc , were added to the database system, the 
oparmzer could be informed of their propemes by addmg 
new rules to its rule base As we began to mveshgate the 
concept of such an optmuzer tt became clear that the fean- 
blllty of such a designed hinged on bemg able to separate 
cleanly the data model specific parts of the 0pMllzer from 
the common components The common components constst 
pnmanly of the search mechamsm and its supportmg 
software The pteces specfic to the data model include spe- 
clal types (e g BOX), operators, the algonthms for unple- 
mentmg these operators, the cost functions for the algonthms 
and the catalog management software Makmg tt easy to 
spectfy these pteces 1s obviously cnacal m makmg the 
optmuzer generator successful In the followmg sections we 
demonstrate that using a rule based approach makes specify- 
mg these components smghtforward. Furthermore, our 
prehmmary performance results demonstrate that the access 
plans obtamed are competitive wtth those produced by 
exhausuve search techmques while talang only a fraction of 
the me to produce 

One way to find the optunal access plan for a query IS 

to sunply generate all possible access plans, estnnate their 
respecuve processmg costs, and output the least expenstve 
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one In the System R optlrmzer [SELI79] this basic strategy 
1s augmented wtth a prunmg techmque that deletes all but 
the cheapest of a set of equivalent subplans at each step of 
the optmuzaaon process Wlthout prunmg, the oparmzer 
would be unacceptably slow Followmg the System R 
example, a rule-based optmuzer should employ certam laws 
or “musts” (eg whenever possible use a Jam operator rather 
than a CartesIan product followed by a selecaon) and heuns- 
tics (eg move selecttons before jams) 111 its search strategy 
m order to reduce the number of access plans considered 

The remamder of dus paper is orgamzed as follows 
In Section 2, we present the design of our rule based opum- 
ner generator We also descnbe the operation of an ophm- 
izer produced urltb the generator The search strategy 
employed by a generated opmzer and how it improves 
itself by 1-g 1s presented m Section 3 Section 4 gwes 
some computauonal results obtamed ~rlth an opmzer gen- 
era&d for a restncted relational model In !&non 5, we 
compare and contrast our work wtth related research Future 
duections are outlmed m Secnon 6 Our conclusions can be 
found m &non 7 

2. Design of the Optmuzer Generator 

2.1. OvervIew 
In order to be sufficiently general, an optmnzer gen- 

erator must be based on an abstmctlon of opnrmzahon smt- 
able for most data models We declded that quenes and 
access plans should be expressed as trees, because we 
beheve that operator trees are general to all set ortented data 
models m which complex quenes are composed by nesMg a 
tite set of procedures The nodes of the query bees are 
labeled ~nth an operator and its arguments, eg a selection 
pre4itcate There are two alternative ways of transferring 
data between operators temporary iiles and pipehnes 
WIthout precludmg the use of either one, we sllnply refer to 
them subsequently as mputs or streams 

Before a query can be ophmtzed, an mmtuil operator 
tree must be constructed In EXODUS, this IS done by the 
user mterface and parser The output of the opmzer, the 
access plan, can e&er be mterpreted by a recurswe pro- 
cedure or lt can be further transformed Both approaches 
have been used successfully 111 exlsMg database systems In 
Gamma [DEWI86], for example, the operators m the access 
plan are mterpreted (though the pre&cates themselves are 
complied mto machme language) In System R [SELI79], 
the access plan was complied mto machme language Frey- 
tag wY85, FREY86a] suggests applymg rule-based tech- 
niques for tis step 

In most database systems, there are frequently 
several altemauve algonthms for the same logcal operaaon 
For example,’ the relanonti JO~ operator can be Imple- 
mented usmg several alternattve JOT methods Our model 
&SMgWheS between operators, correspondmg to pnmmves 
provtded by the data model, and methods, that are specific 
Implementations of the operators The access plans pro- 
duced by the optlrmzer are also trees, wltb a method and tts 
argument m each node In this model of quenes and access 

1 A word about the examples m this paper Fmt, exam- 
ples based on the xelaaonal data model were chosen because 
they are eastiy understood We firmly believe that the ldeas 
presented here apply to most other data models Second, 
larger examples are ended wltb a R 

plans, query optumza~on consists of query tree reordenng 
and method selection Smce this optnmzation scheme 1s 
centered around the algebra of the data model, we refer to It 
as algebratc optvnuanon 

As example, consider the query tree and a 
conespondmg access plan shown m Figure 1 Notice that m 
producing the access plan on the nght from the query tree on 
the left, two types of rules are apphed to the tree Frst, the 
operators are rearranged by pushmg the selection before the 
JOHI Second, each operator is replaced by a method that 
unplements It 

select Aa < 100 

I 
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]omAb=Bb 1 \ 

i \ 
filescan A filescan B 
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Figure 1 

As proposed m [CARE85], we mlhally intended to 
implement a rule-based optmuzer usmg an AI language hke 
Prolog [wARR77, CLOC81],OPS5 [FORG81], or LOOPS 
[BOBR83] as those languages prowde pattern matchmg and 
a search engme, and since umficatron can be used elegantly 
to bmld new query trees from old ones In addmon. these 
languages allow augmentation of the rule base at run-tune 
This capablbty 1s desnable for two reasons Fn%, m a data- 
base system that permtts the &&on of new abstract data 
types, access metbods, etc. It 1s necessary to mfonn the 
optmnzer about those changes Second, when the optmuzer 
-finds that certam sequences of transfonnanons occur fre- 
quently together, the opmzer could augment the rule set by 
addmg a smgle rule that combmes the sequence of transfor- 
mahons In successive optumzanons, the whole sequence of 
transformations could then be done m a smgle step 

We mplemented and expenmented wtth a prototype 
m Prolog, which, unfortunately, had to be abandoned This 
prototype had two serious problems Fast, Prolog has a 
6xed search strategy, depth first search We found that we 
needed to augment the search strategy dynarmcally wlule the 
optlrmzer was nmmng, a fauly cumbersome task Second, 
our Implementation (C-Prolog mterpreter) was slower than 
we were wdlmg to accept 

Havmg abandoned this prototype we decided to pur- 
sue the Idea of lmplementmg a rule-based optmuzer genera- 
tor Whfle bmldmg an optnrnzer generator 111 C qmred 
more work mtaally, it left us ~rlth the freedom to nnplement 
exactly the desired functtonahty and a search strategy tuned 
to the process of optmuzmg algebratc quenes Furthermore, 
we were able to expenment ~rltb altematlve designs m a 
stnughtfoxward manner The pnnclpal dtsadvantage of the 
generator approach 1s that the optlrmzer cannot be changed 
while runmng, a feature other researchers have found useful 
[STON86j 

The input mto the EXODUS optnmzer generator 
consists of a set of operators, a set of methods, algebratc 
rules for rransfonmng the query trees, and rules descnhng 
the correspondence between operators and methods Tlus 
mformanon IS contamed 111 the model descnption file Fig- 
ure 2 gwes an ovennew of the use of the opmzer genera- 
tor When the database system 1s constructed, the generator 
produces a data model specfic optmuzer from the descnp- 
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model descnpuon file 
1 I 

Database System 
Generabon Tune 

QuerY 

bon At run nme, each query is transformed mto an operator 
tree by the user mterface, optmuzed by the generated optnn- 
lzer, and then interpreted or transformed mto a Program 

The generated optmuzer transforms the mitral query 
tree step by step, mamtammg mformation about all the alter- 
natives explored so far 111 a data structure called MESH 
MESH 1s also used to hold access plans for each query tree 
that has not been pruned from the data structure At any 
ame durmg the optmuzatlon process there can be a huge set 
of possible next transformations These arc collected m a 
data structure called OPEN2 which 1s mamtamed as a pnor- 
lty queue OPEN 1s nutlahzed to be the set of transforma- 
tions that can be applied to the iniWil query tree 
The general opfimtzatlon algorithm can now be described as 
follows 

while (OPEN is not empty) 
Select a transformation from OPEN 
Apply it to the correct node(s) m MESH 
Do method selectton and cost analysis for the new nodes 
Add newly enabled transformations to OPEN 

The rules govermng query tree transformations and method 
selection are spe&c for the data model and must be defined 
111 the model descnption file 

2 2 The Input to the Optutuxer Generator 
To implement a query optnmzer for a new data 

model. the DBI writes a model descnption file and a set of C 
procedures If the new model resembles one for which an 
optnmzer has already been generated, it rmght bc more con- 
vement to augment an exlstmg model descnptlon file The 
generator program transforms the descnptlon file into a C 
program This 1s complied and lmked ~th the set of C pro- 
cedures Wntten by the DBI to form a data model spectic 
optlmlzer 

In the model descnpaon file, the DBI hsts the set of 
operators of the data model, the set of methods to be con- 

2 OPEN 1s a standard name for the set of possible next 
moves m AI search algonthms IBARR 

p Execution Tme 

Figure 2 

sidered when bmldmg and comparmg access plans, the rules 
definmg legal transformanons of query trees, termed 
transformahon rules, and the rules defining the correspon- 
dence between operators and methods, termed implementa- 
tion rules 

The model descnptlon file has two reqmred parts and 
one optional part The first reqmred part 1s used to declare 
the operators and the methods of the data model It can also 
include C code and C preprocessor declarattons to be used m 
the generated code The second part consists of transforma- 
tion rules and implementahon rules The optional thud part 
contams C code that is appended to the generated code 
These parts will be discussed m further detad below In 
ad&non, we til Illustrate how the pieces fit together 
through a senes of examples 

In the first part of the model descnpuon file, called 
the declaration part, the operators and the methods of the 
data model are declared The keywords Sbopemfor and 
%method are followed by a number to mdrcate the anty and 
by a hst of operators or methods with this anty 
Example 

%operator 2 Join 
%method 2 hashAom 1oopsJom Cartesian-product 

In tlus example, an operator ~oln and three methods 
hashAotn, loops JOW, and carteslan-product an? declared 
The 2’s signal the generator that the JOT operator and the 
three methods each reqmre. two input streams Cl 

Besides operator and method declaranons, the first 
part of the descnpaon file can also mclude C code that ti 
be wntten into the output file for the optmnzer before any 
generated code This capablhty 1s used to provide data 
model specific defimaons for four types used by the optim- 
izer generator These are OPER-ARGUMENT, 
METH-ARGUMENT, OPER-PROPERTY, and 
METH-PROPERTY These types are used m the structure 
deiinmon of nodes for query trees, access plans, and MESH 
to store the arguments of operators and methods, eg pr&- 
cates, and “pzvpemes” that the DBI can associate w& a 
node In each MESH node, the proper operator arguments 
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and method arguments are mserted by calhng procedures 
prowded by the DBI. and they are stored m memory loca- 
ttons of type OPER-ARGUMENT for the operator and of 
type METH-ARGUMENT for the method If the DBI 
wishes to do so, it 1s possible to store mformatton about a 
subtree m tts root node, eg relation cardmahty, tuple width, 
etc In each node m MESH, there ate two fields provtded for 
this mformatton, opergroperty of type OPER-PROPERTY 
and mefhyroperiy of type MBTH_pROPERTY The con- 
tents of the former field depends only on the operator whtle 
the latter depends on the method chosen for the node For 
example, 111 our relanonal prototypes we store the schema of 
the mtermedlate relation 111 oper_property and the sort order 
111 meth-Property 

The second part of the descnption file, called the rule 
part, contams the transformatton rules and the unplementa- 
tton rules A rule consists of two expressions and an 
optional condlhon Between the expresslons 1s the keyword 
b>, for Implementation rules and an arrow for transformatton 
rules The arrow in&cates the legal duecttons of the 
transformatton The arrow can point to the left, to the nght, 
or can be double-sided If a one-sided arrow has an excla- 
mation mark wtth it, the transformation cannot be apphed to 
a query tree generated by thts transformation Whtle useful 
for an optumzer’s performance, tt should never be necessary 
to use thts feature for correctness A typical situation where 
It can improve the optumzer’s performance is a commuta- 
hvity rule Usmg commutattvtty twice results in the ongmal 
query tree, if a query tree is generated that is exactly hke one 
generated earlier, the duphcanon 1s detected and the new 
query tree is removed Thus, not allowmg commutahvlty to 
be apphed twtce 1s only a performance and not a correctness 
issue 

Each expression in a transformation rule and the 
expression on the left side of an implementation rule consists 
of an operator and a parameter hst Each parameter can be 
another expresston or a number A number m&cates an 
input stream or a subquery The expression on the nght side 
of an lmplementa~on rule consists of a method and a hst of 
mputs 
Example 

JOlll(1,2) ->’ JOln (2, 1). 
join (1.2) by hashJoin (1,2). 

The first hne of this example is the Join commutaavlty rule 
Since applymg tt twtce results 111 the ongmal form, the 
once-only arrow (~rlth exclamaQon mark) 1s used The 
second lme m&cates that hashAom 1s a suitable lmplemen- 
tatton method for Join El 

Somettmes the same operator name appears twtce m 
the same expression, for example, m an assoctauvity rule In 
thus case, It IS necessary to identify the operators so that 
arguments (eg Jam predtcates) can be transferred correctly 
when the transformation 1s apphed For identification, 
operators m an expresston can be followed by a number If 
the same number appears with an operator on the other side 
of the arrow, the arguments are copied between these two 
operators If the DBI wishes a default acnon other than SKI- 
ple copymg, a function name COPY-ARG can be declared to 
the C preprocessor, replacuig the default actton If some- 
thmg other than simply copymg arguments from the mlnal 
query mto MESH and from MESH mto the final access plan 
1s needed, the DBI can define the functions COPY-IN and 
COPY-OUT If this argument passmg scheme is not 

sufficient, a procedure name can be Dven with a transforma- 
tion or Implementation rule Instead of using the default 
mechanism, this procedure 1s called to transfer (and possibly 
mod@ the arguments 

ExaLple 
project (hashJom (1,2)) by 

hashJom-proJ (1,2) combine_hJp, 

Thts rule m&cates that there 1s a special form of hash Join, 
called hashAotnproJ, that can be used when a hash Join IS 
followed by a project operator When hash-Jam-pmJ is 
chosen, the opturuzer wfl call the the DBI supphed pro- 
cedure cornbm-hjp to combme the projection list and Join 
predicate to form the argument of hash_lOZflpWJ 0 

Both transformanon rules and implementation rules 
may have a condmon associated ~nth them Condttlons are 
wntten as C procedures and are executed after the opmzer 
has determmed that a subquery matches the pattern of a rule 
(ie that subquery has the same operators m the same posl- 
nons as the rule) When the con&non is not met, the special 
action RESECT 1s provtded If a REJECT action 1s not exe- 
cuted, the transformation 1s added to OPEN The con&non 
code can access the arguments and pmperttes of the opera- 
tors and the inputs of the expresston m pseudo vanables 
defined by the generator These vanables are called 
OPERATOR-l, OPERATOR-2, etc , and INPUT-l, 
INPUT-2, etc The numbers 111 these vanables are the same 
as those used to tdenhfy operators and mputs Each vanable 
1s actually a structure (record) and includes the fields 
operproperty, oper_argument, methproperty, and 
meth-argument In the case of a transformation rule that can 
be used m both tiecoons, the condmon code is mserted 
hme mto the opmzer code To Qstmgutsh these cases at 
compile ttme, C preprocessor names FORWARD and BACK- 
WARD are defined for use m the condmon code 

Example 
Jam 7 (Join 8 (1,2), 3) <-> JOT 8 (l,~oln 7 (2,s)) 
(( 
# tfdef FORWARD 
If (NOT cover-pr&cate (OPERATOR-7 oper-argument, 

mmT-2 ope~property, INPUT-3 oper-property)) 
REJECT, 

# enti 
# lfdef BACKWARD 
tf (NOT cover-predtcate (OPERATOR-8 oper-argument, 

INPUT-1 oper-property, INPUT-2 oper-property)) 
REJECT, 

# endlf 
1) 

This example illustrates the Join assoclanvlty rule and the 
use of condmons to control the applicanon of a transforma- 
tion Since the Join operator appears twice m each expres- 
non, the numbers 7 and 8 are appended to dtstmgutsh the 
two instances of the operator This allows the opurmzer to 

transfer correctly the Join prerllcates between the two opera- 
tors as the transformation rule is applied The con&non 
code, the lmes between ( ( and 1 I, 1s copied twice into the 
optmnzer code Nevertheless, only one if statement from the 
condmon code 1s executed for each duectlon (the other one 
1s removed by the C preprocessor) The Boolean function 
coverpredrcate 1s assumed to determme whether all the 
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attrrbutes occumng m the prerllcate that 1s the first argument 
to the funcnon are atmbutes of the relations described by the 
second and thud arguments Cl 

The rule set must have two formal propemes - it 
must be sound and complete Sound means that It allows 
only legal transformanons If the condmon cede 1s not 
correct, there 1s nothmg the generator can do about lt, and 
the generated optlrmzer ill not work properly Complete 
means that the rule set must cover all possible cases, such 
that all equivalent query trees can be derived from the m&al 
query tree usmg the transformanon rules If the rule set 1s 
not complete, the op~zer ill not be able to find optnnal 
access plans for all queues On the other hand, the rule set 
can be redundant. In fact, rf the DBI foresees that a certam 
combmation of rules wdl be used t?equently, It 1s morn- 
mended (but not reqmred) that thus combmanon be spec6ied 
as a smgle rule tis vvlll speed up the optmuzanon process, 
but it will not affect its results, unless the search parameters 
(described m Section 3) are set too restnchvely 

Besides the model descnptlon lile. the DBI must pro- 
vlde a set of C procedures These are the property pro- 
cedures, the cost funcuons, and some support functions The 
name for a property or cost funchon 1s the concatenation of 
the word prop&y or cost and the operator or method name 
The names for the support funcaons m fixed For each 
operator. one property function 1s reqmred For each 
method, a property function and a cost funcnon 1s requued 
Support fimc0ons mclude argument companson, memory 
allocaaon/deallocaaon, and formattmg procedures for pro- 
perty and argument fields The memory funchons an used 
for mtermdate data structures and the access plans The 
formattmg procedures are used by the bmlt-m debuggmg 
factiiues mcludmg an mteractive graphics program3 Pro- 
perty functions for operators allow the DBI to cache mfor- 
mation m mdtmdual nodes of the mtermtiate query trees to 
speed up condmon and argument processmg For example, 
m our relational prototype, the schema of each mtermtiate 
relation 1s cached Property functions for methods allow the 
DBI to denve and cache mformatton that depends on the 
selected method, eg physical sort order Cost functions 
determme the processing cost for each method, dependmg on 
the operator argument and the mput streams 

ti scheme of using DBI functions to complement 
the automatically generated optmuzer has a very desn-able 
side effect The DBI 1s basically forced to wane the code m 
a structured, modular way The various DBI routmes can be 
wntten independently. meaning that they can be wntten at 
tiferent Stages of a development proJect The same is true 
about the transformation and Implementation rules Each 
rule can be specified mdependently of other rules The gen- 
erator bmlds the necessary connections and control smc- 
tures Agam, incremental development and enhancement of 
a database system and its optnruzer component 1s supported 
For example, imagme the DBI wants to explore how useful a 
newly proposed index structure 1s To have the optmuzer 

3 Adnuttedly, these tools were used when debuggmg the 
oparmzer generator and the code lmplementmg the search 
strategy, but they also proved invaluable when debuggmg 
the DBI code for our prototype implementanon The graph- 
ICS capabdmes were first implemented for a demonstration, 
but they are very useful for quick understandmg and debug- 
gmg Includmg the debuggmg tools mto the optmuzer 1s a 
command lme swtch of the generator program 

consider this new mdex structure for all future optmuzatlons, 
all the DBI has to do IS wnte a few implementation ties, a 
property functton, and a cost funcaon4 

The generator produces the somce code for the 
optmnzer m a smgle pass over the descnptton file Wule 
Rag the declarahon part, it bmlds a symbol table of 
operators and methods and copies C sowe hnes mto the 
output file For the rule part, It mamtams three temporary 
tiles for the procedures match, apply, and analyze Match 
takes a subquery and adds all applrcable transformattons to 
OPEN Apply actually perfotms a transformanon after It has 
been selected from OPEN Analyze determmes the cheapest 
possible method for the mot of a subquery by matchmg It 
agamst the Implementation rules and by callmg the cost 
funtions For buiuecaonal transformation rules, the code 
generahon procedure is invoked Wee for match and apply, 
once for each dtrechon Thus, a blduectional rules appears 
as two rules m the generated oparmzer 

For each transformation rule, three tests are mserted 
mto the procedure match Fn%, a s&query cannot be 
transformed by a rule if the rule 1s a once-only rule and the 
subquery has been generated by this rule, or If the rule 1s 
bltichonal and the subquery has been generated by the 
opposite dvecuon Second, a rule cannot be apphed to a 
subquery If the patterns do not match The patterns match If 
there are the same operators at the same positions m the rule 
and m the subquery Thn& a rule cannot be apphed If there 
IS a con&hon and the condmon 1s not met. 

To apply a transf~hon. all necessary new nodes 
are generated and operators, operator arguments, and inputs 
are Cllcd m For each new node, a procedwe 1s called which 
either 6nds an exmmg eqmvalent node or mvokes property 
cachmg and method selectton for the node Tlus process 1s 
described m more deli below For each lmplementanon 
rule, code is added to the procedure analyze If a subquery 
and a rule pattern match, this code calls the cost funcnon of 
the appropnatc method and compares the result to the least 
expensive unplementaaon found so far for the subquery 

When the parser finds the end of the rule part, these 
procedures and a hbrary of support mutmes are appended to 
the output file The support routines Mplement the control 
structure and mamtam the OPEN data structure Fmally, the 
thud part of the model descnption iile 1s appended to the 
optlrmzer source code 

2 3. Operation of a Generated Optimizer 
The cost model that the optnmzer supports 1s simple 

but powerful The cost for a query tree is the sum of the 
costs of all methods m its access plan One rmght cnm2.e 
ths model at Grst as bemg too muve smce it does not allow 
the mcorporatton of buffermg effects that potentially reduce 
the I/O cost of m&m&ate files However, If such effects 
exist, they can and should be mcorporated mto the cost func- 
tions This 1s one of the reasons why all avrulable mforma- 
tton 1s passed as arguments to the cost func0ons that are 
wntten by the DBI 

As menhoned earher, mformafion about the query 
trees and access plans explored so far is stored m a data 
structure called MESH MESH 1s a network of nodes that 

4 There remams, of course, the non-mma.l problem of 
codmg the operations on the new mdex structure 
EXODUS eases this task W&I its database implementanon 
language E [RICH871 
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select Aa < 100 - pmAb=Bb - pmBc=Cc 
: 

Figure 3 

I 
sclectB.a<100 - JomAb=Bb 

A 
--__ \ ----- _________--________ ___ ____________________ ’ 

___ ________________________________________----.-------- -----’ 

B C 
Figure 4 

JotnAb=Bb - pmBc=Cc 

selcctBac100 C 

B 
Flgtue 5 

represents both alternattve query trees and access plans 
Smce the me of each node 1s at least 100 bytes,’ aud since 
there can be many query trees to consider, It was important 
that MESH be designed to avoid any unnecessary redun- 
dancy Also, smce we Hrlsh to avoid redundant processmg, It 
seems natural to share as many nodes as possible between 
query ~XCS To acheve thts, the optumzer allocates nodes 
only when necessary dunng a transformatton, shanng copies 
whenever feasible W~tb tlus nnplementatlon, typ~ally as 
few as 1 to 3 new nodes an? reqmred for each transforma- 
tion, mdependent of the size of the query tree 

Example Consider Ftgure 3 The hold arrows denote 
transformanons, sobd lmes show the mput streams (which 
flow upward), and dotted lmes pomt to subtrees that are 
bemg reused. The first transformation pushes the selectton 
down the query tree The second transformanon apples JO~ 
commutatlvlty 0 

More precclsely, a node 1s created for each operator 
that appears 111 the transformaaon rule on the “new” side 
The optmuzer then traverses the new nodes bottom-up and 
mes to replace each one by an exlstmg eqmvalent node 

’ TUB 1s the muumal sue The actual size depends on 
the stze of the data structures defined by the DBI, and on the 
maximal anty of the operators and methods m the data 
model In our current Implementations. each node 1s almost 
200 bytes long 

Two nodes a~ eqmvalent if they have the sdme operator, the 
same operator argument, and the same input(s) A hashmg 
scheme 1s employed to make the search for eqmvalent nodes 
extremely fast This scheme to detect eqmvalent nodes is 
heady used when the uuual query tree 1s copled mto 
MESH, so that common subexpxesslons 111 the query are 
recognized as early as possible If a new node cannot be 
replaced by an exlstmg duplicate, it 1s matched agamst the 
unplementahon rules 111 order to find the optimal access plan 
for the new subquery rooted at thy node Furthermore. It is 
matched agamst the transformation rules, and any applicable 
transformanons are added to OPEN Then, all parent nodes 
of the old subquery (those that pomt to the old subquery or 
au eqmvalent subquery as one of theu mput streams) are 
matched agamst the Implementanon rules to propagate the 
cost unprovement obtamed by the transformahon performed 
We term thus reanalyzing Fmally, the parent nodes are 
matched agamst the transformatton rules, as there mtght now 
be some (new) possllnhttes for fur&r trausfotmattons This 
is called rematching 

Example Consider Figure 4 The !irst two transforma- 
ttons push the selecfion down the query tree, reustng 
nodes where possible To apply JOIII assocm~~ty, the 
node labeled I must be rematched vvlth the node labeled 
II as Its right input, resultmg in an entry m OPEN that 
wll eventually lead to the transformation shown 111 Rg- 
ures cl 
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3 Search Strategy and Learmng 
Since the number of possible transformations m 

OPEN can be very large for a complex query, If such quenes 
are to be opt~rmzed m a reasonable amount of tune It 1s crm- 
cal that the optumzer avoid applymg most of these transfor- 
mations To find the optimal access plan qmckly, the search 
must be ticted [BARR811 To do this, the “nght” transfor- 
matlon must be selected from OPEN at each step of fie 
opnrmzaaon process The ideal situation would be to select 
only those transformations that are necessary to transform 
the initial query into the query tree correspondmg to the 
~phmal access plan Unfortunately, this 1s not feasible as the 
optimal access plan and the shortest sequence of transforma- 
tions are not known Instead, the optizer selects the 
transfonnahon which pronuses the largest cost improvement 
Pronuse is calculated using the current cost (before the 
transformation) and mfortnation about the transformation 
rule mvolved To measure the pronuse of a transformation 
rule, an expected cost factor 1s associated wrth each 
transformanon rule Buhrectional transformation rules have 
two expected cost factors, one for each direction The 
interpretatton of this factor is as follows if the cost before 
the transformation IS c and the expected cost factor of the 
transformation rule is f, then the cost after the transformation 
1s c*f If a rule 1s a good heurrstlc, hke pushing selections 
down in the tree, the expected cost factor for dus rule should 
be less than 1 If, however, a rule 1s neutral on the average, 
(eg Join commutatwlty), its value should be 1 

The concept of expected cost factors rruses two 
important issues Fast, 1s such a factor vahd? That is, 1s tt 
possible to associate a value with a rule independent of the 
database and the quenes to be opmzed? Second, how can 
these factors be detertnmed? We wdl address the second 
quesuon first 

We decided that it is too Mficult (and too error 
prone) to let the DBI set the expected cost factors On the 
other hand, smce we do not know the data model and the 
rules a future DBI rmght implement, we cannot set these cost 
functions either Thus, they should be determmed automati- 
cally by the optmuzer by learnmg from its past expenence 
An adequate method is to use the average of the observed 
cost quotients for a particular rule Recall that the expected 
cost factor is an estimate for the quotient of the costs before 
and after applymg the transformaaon rule Thus, it is smt- 
able to approximate the factor with the observed quouents 
for the rule 

The simplest averagmg method is to take the anth- 
metlc average of all applications of the rule smce the optnn- 
lzer was generated However, If the query pattern or the 
database changes, usmg the average of all observed quo- 
tients rmght be too ngd One alternative would be the aver- 
age of the last N apphcauons (for some suitable N) This 1s 
fiurly cumbersome to implement, however, as the last N 
values must be stored for each rule A second alternative 1s 
to calculate a shdmg average for each rule The shdmg aver- 
age 1s the weighted average of the current value of the 
expected cost factor and the newly observed quotient, and 1s 
quite easy to implement efficiently Fmally, smce we aver- 
age over quotients, a geomemc average may be more 
appropnate than an anthmetlc average In our tests, we 
evaluated the following four averagmg formulae 

geomemc slidmg average geomemc mean 
1 1 

f + (fx*$i f + (f’*q)2i 

anthmehc shdmg average mhmeac mean 

fc% fc* 

In these formulae, f is the expected cost factor for the rule 
under consideration, q is the cunent observed quotient of 
new cost over old cost, c 1s the count of how many tunes dus 
rule has been applied so far, and K 1s the shdmg average 
constant As wdl be Qscussed below, all of these averagmg 
formulas lead to statistically valid constructs, and the perfor- 
mance Merences between them are fmly small 

In many cases, we ~11 find that a beneficial rule 1s 
possible only after another (perhaps even negatively 
beneficial) rule has been appbed To reflect this III the 
search Strategy, the optnmzer actually adjusts the expected 
cost factor of hvo rules after an advantageous transformanon 
Fmt, it recalculates the factor for the rule Just apphed using 
one of the techniques described above Second, it also 
adjusts the factor of the precedmg rule that was apphed, 
using the same formula but wth only half the weight Thus, 
a rule that frequently enables subsequent beneficial transfor- 
mations ~11 have an expected cost factor lower than 1 (the 
neutral value), and will be preferred over other neutral rules 
without tis in&t benefit We call this mdrrect adJust- 
ment Fmally, If a cost advantage 1s reahzed while reanalyz- 
ing the parent nodes after a transformation, the rule’s 
expected cost factor is also adjusted with half the normal 
weight We call tlus propagation adjustment 

Ordenng the transformations 111 OPEN by the 
expected cost decrease has a negative effect m some sltua- 
tions If OPEN contams two eqmvalent subquenes with ti- 
ferent costs each of which can be transformed by the same 
rule with an expected cost factor less than 1, the transforma- 
uon of the more expensive query tree will be selected iirst 
Thu IS, of course, countermtmtwe, and not a good search 
strategy To offset this effect, the optmuzer subtracts a con- 
stant from the expected cost factor when estlmatmg the cost 
after a transfoxmation of a part of the currently best access 
plan The lowered expected cost factor increases the 
expected cost improvement, such that the currently best 
subquery is transformed before the other equivalent 
subquery 

The expected cost factors are used to tit the 
search, so the optmuzer finds the “optunal” access plan 
qmckly Once the optimal access plan has been found, the 
opmrnzer could ignore all the remammg transformations in 
OPEN, and output the plan Unfortunately, it 1s Impossible 
to know when the currently best plan is indeed the optunal 
one Our soluaon 1s to let the optu~llzer keep searchmg, but 
to hrmt the set of new transformations that are apphed To 
do this, the cost improvement expected by applying a 
transformation is compared with the cost of the best 
equivalent subquery found so far If tis improvement 1s 
wlthm a certam multiple of the current best Cost, the 
transformation 1s applied, otherw~, It IS ignored and 
removed from OPEN Usmg the analogy of finding the 
lowest pomt m a ten-am, but someames havmg to go uphill 
to reach an even lower valley, tlus techmque IS termed hill 
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climbing The multiple mentioned above 1s the blll chmb- 
mg factor Typical values are 1 01 to 1 5 If It 1s less than 
1, neutral rules wdl never be apphed, even though they 
mght be necessary to explore the complete search space 
On the other hand, the expenments described later show that 
for the relational model hill chmbmg factors close to 1 work 
well 

Fmally, there IS a reanalyzing factor Recall the 
importance of reanalyzmg from Figures 4 and 5 If the cost 
of the newly generated subquery is s$#icantly higher than 
its best eqmvalent subquery, reanalyzing 1s probably wasted 
effort Only If the cost of a newly generated subquery is 
mthin a mulnple of Its best eqmvalent suhquery are all the 
parent nodes (le those contammg the old suhquery as one of 
thm Inputs) matched agamst the transformanon and nnple- 
mentanon rules with the old subquery replaced by the new 
one 

Unfortunately, the appmpnate values for the htil 
chmbmg and xeanalyzmg factors seem hkely to depend on 
the data model Thus, hke the expected cost factors, they too 
should be learned by the optmuzer We have not, however, 
implemented this feature yet 

4 Computational Results from a Relational Prototype 
In this sectron, we report some p&mmary results 

obtamed with an optmuzer generated for a subset of the rela- 
honal model This model 1s resmcted to select and Join 
operators We Implemented this model first because produc- 
mg the optimal Jam tree IS reportedly the major problem in 
relattonal query optirmzatlon [SELI79. WONG76, KOOISO] 
For the leaves of the query trees, we introduced an art&d 
operator, called get Get reads a file from Qsk and transfers 
it to the next operator It was introduced for convenience as 
it allows us to wnte the cost functions for the other opera- 
tors’ methods without regard to whether their input streams 
come !?om &Sk or from other operators It also makes It 
easy to express the fact that the input for methods based on 
m&ces must be a stored relation 

The test quenes for our expenments were generated 
randomly as follows to generate a query tree, the tOD 
operator 1s selected A pnon probabtines are assigned to 
Join, select, and get, m our test 0 4,0 4, and 0 2 respectively 
If a JOT or select 1s chosen, the input query trees are bmlt 
recursively usmg the same procedure If a pxedefined lnmt 
of Join operators (here 6) m a gven query 1s reached, no 
further Join operators are generated m this query The Join 
argument 1s an equahty constramt between two randomly 
plcked atmbutes of the mputs The selection argument 1s a 
comparison of an attnbute and a constant, with tbe atmbute, 
comparison operator, and constant plcked at random The 
database consists of 8 relations with 1000 tuples each Each 
relauon has 2 to 4 attnbutes The schema 1s cached in mam 
memory durmg the optmuzer test run The schema of each 
mtermehate relation 1s cached m the query tree node m 
MESH as an operator property The only method property 
consldered m our system is sort order 

Our transformafion rules mcluded JOIII commutatmty 

and assoclahmty, commutati~ty of cascaded selects, and the 
select-Jam rule This last rule allows pushmg selects down 
the query tree, but only on the left branch If the selection 
clause must be apphed to the nght branch, JOm commuta- 

ttvlty must be apphed first We used only the left-branch 
form of the select-jam rule because It forces the optmum to 
perform rematching and m&t adJustment The rule also 

allows the optnmzer to push JOTS down m the tree, smce It 1s 
a brdu-ectional rule For Joins, we considered four methods 
nested loops, merge JOM, hush ~oorn, and r&x jam A merge 
Jam reqmres the Inputs to be sorted on the respective Join 
atmbute An mdex Join reqmres that the nght mput be a per- 
manent relaaon with an index on the Join attnbute Selec- 
tion is done either ~rlth a jilter, which is a method ~rlth one 
Input stream and one output stream, or wtth a scan We con- 
sidered file scans and index scans A scan can implement 
any conJunctwe clause, ie a cascade of selects with a get 
operator at the bottom The cost calculation eshmates 
elapsed seconds on a 1 MIPS computer with data passed 
between operators as buffer addresses When speclfymg the 
algebra descnption, we reahzed several shortcommgs of the 
generator Some of them have since been corrected, and oth- 
ers are descnhed in the secnon on future work 

The first tests were used to ensure that the generated 
optmuzer transforms the query correctly and produces the 
optunal or a near-opnmal query plan One way to test this is 
to duphcate an exlstmg opurmzer and to compare the query 
plans produced However, this would have reqmred lrmtat- 
mg all of its cost funcnons, which 1s not easily accessible 
mfonnauon More unportantly, It would have resmcted us 
to its particular set of operators and methods, leavmg httle 
room for mdficanon and expenmentanon Thus, we 
decided to compare our optnmzaaon results with those of an 
exhaustive search of all possible access plans We mod&d 
the optmuzer to do unduected exhaustive search To avotd 
thrashmg on the tune-shared computer used for these expen- 
ments. however, we aborted optimuaoon of a query when 
MESH contamed 5,000 nodes That lmphed that OPEN con- 
tamed about 5,000 to 10,000 elements, and that the heap area 
had grown to about 3 megabytes 

The followmg tables summanze typical results for a 
sequence of 500 randomly generated queues The quenes m 
this sequence contam 805 JOIII operators and 962 select 
operators The reanalyzmg factor 1s set equal to the hdl 
chmbmg factor We report the results for three values for 
the hill chmbmg and reanalyzmg factors to demonstrate the 
effects of search effort on the quahty of the resultmg access 
plans A hill chmbmg factor of 00 m&cates undn=ected 
exhaustive search This allows the comparison of the res- 
meted search strateges ~rlth unresmcted search All 
remammg runs used duected hnuted search The wand 
column, labeled ‘total nodes generated’, indrcates the 
amount of mam memory used for MESH The average size 
of MESH 1s l/500 of the gwen numbers The thud column 
1s the sum of the MESH sizes at the tunes when the best 
access plans were found 6 The fourth column shows the sum 
of the estrmated execution costs of the 500 generated access 
plans The last column states the CPU time (in seconds) 
spent optnmzmg the enhre sequence of 500 queries’ 

With mcreasmg search effort (ie larger hti chmbmg and 
reanalyzmg factors) the CPU time increases as the cost of 

6 This IS done by assoclatmg with the currently best plan 
(of which there is only one) the number of nodes m MESH at 
the tnne the plan was generated 

’ The umes are gwen m seconds m user mode on a 
Gould 9080 runmng UTX/32, version 13 The times were 
measured usmg the getrusage system call This machme 
has Tao CPU’s rated at about 5 MIPS each The optlrmzer 
usually ran uninterruptedly on the second CPU 
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Table 1 Summary of 500 quenes 

Total Nodes Nodes before Sum of Es-ted CPU I 
Chmbmg Generated Best Plan 

101 4309 1813 
Execuuon Costs Tme 

9837 50 

Table 2 Summary of 338 quenes not aborted m exhaustive search 

the access plans decreases Notice that the sum of costs for 
“exhaustive” search 1s actually higher than for resmcted 
search This is due to the fact that optlrmzations had to be 
aborted because the memory reqtnrement for exhaustive 
search turned out to be excessively high, 1e the exhaustive 
search could sometunes not be completed so only a subop- 
tunal plan was prcduced It 1s mteresMg to resmct atten~on 
to those quenes that were not aborted m the undnected 
exhaustive search When resmcted to the 338 quenes for 
which the exhausnve search succeeded, Table 1 becomes 
Table 2 
When companng table 1 and table 2, the reader wdl unm&- 
ately notice the substannal differences 111 resource consump- 
non, both for CPU ame and memory Nevertheless, for 
more than 310 of the 338 quenes the &fferent search stra- 
teges produce access plans Hrlth exactly the same cost as the 
optimal plan The followmg table gves a more detaded plc- 
Me of the cost dfferences 

Cost Difference Number of Quenes 
Relative to Hdl Cbmbmg Factor 
Exhausave 

Search 101 103 105 
no &fference 314 315 315 
morethanO% 24 23 23 
morethan5% 20 20 19 
more than 10% 20 20 19 
more than 25% 9 9 9 
more than 50% 1 1 1 

Table 3 Frequencies of &fferences m 338 quenes 
For only 20 out of the 338 quenes does the cost of the access 
plans &ffer by more than 5% The worst case is a query 
with exactly double the cost These results m&cate that 
unhected exhausuve search 1s mfenor to the search strategy 
presented m this paper, and that the search strategy 
employed by our rule based optumzer generally does qmte 
well 

As described earher, we associate an expected cost 
factor ~rlth each rule to dnect the search mto the most 
pronusmg &ecnon We considered it necessary to test 
whether the expected cost factor 1s a vahd construct If there 
really 1s such a factor for each rule, it should be the same 
mdependent of the quenes being optirmzed To test this 
hypothesis, 50 sequences of 100 quenes each were optnn- 
tzed 111 mdependent runs of the optu~llzer, and the expected 

cost factors for each rule at the end of the run were com- 
pared For each of these sequences; we selected a d&rent 
combmanon for the select, JOHI, and get probabdmes used to 
generate the random queries, and a d&rent hrmt was set on 
the number of JOTS allowed in a single query Wh& the 
expected cost factors show some vanance, they fall around 
the mean for each rule m a normal &smbution Gur stamn- 
cal testmg m&cated that, for our sets of test quenes, the 
equahty hypothesis 1s true with a 99% confidence 

Next we attempted to determme which of the four 
averagmg methods is best suited for use in the optimm~ 
The results, however, were not conclusive All four averag- 
ing techniques worked equally well ~ntb the query 
sequences tested This 1s not &scouragmg, however It only 
means that the Qfferences among the adJusMent formulae 
are mslgmficant The differences between &ted search 
and untited search remam 

Since reordenng JOIII trees 1s considered the mayor 

problem m relational query optlrmzaaon, we deagned an 
expenment which spectically addresses tlus issue We 
created several batches of 100 quenes each The quenes 111 
the first batch have one JOUI operator each, two 111 the second, 
etc. up to 6 Jams per query The opmzaaon results are 
gwen m the table below The hdl chmbmg and reanalyzing 
factor was set to 1005 Gpmzahon was aborted when the 
number of nodes 111 MESH reached 10,000, or when MESH 
and OPEN together contamed 20,000 enmes 

Jams per Total Nodes Nodes before Quenes CPU 
Query Generated Best Plan Aborted Ttme 

1 500 100 0 3 28 

Table 4 Optmuzauon of senes of 100 quenes each 

When N ItlatIOnS are homed in &query, the number 
of possible Jam trees 1s of the order of 8 The fact that nel- 
ther the number of nodes nor the CPU m grow as rapidly 
demonstrates the effectiveness of sharmg nodes between 
quenes and plans The most unportant result of tis expen- 
ment 1s that the optnmzer 1s able to handle fatly complex 
quenes It becomes obvious, however, that the search stra- 
tegy could be enhanced ngmlicantly If semanhc mformahon 
were mcorporated when tiMg the search Such mforma- 
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non can be bmld mto the condmon code, le those transfor- 
matrons which are techmcally correct are prevented If it 1s 
hkely that they ti not lead to the opti query tree and 
access plan 

The above optmuzanons consldcred all possible 
trees Many optnmzers, eg those of System R [SELI79] and 
Gamma pEWI86], conslder only left-deep Jam trees In a 
left-deep JOIII tree, the nght mputs of all fom nodes ate scans 
on base relauons A tree which 1s not left-deep IS called It a 
bushy tree If only leftdeep trees am considered, it is possi- 
ble that the ophmal access plan for some quenes wtll be 
mmed [ROSE861 On the other hand, m many systems the 
resmctton to left-deep trees 1s justified because scheduhng 
operators becomes easier, spoohng temporary files to &Sk 
can be avoided, and it 1s possible to guarantee that operators 
of one query do not compete for scarce resources, eg buffer 
space Optlrmzahon becomes easier, too, because there are 
sqtuficantly fewer ~otn trees for a @ven query when only 
left-deep trees are considered as the number of possible left- 

deep JOIII trees grows w~tb the order of 2N [SEW91 In 
Table 5, we s mmanze how the optmuzer performed on the 
quenes used for Table 4 when only left-deep Join trees are 
consldenzd 

rollls per Total Nodes Nodes before Quenes CPU 
Query Generated 

1 500 
Best Plan 

100 
korted Time 

0 3 68 
2 956 553 0 443 
3 1569 1148 0 5 85 
4 2382 1912 0 842 
: 3699 5228 4631 3220 0 0 2193 13 30 

Table 5 Left-deep optnmzahon of senes of 100 quenes each 

When small queues (1 or 2 JOTS) are optnrnzed, 
approxnnately the same number of nodes m MESH and the 
same CPU ame 1s used for bushy and left-deep trees For 
larger quenes, the tierences are up to several orders of 
magmtude, IeflecMg the different growth rates for the 
number of possible JO~I trees The anficlpated cost of the 
generated access plans, however, 1s larger If only left-deep 
trees are considered The mam reason 1s that the cost model 
used 1s based on the assumption that all m-ate results 
can be ptpelmed between operators vvlthout bemg wrmen to 
dlsk 

These dtfferences have mspued two duections for 
further research One 1s to mcorporate spoohng costs mto 
the cost model for bushy trees, and determme whether data- 
base systems hke System R and Gamma should mcorporate 
bushy trees Thts issue 1s mterestmg m its own right,, 
mdependent from the issues concermng the optumzer gen- 
erator The other Idea we mtent to examme 1s to break the 
optnmzafion mto several phases, ie to use the result of the 
fast left-deep-only ophnuzatlon as a startmg pomt for optlm- 
lzatlon mcludmg bushy Join trees 

5 Related Work 
Many of the techniques employeed by the op~llzer 

generator are based on a variety of earher efforts m the 
query opmmzaaon area. ploneenng work was done in the 
System R proJect [ASTR76, SELI791, In the Ingres proJect 
[STON76, WONG76, YOUS791 and by Snuth and Chang 
[SMIT75] Optmmhon usmg algebmc ldenaties was first 
used 111 comptlers for programmmg languages, but seems to 

have only been used once for database oparmzatron, in the 
MICROBE relational dtsmbuted database system 
[NGUY821 Freytag assumes m his work on code generation 
[FFtEY85, FREY86al for access plans that query plans for 
set-onented data models can be expressed as trees 
Recently, Freytag has begun work on deslgnmg a rule-based 
ophmmmon scheme for the relauonal model [FREY86b] 
Search strateges have been used m the areas of deduction 
and theorem provmg, and learnmg has been used to nnorove 
a programs perfoniance, eg ii game playmg pm&ams 
[BARR811 

M&t of the query opnrmzahon research done to date, 
as surveyed by Jarke and Koch [JARK84], deals with rela- 
honal systems and theu extensions For the designers of pre- 
VIOUS query opmzafion programs, the data model has been 
a @ven fact For example, when reordermg jam trees, 
ISELI and [KOOI801 assume that the order m which 
Jams are executed makes no semannc d&rence In the 
EXODUS optmuzer generator, on the other hand, the opera- 
tors and ther semanucs are left open, thus allowmg the DBI 
to design and expenment ~rlth new data models 

Algebmc transformanon laws have also been used m 
the design and implementation of the opturnzer for the dlsm- 
buted relational database system MICROBE [NGUY82] 
The goal of the MICROBE rule based opmzauon step was 
to numm~ze the number of operators and the amount of data 
to be shpped between operators A set of transformation 
rules was formulated and proven to guarantee a deterrmmstlc 
result, mdependent of the actual sequence of transforma- 
hens The MICROBE optumzer takes at most o(N log N) 
steps, where N is the number of operators m the query 
Then transformahon rules were hand-coded m Pascal, the 
implementation language of the protect. 

Our approach differs from the MICROBE approach 
111 three mportant ways Fast, we do not assume a certam 
Cxed data model Second, we only assume soundness and 
completeness of the rule set, reqmnng no further propemes 
Provmg determuusnc results for a set of rules 1s slgmficantly 
harder, perhaps not be possible for all data models and alge- 
bras, and would be askmg too much from the DBI Thud, 
the procedures that transform the query are generated m our 
approach, allowmg the DBI to concentrate on their correct- 
ness The approaches are sumlar m that they both try to use 
formal propemes of the algebra and to do query optnnuanon 
“along” the theory of the data model 

From an AI standpomt, our search program is a de& 
cated search algonthm with some adapave learnmg capablh- 
hes We would have hked to use a promse function and a 
search strategy ~rlth stronger theoretical propemes Since 
the optnruzer generator is not aware of the targer&ata model. 
we were unable to use search algonthms hke A @AR%81 
wluch would have guaranteed the ophmal access plan for all 
quenes Even for the specml case of the relational model, 
we were not able to fmd a way to calculate the pronuse of a 
transformaaon,, such that we can guarantee the propemes 
needed for A and sull dmzt the search m a reasonably 
effectwe manner 
6. Future Work 

One mteresMg design issue that mnam 1s to pry- 
wde general support for @cates as some form of @- 
cates are hkely to be appear m all data models Wntmg the 
DBI code for wcates, and operator arguments m general, 
was the hardest part of developmg our optumzer prototypes 
The current design IS that the DBI must design his or her 
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own data structures, and provide all the operations on them 
for both rule condmons and argument transfer functions It 
may be dtfficult to mvent an all-around sattsfymg defimtton 
and support for pdcates, but it would be a stgmficant 
improvement to the optmuzer generator The fact that pr&- 
cates are a spectal case of arguments poses an addmonal 
challenge, smce the over all design of the argument data 
structure must sttll remam wth the DBI 

The hll cbmbmg and the reanalyzmg factors have a 
sigmficant effect on the amount of CPU time spent optnmz- 
mg a query These values are almost surely model and alge- 
bra dependent. Thus, they must either be set by the DBI or 
must be determmed automattcally We feel that the former 
altemahve reqmres a level of soptisticatton or tune for 
expenmentation that cannot be expected from the DBI In 
order to provide the DBI (or DBA) wtth some control over 
the opmzanon process, we mtend to leave some contml 
over the tradeoff between the quality of resultmg access plan 
and the cost of optumzatton 

Our expenments m&cate that, mdependent from the 
hill clunbmg factor, the reanalyzmg factor, and the averag- 
mg method, more than half of the nodes are typically gen- 
erated after the best plan has been found An addmonal 
stopping cntenon mtght help to avoid a large part of tis 
wasted effort after the best plan has been found In commer- 
cial INGRES, a comparison between the optmuzation time 
and the expected query execution time 1s introduced If the 
ophnuzation has consumed a certam fracaon of the time 
estunated for executmg the best plan found so far, further 
opturnzatton is abandoned and this plan is executed We 
mtend to explore two other cntena besides tis one The 
first involves the grtient of the last improvements Imagme 
a graph with the hme spent on optmuzation on the honzontal 
axis, and the e&mated execution tune of the currently best 
plan on the verhcal axrs tis curve certamly flattens out 
durmg the opturuzauon process Instead of going all the way 
to its end, It rmght be possible to stop when tt has been flat 
for some length of tune Another termmanon con&non we 
plan on evaluatmg is the number of nodes generated for a 
single query before optmuzation is preempted In our 
expenments so far, we set a fixed hrmt for all quenes We 
intend to calculate a reasonable llrmt for each query m&vt- 
dually This lmut wdl probably have to be exponenttal m 
the number of operators m the query 

We also plan on makmg several changes m the gen- 
erated optumzers The first is to recognize common subex- 
presslons when the final access plan 1s extracted from 
MESH Common subexpresslons are detected 111 MESH and 
optmnzed only once, but the procedure which extracts the 
access plan from MESH does not exploit this feature Furth- 
ermore, the cost of common subexpressions is not spread 
over the vanous occurences When common subexpressions 
are sattsfactonly supported, opmzatlon of multtple quenes 
in a single ophrmzer run will be easy to implement The 
other future change 1s to implement nested method expres- 
sions to allow the defimtton of method classes, with one 
operator, eg exact-match m&x look-up, berg used m all 
implementation rules reqmnng index look-up, eg &ex JOT, 

rndex selection, etc Thts would be useful when addmg a 
new access method to a system In the current design, an 
Implementation rule has to be added once to the model 
descnpuon iile for each rule where the new access method 
can be used Instead, by usmg a method class, the new 
access method only has to be added once, to the class 

We mtend on explormg the idea of lmprovmg the 
search strategy through the mtroductton of phases mto the 
search process In the first phase, only proven heunsacs 
would be used (le rules wtth very low expected cost factors) 
~rlth a very lirmted amount of hill chmbmg and reanalyzmg 
When tis search has ended, the query tree has hopefulry 
mqnwed significantly, and the currently best cost now 
establishes an upper bound for the second phase This phase 
1s a broader search, basically what was described as the 
search here, but startmg with the result of the first phase 
mstead of the mlhal query tree Fmally, the thnd phase 
would do work analogous to peep hole optmuzation m com- 
pder technology, eg predtcate clause reordenng [HANA77] 
Other assignments of tasks to phases could be designed as 
well The idea of phases is qmte slrmlar to (actually a gen- 
eralization of) ua idea of a “pfiot pass” [ROSE861 

The first real test for the optumzer generator ~rlll 
come when it 1s used for a real system The EXODUS pro- 
Ject team intends to implement a relational database system 
The first teal system wtll be relahonal because relational 
technology is suffictently known and systems exist for per- 
formance comparison purposes With other data models, we 
would work on and expenment wtth EXODUS and the 
model stmultaneously, which 1s probably not a good idea 
We Hrlll then be able to assess more reahtdly whether the 
general design 1s useful, and where its most stgmficant 
shortcommgs are The second real test Hrlll be when we set 
out to design an opmzer for one of the recently proposed 
new data models, eg ABE [KLUG82], Daplex [SHIPSl], 
Probe [DAYA85, MANO861, or LDL [TSUR86] 

Fmally, we realize that the optumzer generator works 
largely on the syntacac level of the algebra The semanttcs 
of the data model are left to the DBI’s code Thts has the 
advantage of allowmg the DBI maxnnal freedom ~rlth the 
kmd of data model to implement, but it has the hsadvantage 
of leavmg a slgmficant amount of uximg to the DBI We 
therefore would hke to incorporate some semantic 
knowledge of the data model mto the descnphon file How- 
ever, dus 1s a long term goal which we have not yet gven 
much attention 

7. Conclusion 
The most unportant result demonstrated by dus work 

on rule-based optlrmzer generators 1s that it s possible to 
separate the search strategy of an optnmzer from the data 
model Thus, It 1s possible to unplement a genenc optmuzer 
and search algonthm that 1s smtable for many data models 
The model of optumzaaon chosen, algebnuc opmzanon, is 
expected to fit most modem (set-onented) data models 

The architecture of the EXODUS 0ptumze.r generator 
enforces a modular, extensible design of the DBI’s query 
optmnzer code The transfotmation and lmplementatlon 
rules are mdependent from one another, and the property and 
cost funcaons are well defined, hmtted programmmg tasks 
for the DBI As a consequence, mcremental design and 
evaluatton of a new data model’s opumtzer is encouraged 
While most of the generator’s mputs are frurly easy to design 
and to code, some pieces can be tricky For example, 
dependmg on the design of the arguments, wntmg rule con- 
dmons and argument transfer functions can be fatly burden- 
some More work 1s needed to achieve adequate support for 
the DBI m dus area 

Our prehmmary performance evaluauon of an optlm- 
lzer generated for a subset of the relaaonal data model, 
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demonstrates that it is not necessary to use exhaushve search 
in the query optrrmzahon process While our expenments 
cover only one data model, we believe that this generahza- 
non is ~usafied Also, the DBI does not have to tune the 
search strategy Instead, a good part of the tumng can be 
done automatically by the system In terms of both 
optnmzaaon speed and quahty of access plans produced, a 
generated opnrmzer appears compentive with a hand-coded 
optnmzer With the exception of a few cases, we found that 
the access plans found by our prototype for the relational 
model were as good as those produced by exhaustive search 
We are currently designing a set of quenes to compare sys- 
tematically a generated optlrmzer for the complete relational 
model with an existmg commercial relanonal query optim- 
lzer 
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