The EXODUS Optimizer Generator

Goetz Graefe
David J DeWitt

Computer Sciences Department
University of Wisconsin

ABSTRACT

This paper presents the design and an 1miual perfor-
mance evaluation of the query optimzer generator designed
for the EXODUS extensible database system. Algebraic
transformation rules are translated 1nto an executable query
optimizer, which transforms query trees and selects methods
for executing operations according to cost functions associ-
ated with the methods The search strategy avoids exhaus-
tive search and 1t modifies 1tself to take advantage of past
expenience Computational results show that an optimzer
generated for a relational system produces access plans
almost as good as those produced by exhaustive search, with
the search time cut to a small fraction

1 Introduction

In recent years, a number of new data models have
been proposed including Daplex [SHIP81], ABE [KLUG82],
GEM [ZANI83], GEMSTONE [COPE84], IRIS [LYNGS86],
Probe [DAYAS85, MANOS86], Postgres [STON86], and LDL
[TSUR86] Unfortunately, implementing a database system
for a new data model 1s a dufficult and laborious task The
goal of the EXODUS project 1s to ease the burden of the
database implementor (DBI) EXODUS 1s designed to assist
the DBI 1n both creating a system for a new data model and
1 augmenting an existing system For example, one might
first use EXODUS to construct a database system for a new
data model Later, one mught extend this system by adding a
new access method or a new algonithm for an existing opera-
tor 1n the query language To achieve this, the EXODUS
design consists of a powerful, highly efficient storage sys-
tem, the database implementation language E, which pro-

This research was partially supported by the Defense
Advanced Research Projects Agency under contract
N00014-85-K-0788, by the Nauonal Science Foundation
under grant DCR-8402818, and by a grant from the
Microelectronic and Computer Technology Corpoiation

Permission to copy without fee all or part of this materal 1s granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and 1ts date appear, and notice 1s given that copying
1s by permission of the Association for Computing Machinery To
copy otherwise, or to republish, requires a fee and/or specfic
permission

© 1987 ACM 0-89791-236-5/87/0005/0160 75¢

160

vides language constructs specifically designed to assist in
database implementation, a type manager, which maintains
state and location information about the types and pro-
cedures defined 1n the system, and an optumizer generator
In the future, we plan on investigating generators for user
interfaces An overview of the architecture of EXODUS can
be found 1n [CARE86b] The design of the storage manager
and file system 1s presented in [CARE86a] The E program-
ming language 1s descrnibed 1n [RICH87] In this paper, we
descnbe the optimizer generator

Untll very recently, query optmuzers [SELI79,
WONG76, KOOI80] have been designed and implemented
with a specific data model and database system in mind The
operators and their algonthms, the access methods, and the
cost model were all known when the database system was
being implemented Consequently, the optimization process
could also be tailored to the target data model and 1ts imple-
mentation Only the Postgres optimizer [STON86] allows
the incorporation of new access methods into the optimiza-
tion process

Since EXODUS does not support a single conceptual
data model, 1t would impossible to provide a single optim-
1zer for all target applicanons As a solution we
hypothesized [CARES5] that if the query optimizer were
orgamzed as rule-based system, then as new operators,
access methods, etc , were added to the database system, the
optimizer could be informed of their properties by adding
new rules to 1ts rule base As we began to investigate the
concept of such an optimizer 1t became clear that the feasi-
bility of such a designed hinged on being able to separate
cleanly the data model specific parts of the optimizer from
the common components The common components consist
pomanly of the search mechanism and its supporting
software The pieces specific to the data model include spe-
cial types (e g BOX), operators, the algonthms for imple-
menting these operators, the cost functions for the algorithms
and the catalog management software Making 1t easy to
specify these pieces 1s obviously cntical i making the
optimizer generator successful In the following sections we
demonstrate that using a rule based approach makes specify-
g these components straightforward. Furthermore, our
preliminary performance results demonstrate that the access
plans obtained are competitive with those produced by
exhaustive search techniques while taking only a fraction of
the time to produce

One way to find the opnmal access plan for a query 1s
to simply generate all possible access plans, estimate thewr
respective processing costs, and output the least expensive

one In the System R optimizer [SELI79] this basic strategy
1s augmented with a pruning techmque that deletes all but
the cheapest of a set of equivalent subplans at each step of
the optimization process Without pruning, the optimizer
would be unacceptably slow Following the System R
example, a rule-based optimuzer should employ certain laws
or "musts” (eg whenever possible use a join operator rather
than a Cartesian product followed by a selection) and heuns-
tics (eg move selections before joins) 1n its search strategy
1n order to reduce the number of access plans considered

The remainder of this paper 1s organized as follows
In Section 2, we present the design of our rule based optim-
1zer generator We also describe the operation of an optim-
1zer produced with the generator The search strategy
employed by a generated optmuzer and how 1t improves
itself by learming 1s presented 1n Section 3 Section 4 gives
some computational results obtained with an optimizer gen-
erated for a restricted relational model In Section 5, we
compare and contrast our work with related research Future
directions are outhined 1n Section 6 Our conclusions can be
found 1n Section 7

2. Design of the Optimizer Generator

2.1. Overview

In order to be sufficiently general, an optimzer gen-
erator must be based on an abstraction of optimization suit-
able for most data models We decided that quenies and
access plans should be expressed as trees, because we

believe that operator trees are general to all set oriented data
models 1n which complex quenes are composed by nesting a
finte set of procedures The nodes of the query trees are
labeled with an operator and its arguments, eg a selection
predicate There are two alternative ways of transfernng
data between operators temporary files and pipelines
Without precluding the use of either one, we simply refer to
them subsequently as inputs or streams

Before a query can be optimized, an 1mtial operator
tree must be constructed In EXODUS, this 1s done by the
user mterface and parser The output of the optimmzer, the
access plan, can either be interpreted by a recursive pro-
cedure or 1t can be further transformed Both approaches
have been used successfully in existing database systems In
Gamma [DEWI86], for example, the operators in the access
plan are interpreted (though the predicates themselves are
compiled nto machine language) In System R [SELI79],
the access plan was compiled into machine language Frey-
tag [FREY8S, FREY86a] suggests applying rule-based tech-
mques for this step

In most database systems, there are frequently
several alternative algorithms for the same logical operation
For example,! the relational join operator can be imple-
mented using several alternative join methods Our model
disunguishes between operators, corresponding to primtives
provided by the data model, and methods, that are specific
implementations of the operators The access plans pro-
duced by the optimzer are also trees, with a method and ts
argument 1n each node In this model of queries and access

1 A word about the examples 1n ths paper First, exam-
ples based on the relational data model were chosen because
they are easily understood We firmly believe that the 1deas
presented here apply to most other data models Second,
larger examples are ended with a (1.

164

plans, query optimization consists of query tree reordering
and method selection Since this optimization scheme 1s
centered around the algebra of the data model, we refer to 1t
as algebraic optimization

As example, consider the query tree and a
corresponding access plan shown in Figure 1 Notice that in
producing the access plan on the night from the query tree on
the left, two types of rules are appled to the trec First, the
operators are rearranged by pushing the selection before the
Jjomn Second, each operator 1s replaced by a method that
implements 1t

select A.a < 100 hash-jom Ab=B b
JomAb=Bb / \
/ \ ﬁt}le-scanA file-scan B
with predicate
Aax< 100‘:a
scan A scan B

Figure 1

As proposed 1n [CARESS5], we 1mitially intended to
implement a rule-based optimizer using an Al language like
Prolog [WARR77, CLOC81], OPS5 [FORG81], or LOOPS
[BOBR83] as those languages provide pattern matching and
a search engine, and since untfication can be used elegantly
to build new query trees from old ones In addition, these
languages allow augmentation of the rule base at run-tume
This capability 1s desirable for two reasons First, 1n a data-
base system that permuts the addion of new abstract data
types, access methods, etc, 1t 1s necessary to inform the
optimzer about those changes Second, when the optimizer
finds that certain sequences of transformations occur fre-
quently together, the optimizer could augment the rule set by
adding a single rule that combines the sequence of transfor-
mations In successive optimizations, the whole sequence of
transformations could then be done 1n a single step

We 1mplemented and expennmented with a prototype
1 Prolog, which, unfortunately, had to be abandoned This
prototype had two serious problems First, Prolog has a
fixed search strategy, depth first search We found that we
needed to augment the search strategy dynamically while the
optimizer was running, a fairly cumbersome task Second,
our implementation (C-Prolog interpreter) was slower than
we were willing to accept

Having abandoned this prototype we decided to pur-
sue the 1dea of implementing a rule-based optimuzer genera-
tor While building an optimuzer generator in C required
more work 1nitially, it left us with the freedom to implement
exactly the desired functionality and a search strategy tuned
to the process of optumuzing algebraic queries Furthermore,
we were able to experiment with alternative designs 1n a
straightforward manner The principal disadvantage of the
generator approach 1s that the optimizer cannot be changed
while running, a feature other researchers have found useful
[STON86)

The imnput into the EXODUS optumzer generator
consists of a set of operators, a set of methods, algebraic
rules for transforming the query trees, and rules describing
the correspondence between operators and methods This
information 1s contained 1n the model description file Fig-
ure 2 gives an overview of the use of the optimizer genera-
tor When the database system 1s constructed, the generator
produces a data model specific opimzer from the descrip-

model description file

user

—
query nterface

query

l

optimizer

generator Database System

Generation Time

C compiler
linker

nterpreter

optimizer

tion At run time, each query 1s transformed 1nto an operator
tree by the user interface, optimzed by the generated optim-
1zer, and then interpreted or transformed 1nto a program

The generated optumzer transforms the wnitial query
tree step by step, maintaining information about all the alter-
natives explored so far in a data structure called MESH
MESH 15 also used to hold access plans for each query tree
that has not been pruned from the data structure At any
time duning the optimization process there can be a large set
of possible next transformations These are collected 1 a
data structure called OPEN? which 1s maintained as a prior-
ity queue OPEN 1s immtialized to be the set of transforma-
tions that can be applied to the mnitial query tree

The general optimization algonthm can now be described as
follows

while (OPEN 1s not empty)
Select a transformation from OPEN
Apply 1t to the correct node(s) n MESH
Do method selection and cost analysis for the new nodes
Add newly enabled transformations to OPEN

The rules governing query tree transformations and method
selection are specific for the data model and must be defined
1n the model description file

22 The Input to the Optimizer Generator

To implement a query optimizer for a new data
model, the DBI writes a model description file and a set of C
procedures If the new model resembles one for which an
optimzzer has already been generated, 1t might be more con-
venient to augment an existing model description file The
generator program transforms the description file into a C
program This 1s compiled and linked with the set of C pro-
cedures written by the DBI to form a data model spectfic
optimizer

In the model description file, the DBI lsts the set of
operators of the data model, the set of methods to be con-

2 OPEN 15 a standard name for the set of possible next
moves 1n Al search algorithms [BARR81]

Query Execution Trme

162

Fagure 2

sidered when bmlding and comparing access plans, the rules
defimng legal transformations of query trees, termed
transformation rules, and the rules defining the correspon-
dence between operators and methods, termed implementa-
tion rules

The model description file has two required parts and
one optional part The first required part 15 used to declare
the operators and the methods of the data model It can also
include C code and C preprocessor declarations to be used in
the generated code The second part consists of transforma-
tion rules and implementation rules The optional third part
contains C code that 1s appended to the generated code
These parts will be discussed 1n further detail below In
addition, we will illustrate how the pieces fit together
through a series of examples

In the first part of the model description file, called
the declaration part, the operators and the methods of the
data model are declared The keywords %operator and
%method are followed by a number to indicate the anty and
by a list of operators or methods with this anty

Example

%operator 2 join
9%method 2 hash_join loops_join cartesian_product

In this example, an operator join and three methods
hash_join, loops_join, and cartesian-product are declared
The 2’s signal the generator that the join operator and the
three methods each require two input streams [

Besides operator and method declarations, the first
part of the description file can also include C code that will
be written 1nto the output file for the optimizer before any
generated code This capability 1s used to provide data
model specific defimtions for four types used by the optim-
1zer generator These are OPER_ARGUMENT,
METH_ARGUMENT, OPER_PROPERTY, and
METH_PROPERTY These types are used 1n the structure
definition of nodes for query trees, access plans, and MESH
to store the arguments of operators and methods, eg predi-
cates, and "propertues” that the DBI can associate with a
node In each MESH node, the proper operator arguments

and method arguments are inserted by calling procedures
provided by the DBI, and they are stored in memory loca-
tions of type OPER_ARGUMENT for the operator and of
type METH_ARGUMENT for the method If the DBI
wishes to do so, 1t 15 possible to store information about a
subtree 1n 1ts root node, eg relation cardinality, tuple width,
etc In each node in MESH, there are two fields provided for
this information, oper_property of type OPER_PROPERTY
and meth_property of type METH_PROPERTY The con-
tents of the former field depends only on the operator while
the latter depends on the method chosen for the node For
example, 1n our relational prototypes we store the schema of
the intermediate relation 1n oper_property and the sort order
1n meth_property

The second part of the description file, called the rule
part, contains the transformation rules and the implementa-
tion rules A rule consists of two expressions and an
optional condiion Between the expressions 1s the keyword
by for implementation rules and an arrow for transformation
rules The arrow indicates the legal directions of the
transformation The arrow can point to the left, to the night,
or can be double-sided 1If a one-sided arrow has an excla-
mation mark with 1t, the transformation cannot be applied to
a query tree generated by this transformation While useful
for an optimizer’s performance, 1t should never be necessary
to use this feature for correctness A typical situation where
1t can 1mprove the optimizer’s performance 1s a commuta-
uvity rule Using commutativity twice results 1n the onginal
query tree, if a query tree 1s generated that 1s exactly like one
generated earlier, the duplication 1s detected and the new
query tree 1s removed Thus, not allowing commutativity to
be applied twice 1s only a performance and not a correctness
1ssue

Each expression in a transformation rule and the
expression on the left side of an implementation rule consists
of an operator and a parameter hst Each parameter can be
another expression or a number A number indicates an
nput stream or a subquery The expression on the night side
of an implementation rule consists of a method and a list of
nputs

Example

join (1, 2) ->! jomn (2, 1),

join (1, 2) by hash_join (1, 2),
The first line of this example 1s the Join commutativity rule
Since applying 1t twice results 1n the ongmal form, the
once-only arrow (with exclamation mark) 1s used The
second line indicates that hash_join 1s a suitable implemen-
tation method for join [

Sometimes the same operator name appears twice 1n
the same expression, for example, 1n an associativity rule In
this case, 1t 15 necessary to idenufy the operators so that
arguments (eg join predicates) can be transferred correctly
when the transformation 1s applied For identfication,
operators 1n an expression can be followed by a number If
the same number appears with an operator on the other side
of the arrow, the arguments are copied between these two
operators If the DBI wishes a default action other than sim-
ple copying, a function name COPY_ARG can be declared to
the C preprocessor, replacing the default achon If some-
thing other than simply copyng arguments from the 1mtal
query mnto MESH and from MESH nto the final access plan
1s needed, the DBI can define the functions COPY_IN and
COPY OUT If this argument passing scheme 1s not

163

sufficient, a procedure name can be given with a transforma-
tion or implementation rule Instead of using the default
mechanism, this procedure 1s called to transfer (and possibly
modify) the arguments

Example
project (hash_jomn (1, 2)) by
hash_jomn_proj (1, 2) combine_hjp,

This rule indicates that there 1s a special form of hash join,
called hash_join_proj, that can be used when a hash jon 1s
followed by a project operator When hash-join-proj 1s
chosen, the optimizer will call the the DBI supphed pro-
cedure combine_hjp to combine the projection hist and jomn
predicate to form the argument of hash_join_proj O

Both transformation rules and implementation rules
may have a condition associated with them Conditions are
wrtten as C procedures and are executed after the optimizer
has determined that a subquery matches the pattern of a rule
(1c that subquery has the same operators 1n the same posi-
tions as the rule) When the condition 1s not met, the special
action REJECT 1s provided If a REJECT action 1s not exe-
cuted, the transformation 1s added to OPEN The condition
code can access the arguments and properties of the opera-
tors and the mputs of the expression via pseudo vanables
defined by the generator These variables are called
OPERATOR_1, OPERATOR_2, etc, and INPUT_1,
INPUT_2, etc The numbers 1n these vanables are the same
as those used to 1dent:ify operators and inputs Each variable
1s actually a structure (record) and includes the fields
oper_property, oper_argument, meth_property, and
meth_argument In the case of a transformation rule that can
be used m both directions, the condition code 1s inserted
twice mto the optimizer code To distinguish these cases at
compile tme, C preprocessor names FORWARD and BACK-
WARD are defined for use 1n the condition code

Example
join 7 (jomn 8 (1, 2), 3) <-> jomn 8 (1, Join 7 (2, 3))

({
1fdef FORWARD
1f (NOT cover_predicate (OPERATOR _7 oper_argument,
INPUT_2 oper_property, INPUT_3 oper_property))
REJECT,
endaf
1fdef BACKWARD
1if (NOT cover_predicate (OPERATOR_8 oper_argument,
INPUT_1 oper_property, INPUT_2 oper_property))
REJECT,
endaf
}}

This example 1llustrates the join associativity rule and the
use of conditions to control the application of a transforma-
tion Since the join operator appears twice in each expres-
sion, the numbers 7 and 8 are appended to distinguish the
two 1nstances of the operator This allows the optimizer to
transfer correctly the join predicates between the two opera-
tors as the transformation rule 1s applied The condition
code, the hines between {{ and }}, 1s copied twice into the
optimzer code Nevertheless, only one if statement from the
condition code 1s executed for each direction (the other one
1s removed by the C preprocessor) The Boolean function
cover _predicate 1s assumed to determine whether all the

attributes occurning 1n the predicate that 1s the first argument
to the function are attributes of the relations described by the
second and third arguments O

The rule set must have two formal properties — 1t
must be sound and complete Sound means that 1t allows
only legal transformatons If the condition code 1s not
correct, there 1s nothing the generator can do about 1t, and
the generated optimizer will not work properly Complete
means that the rule set must cover all possible cases, such
that all equivalent query trees can be denived from the imtal
query tree using the transformation rules If the rule set1s
not complete, the optimizer will not be able to find optimal
access plans for all quertes On the other hand, the rule set
can be redundant. In fact, if the DBI foresees that a certain
combination of rules will be used frequently, 1t 1s recom-
mended (but not required) that this combination be specified
as a single rule Thus will speed up the optimzation process,
but 1t will not affect its results, unless the search parameters
(described 1n Section 3) are set too restrictively

Besides the model description file, the DBI must pro-
vide a set of C procedures These are the property pro-
cedures, the cost functions, and some support functions The
name for a property or cost function 1s the concatenation of
the word property or cost and the operator or method name
The names for the support functions arc fixed For each
operator, one property function 15 requred For each
method, a property function and a cost function 15 required
Support functions include argument comparison, memory
allocation/deallocation, and formatting procedures for pro-
perty and argument fields The memory functions are used
for intermediate data structures and the access plans The
formatting procedures are used by the bwlt-in debugging

facilines including an interactive graphics progra.m3 Pro-
perty functions for operators allow the DBI to cache infor-
mation 1n mdividual nodes of the intermediate query trees to
speed up conditon and argument processing For example,
1n our relational prototype, the schema of each intermediate
relation 1s cached Property functions for methods allow the
DBI to dertve and cache information that depends on the
selected method, eg physical sort order Cost functions
determine the processing cost for each method, depending on
the operator argument and the 1nput streams

This scheme of using DBI functions to complement
the automatically generated optimizer has a very desirable
side effect The DBI 1s basically forced to write the code in
a structured, modular way The various DBI routines can be
written independently, meaning that they can be written at
different stages of a development project The same 1s true
about the transformation and implementation rules Each
rule can be specified independently of other rules The gen-
erator builds the necessary connections and control struc-
tures Again, incremental development and enhancement of
a database system and 1ts optimizer component 1s supported
For example, 1magine the DBI wants to explore how useful a
newly proposed index structure 1s To have the optimizer

3 Admttedly, these tools were used when debugging the
opumuzer generator and the code implementing the search
strategy, but they also proved invaluable when debugging
the DBI code for our prototype implementation The graph-
ics capabiliies were first implemented for a demonstration,
but they are very useful for quick understanding and debug-
ging Including the debugging tools into the optimizer 1s a
command line switch of the generator program

164

consider this new index structure for all future optimizations,
all the DBI has to do 1s wnite a few implementation rules, a

property function, and a cost function®

The generator produces the source code for the
optunizer 1n a single pass over the description file While
reading the declaration part, it builds a symbol table of
operators and methods and copies C source lines into the
output file For the rule part, 1t maintains three temporary
files for the procedures match, apply, and analyze Match
takes a subquery and adds all applicable transformations to
OPEN Apply actually performs a transformation after 1t has
been selected from OPEN Analyze determines the cheapest
possible method for the root of a subquery by matching 1t
against the implementation rules and by calling the cost
functions For bidirectional transformation rules, the code
generation procedure 15 invoked twice for match and apply,
once for each direction Thus, a bidirectional rules appears
as two rules 1n the generated optimizer

For each transformation rule, three tests are nserted
mto the procedure match First, a subquery cannot be
transformed by a rule 1if the rule 1s a once-only rule and the
subquery has been generated by this rule, or if the rule 1s
bidirectional and the subquery has been generated by the
opposite direction Second, a rule cannot be applied to a
subquery 1f the patterns do not match The patterns match 1f
there are the same operators at the same positions in the rule
and 1 the subquery Third, a rule cannot be apphed 1if there
1s a condition and the condition 1s not met.

To apply a transformation, all necessary new nodes
are generated and operators, operator arguments, and inputs
are filled in For each new node, a procedure 1s called which
exther finds an existing equivalent node or invokes property
caching and method selection for the node This process 1s
descnibed 1n more detail below For each implementation
rule, code 1s added to the procedure analyze If a subquery
and a rule pattern match, this code calls the cost function of
the appropriate method and compares the result to the least
expensive implementation found so far for the subquery

When the parser finds the end of the rule part, these
procedures and a hbrary of support routines are appended to
the output file The support routines implement the control
structure and maintain the OPEN data structure Finally, the
third part of the model descnipuon file 1s appended to the
optirmizer source code

2 3. Operation of a Generated Optimizer

The cost model that the optinuzer supports 15 simple
but powerful The cost for a query tree 1s the sum of the
costs of all methods 1n 1ts access plan One mught cniticize
thas model at first as being too naive since 1t does not allow
the incorporation of buffering effects that potentially reduce
the I/O cost of intermediate files However, if such effects
exist, they can and should be incorporated into the cost func-
tions This 1s one of the reasons why all available informa-
tion 1s passed as arguments to the cost functions that are
written by the DBI

As mentioned earher, information about the query
trees and access plans explored so far 15 stored mn a data
structure called MESH MESH 1s a network of nodes that

4 There remans, of course, the non-tnvial problem of
coding the operations on the new index structure
EXODUS eases this task with 1ts database implementation
language E [RICH87]

select Aa<100 —> jomAb=Bb > jomBc=Cc

‘\
.
\\ v
\
........ e |
\ H

jomAb=Bb select Aa < 100

...............

selectBa<100 ——* ;omAb=Bb

- \
e

jomAb=Bb - selef:t B

i\ pmAb=Bb ;

[
1

.a< 100 > jomBc=Cc

selegtBa<100

JomAb=Bb > jomBc=Cc

T

jomBc=Cc "‘\ JomAb=Bb

/o

/ ------- \ [l]

select B a < 100 C

B
Figure 5

represents both alternative query trees and access plans
Since the size of each node 1s at least 100 bytes,? and since
there can be many query trees to consider, 1t was important
that MESH be designed to avoid any unnecessary redun-

dancy Also, since we wish to avoid redundant processing, 1t
seems natural to share as many nodes as possible between

query trees To achieve this, the optimzer allocates nodes
only when necessary during a transformation, sharing copies
whenever feasible With this implementation, typically as
few as 1 to 3 new nodes are required for each transforma-
tion, independent of the size of the query tree

Example Consider Figure 3 The bold arrows denote
transformations, solid lines show the input streams (which
flow upward), and dotted lines point to subtrees that are
bemng reused. The first transformation pushes the selection
down the query tree The second transformation applies join
commutauvity O

More precisely, a node 1s created for each operator
that appears in the transformation rule on the "new" side
The optimuzer then traverses the new nodes bottom-up and
tries to replace each one by an existng equivalent node

5 This 15 the mimmal s1ize The actual size depends on
the si1ze of the data structures defined by the DBI, and on the
maxmmal anty of the operators and methods in the data
model In our current implementations, each node 1s almost
200 bytes long

165

Two nodes are equivalent if they have the same operator, the
same operator argument, and the same mput(s) A hashing
scheme 1s employed to make the search for equivalent nodes
extremely fast This scheme to detect equivalent nodes 1s
already used when the imnal query tree 1s copied into
MESH, so that common subexpressions 1n the query are
recognmized as early as possible If a new node cannot be
replaced by an existing duplicate, 1t 1s matched against the
implementation rules 1n order to find the optimal access plan
for the new subquery rooted at this node Furthermore, 1t 15
matched against the transformation rules, and any applicable
transformations are added to OPEN Then, all parent nodes
of the old subquery (those that pomnt to the old subquery or
an equivalent subquery as one of their input streams) are
matched against the implementation rules to propagate the
cost improvement obtained by the transformation performed
We term this reanalyzing Finally, the parent nodes are
matched against the transformation rules, as there might now
be some (new) possibilities for further transformations This
15 called rematching

Example Consider Figure 4 The first two transforma-
tions push the selection down the query tree, reusing
nodes where possible To apply jomn associativity, the
node labeled I must be rematched with the node labeled
II as 1ts night input, resulting 1n an entry in OPEN that
will eventually lead to the transformation shown 1 Fig-
ure5 O

3 Search Strategy and Learning

Since the number of possible transformations 1n
OPEN can be very large for a complex query, if such queries
are to be optimized 1n a reasonable amount of time 1t 1s cnt-
cal that the optimizer avoid applying most of these transfor-
mations To find the optimal access plan quickly, the search
must be directed [BARR81] To do this, the "nght" transfor-
mation must be selected from OPEN at each step of the
optimization process The 1deal situation would be to select
only those transformations that are necessary to transform
the mmtial query into the query tree corresponding to the
optimal access plan Unfortunately, this 1s not feasible as the
optimal access plan and the shortest sequence of transforma-
tions are not known Instead, the optimuzer selects the
transformation which promuses the largest cost improvement
Promise 1s calculated using the current cost (before the
transformation) and information about the transformation
rule involved To measure the promise of a transformation
rule, an expected cost factor 1s associated with each
transformation rule Bidirectional transformation rules have
two expected cost factors, one for each directon The
nterpretation of this factor 1s as follows if the cost before
the transformation 1s ¢ and the expected cost factor of the
transformation rule 1s f, then the cost after the transformation
1s c*f If a rule 1s a good heunstic, like pushing selections
down 1n the tree, the expected cost factor for this rule should
be less than 1 If, however, a rule 1s neutral on the average,
(eg join commutativity), its value should be 1

The concept of expected cost factors raises two
important 1ssues First, 1s such a factor valid? That 1s, 1s 1t
possible to associate a value with a rule independent of the
database and the queries to be optimized? Second, how can
these factors be determmed? We will address the second
question first

We decided that 1t 15 too difficult (and too error
prone) to let the DBI set the expected cost factors On the
other hand, since we do not know the data model and the
rules a future DBI mught implement, we cannot set these cost
functions either Thus, they should be determined automati-
cally by the optimmzer by learning from 1ts past experience
An adequate method 1s to use the average of the observed
cost quotients for a particular rule Recall that the expected
cost factor 1s an estimate for the quotient of the costs before
and after applying the transformation rule Thus, 1t 1s suit-
able to approximate the factor with the observed quotients
for the rule

The smmplest averaging method 1s to take the anth-
metic average of all applications of the rule since the optim-
1zer was generated However, if the query pattern or the
database changes, using the average of all observed quo-
tients might be too ngid One alternative would be the aver-
age of the last N applications (for some suitable N) This 1s
farrly cumbersome to implement, however, as the last N
values must be stored for each rule A second alternative 1s
to calculate a shding average for each rule The shding aver-
age 1s the weighted average of the current value of the
expected cost factor and the newly observed quotient, and 1s
quite easy to implement efficiently Finally, since we aver-
age over quotients, a geometric average may be more
appropriate than an anthmetic average In our tests, we
evaluated the following four averaging formulae

166

geometric shding average | geometric mean
1 1
f (__(fK*q)Kd-l f (__(fctq)cﬂ
anthmetic shding average | anthmetic mean
[*K+q [*c+q
fe K+1 fe c+1

In these formulae, f 1s the expected cost factor for the rule
under consideration, q 1s the current observed quotient of
new cost over old cost, c 1s the count of how many times this
rule has been applied so far, and K 1s the shding average
constant As will be discussed below, all of these averaging
formulas lead to statistically valid constructs, and the perfor-
mance differences between them are faurly small

In many cases, we will find that a beneficial rule 1s
possible only after another (perhaps even negatively
beneficial) rule has been applied To reflect this in the
search strategy, the optimizer actually adjusts the expected
cost factor of two rules after an advantageous transformation
Farst, 1t recalculates the factor for the rule just applied using
one of the techmques described above Second, 1t also
adjusts the factor of the preceding rule that was applied,
using the same formula but with only half the weight Thus,
a rule that frequently enables subsequent beneficial transfor-
mations will have an expected cost factor lower than 1 (the
neutral value), and will be preferred over other neutral rules
without this indirect benefit We call this indirect adjust-
ment Finally, if a cost advantage 1s realized while reanalyz-
g the parent nodes after a transformation, the rule’s
expected cost factor 1s also adjusted with half the normal
weight We call this propagation adjustment

Ordering the transformations i OPEN by the
expected cost decrease has a negative effect 1n some situa-
tions If OPEN contains two equivalent subqueries with dif-
ferent costs each of which can be transformed by the same
rule with an expected cost factor less than 1, the transforma-
tion of the more expensive query tree will be selected first
Ths 18, of course, counterintmtive, and not a good search
strategy To offset this effect, the optimuzer subtracts a con-
stant from the expected cost factor when estimating the cost
after a transformation of a part of the currently best access
plan The lowered expected cost factor increases the
expected cost improvement, such that the currently best
subquery 1s transformed before the other equivalent
subquery

The expected cost factors are used to direct the
search, so the optimmzer finds the “optimal" access plan
quickly Once the optimal access plan has been found, the
optimizer could ignore all the remaimng transformations 1n
OPEN, and output the plan Unfortunately, 1t 1s impossible
to know when the currently best plan 1s imndeed the optimal
one Our solution 1s to let the optimuzer keep searching, but
to limat the set of new transformations that are applied To
do this, the cost improvement expected by applymg a
transformation 1s compared with the cost of the best
equivalent subquery found so far If this improvement 1s
within a certain multple of the current best cost, the
transformation 1s applied, otherwise, it 15 1ignored and
removed from OPEN Using the analogy of finding the
lowest pomnt 1n a terrain, but sometimes having to go uphill
to reach an even lower valley, this technique 1s termed hall

climbing The multiple mentioned above 1s the hill climb-
ing factor Typical values are 101 to 1 5 If 1t 1s less than
1, neutral rules will never be apphed, even though they
nmught be necessary to explore the complete search space
On the other hand, the experiments described later show that
for the relational model hill chmbing factors close to 1 work
well

Finally, there 15 a reanalyzing factor Recall the
importance of reanalyzing from Figures 4 and 5 If the cost
of the newly generated subquery 1s significantly higher than
its best equivalent subquery, reanalyzing 1s probably wasted
effort Only 1f the cost of a newly generated subquery 1s
within a multiple of 1ts best equivalent subquery are all the
parent nodes (1e those containing the old subquery as one of
therr 1nputs) matched against the transformation and imple-
mentation rules with the old subquery replaced by the new
one

Unfortunately, the appropriate values for the hill
chimbing and reanalyzing factors seem likely to depend on
the data model Thus, like the expected cost factors, they too
should be learned by the optimizer We have not, however,
implemented this feature yet

4 Computational Results from a Relational Prototype

In this section, we report some prehminary results
obtained with an optimizer generated for a subset of the rela-
tional model This model 1s restricted to select and jon
operators We mmplemented this model first because produc-
g the optimal join tree 1s reportedly the major problem in
relational query optimization [SELI79, WONG76, KOOI80]
For the leaves of the query trees, we introduced an artificial
operator, called ger Ger reads a file from disk and transfers
1t to the next operator It was introduced for convenience as
1t allows us to write the cost functions for the other opera-
tors” methods without regard to whether their input streams
come from disk or from other operators It also makes 1t
easy to express the fact that the mput for methods based on
indices must be a stored relation

The test quenes for our experiments were generated
randomly as follows to generate a query tree, the too
operator 1s selected A prior1 probabilities are assigned to
jo1n, select, and get, 1n our test 0 4, 0 4, and 0 2 respectively
If a join or select 1s chosen, the mnput query trees are built
recursively using the same procedure If a predefined limut
of join operators (here 6) 1 a given query 1s reached, no
further join operators are generated in this query The join
argument 15 an equality constraint between two randomly
picked attributes of the mputs The selection argument 15 a
comparison of an attribute and a constant, with the atwribute,
comparison operator, and constant picked at random The
database consists of 8 relations with 1000 tuples each Each
relation has 2 to 4 attributes The schema 1s cached 1n main
memory during the optimizer test run The schema of each
intermediate relaton 1s cached 1n the query tree node n
MESH as an operator property The only method property
considered 1n our system 1§ sort order

Our transformation rules included join commutativity
and associativity, commutativity of cascaded selects, and the
select-join rule This last rule allows pushing selects down
the query tree, but only on the left branch If the selection
clause must be applied to the nght branch, join commuta-
tivity must be applied first We used only the left-branch
form of the select-join rule because 1t forces the optimizer to
perform rematching and indirect adjustment The rule also

167

allows the optimizer to push joins down 1n the tree, since 1t 15
a bidirectional rule For joins, we considered four methods
nested loops, merge join, hash join, and tndex join A merge
jomn requires the mputs to be sorted on the respective join
attribute An 1ndex join requires that the right input be a per-
manent relation with an index on the join attnbute Selec-
tion 1s done either with a filter, which 1s a method with one
nput stream and one output stream, or with a scan We con-
sidered file scans and index scans A scan can implement
any conjunctive clause, 1€ a cascade of selects with a get
operator at the bottom The cost calculation estimates
elapsed seconds on a 1 MIPS computer with data passed
between operators as buffer addresses When specifying the
algebra description, we reahzed several shortcomings of the
generator Some of them have since been corrected, and oth-
ers are described 1n the section on future work

The first tests were used to ensure that the generated
optimuzer transforms the query correctly and produces the
optimal or a near-optimal query plan One way to test this 1s
to duplicate an existing optimuzer and to compare the query
plans produced However, this would have required rmtat-
ing all of 1its cost functions, which 1s not easily accessible
mformation More unportantly, 1t would have restricted us
to 1ts particular set of operators and methods, leaving hittle
room for modificabon and experimentation Thus, we
decided to compare our optimization results with those of an
exhaustive search of all possible access plans We modified
the optimizer to do undirected exhaustive search To avord
thrashing on the time-shared computer used for these experi-
ments, however, we aborted optimization of a query when
MESH contained 5,000 nodes That imphed that OPEN con-
tained about 5,000 to 10,000 elements, and that the heap area
had grown to about 3 megabytes

The following tables summarize typical results for a
sequence of 500 randomly generated quenies The queries 1n
this sequence contain 805 jomn operators and 962 select
operators The reanalyzing factor 1s set equal to the hill
chmbing factor We report the results for three values for
the hill cimbing and reanalyzing factors to demonstrate the
effects of search effort on the qualty of the resulting access
plans A hill cimbing factor of ee indicates undirected
exhaustive search This allows the comparnson of the res-
tricted search strategies with unrestricted search All
remammng runs used directed himted search The second
column, labeled ’total nodes generated’, indicates the
amount of main memory used for MESH The average size
of MESH 15 1/500 of the given numbers The third column
15 the sum of the MESH sizes at the times when the best
access plans were found ¢ The fourth column shows the sum
of the estumated execution costs of the 500 generated access
plans The last column states the CPU ume (in seconds)

spent optimzing the entire sequence of 500 quenes’

With increasing search effort (1¢ larger hill chmbing and
reanalyzing factors) the CPU time increases as the cost of

6 This 1s done by associating with the currently best plan
(of which there 1s only one) the number of nodes in MESH at
the time the plan was generated

7 The times are given 1n seconds 1n user mode on a
Gould 9080 running UTX/32, version 13 The times were
measured using the getrusage system call This machine
has two CPU’s rated at about 5 MIPS each The optimizer
usually ran uninterruptedly on the second CPU

Hill Total Nodes Nodes before Sum of Esumated CPU
Climbing Generated Best Plan Execution Costs Time
101 64022 21776 46434 1310
103 115903 27564 46257 3059
105 144658 38913 46009 346 5
oo 890433 166679 55571 5546 1
Table 1 Summary of 500 queries

Hill Total Nodes Nodes before Sum of Esimated CPU
Chmbing Generated Best Plan Execution Costs Time
101 4309 1813 9837 50

103 4771 1958 9837 58
105 5277 2002 9833 62
oo 80380 7754 9637 870

Table 2 Summary of 338 quenes not aborted 1n exhaustive search

the access plans decreases Notice that the sum of costs for
"exhaustive” search 1s actually higher than for restricted
search This 1s due to the fact that optmuzations had to be
aborted because the memory requirement for exhaustive
search turned out to be excessively high, 1e the exhaustive
search could sometimes not be completed so only a subop-
timal plan was produced It 1s 1nteresting to restnct attention
to those queries that were not aborted 1n the undirected
exhaustive search When restricted to the 338 quenes for
which the exhaustive search succeeded, Table 1 becomes
Table 2

When comparing table 1 and table 2, the reader will immedi-
ately notice the substantial differences 1n resource consump-
tion, both for CPU ttime and memory Nevertheless, for
more than 310 of the 338 quenes the different search stra-
tegies produce access plans with exactly the same cost as the
optimal plan The following table gives a more detailed pic-
ture of the cost differences

Cost Difference | Number of Quenes
Relative to Hill Climbing Factor
Exhaustive

Search 101 103 105

no difference 314 315 315

more than 0% 24 23 23
more than 5% 20 20 19
more than 10% 20 20 19
more than 25% 9 9 9
more than 50% 1 1 1

Table 3 Frequencies of differences 1n 338 quenes

For only 20 out of the 338 quenes does the cost of the access
plans differ by more than 5% The worst case 18 a query
with exactly double the cost These results indicate that
undirected exhaustive search 1s inferior to the search strategy
presented 1n this paper, and that the search strategy
employed by our rule based optimizer generally does quite
well

As described earlier, we associate an expected cost
factor with each rule to direct the search into the most
promising direction We considered 1t necessary to test
whether the expected cost factor 1s a vahid construct If there
really 1s such a factor for each rule, 1t should be the same
mndependent of the queries bemng optimized To test this
hypothesis, 50 sequences of 100 quenes each were optim-
1zed 1n mdependent runs of the optimizer, and the expected

cost factors for each rule at the end of the run were com-
pared For each of these sequences, we selected a dafferent
combination for the select, join, and get probabiliies used to
generate the random quenes, and a different hmit was set on
the number of joins allowed 1n a single query While the
expected cost factors show some vanance, they fall around
the mean for each rule 1n a normal distnbution Our statist-
cal testing indicated that, for our sets of test queries, the
equality hypothess 15 true with 2 99% confidence

Next we attempted to determune which of the four
averaging methods 15 best smted for use in the optimizer
The results, however, were not conclusive All four averag-
ing techmques worked equally well with the query
sequences tested Thus 1s not discouraging, however It only
means that the differences among the adjustment formulae
are msignificant The dafferences between directed search
and undirected search remain

Since reordering jomn trees 1s considered the major
problem 1n relational query optimization, we designed an
experiment which specifically addresses this issue We
created several batches of 100 quenies each The quernes 1n
the first batch have one join operator each, two 1n the second,
etc, up to 6 joins per query The optimuzation results are
given 1n the table below The hill cimbing and reanalyzing
factor was set to 1 005 Optimization was aborted when the
number of nodes in MESH reached 10,000, or when MESH
and OPEN together contained 20,000 entries

Jomns per Total Nodes Nodes before Quenes CPU

_Query Generated Best Plan Aborted Time
1 500 100 0 328
2 1411 634 0 447
3 5489 1880 0 953
4 14182 4313 0 2437
5 44434 9741 1 100 08
6 183077 44917 11 629 27

168

Table 4 Optinuzation of series of 100 quenes each

When N relations are joined in &qucry, the number
of possible join trees 1s of the order of 8 The fact that ne1-
ther the number of nodes nor the CPU time grow as rapidly
demonstrates the effectiveness of sharing nodes between
queries and plans The most important result of this expen-
ment 1s that the optimizer 1s able to handle fairly complex
quenies It becomes obvious, however, that the search stra-
tegy could be enhanced sigmficantly if semantic information
were incorporated when directing the search Such informa-

uon can be build into the condition code, 1e those transfor-
mations which are technically correct are prevented if 1t 15
likely that they will not lead to the optimal query tree and
access plan

The above opumuzations considered all possible
trees Many optimizers, eg those of System R [SELI79] and
Gamma [DEWI86], consider only left-deep join trees In a
left-deep join tree, the nght inputs of all join nodes are scans
on base relations A tree which 1s not left-deep 1s called it a
bushy tree If only left-deep trees are considered, 1t 1s possi-
ble that the optimal access plan for some queries will be
missed [ROSE86] On the other hand, 1n many systems the
restriction to left-deep trees 1s justified because scheduling
operators becomes easier, spooling temporary files to disk
can be avoided, and 1t 1s possible to guarantee that operators
of one query do not compete for scarce resources, eg buffer
space Optimzation becomes easier, too, because there are
significantly fewer join trees for a given query when only
left-deep trees are considered as the number of possible left-

deep jomn trees grows with the order of N [SELI79] In
Table 5, we summanze how the optimizer performed on the
queries used for Table 4 when only left-deep join trees are
considered.

Jomnsper Total Nodes Nodes before Quenes CPU
Query Generated Best Plan Aborted Time
1 500 100] 368

2 956 553 0 443

3 1569 1148 0 585

4 2382 1912 0 842

5 3699 3220 0 1330

6 5228 4631 0 2193

Table 5 Left-deep optimzation of senes of 100 quenes each

When small queries (1 or 2 joins) are optimzed,
approximately the same number of nodes in MESH and the
same CPU tme 1s used for bushy and left-deep trees For
larger queres, the differences are up to several orders of
magnitude, reflecung the different growth rates for the
number of possible join trees The anticipated cost of the
generated access plans, however, 1s larger if only left-deep
trees are considered The main reason 1s that the cost model
used 1s based on the assumption that all intermediate results
can be pipelined between operators without being written to
disk

These differences have inspired two directions for
further research One 15 to incorporate spooling costs into
the cost model for bushy trees, and determine whether data-
base systems like System R and Gamma should incorporate
bushy trees This 1ssue 1s interesting n 1ts own mght,
independent from the 1ssues concerming the optimizer gen-
erator The other idea we 1ntent to examine 1s to break the
optimization 1nto several phases, 1¢ to use the result of the
fast left-deep-only optimzation as a starting pont for optim-
1zation including bushy join trees

5 Related Work

Many of the techniques employeed by the optumizer
generator are based on a vanety of earhier efforts i the
query optumization area. Pironeering work was done n the
System R project [ASTR76, SELI79], 1n the Ingres project
[STON76, WONG76, YOUS79] and by Smuth and Chang
[SMIT75] Optmization using algebraic identities was first
used 1n compilers for programming languages, but seems to

169

have only been used once for database optimization, 1n the
MICROBE relational distributed database system
[NGUY82] Freytag assumes in his work on code generation
[FREY85, FREY86a] for access plans that query plans for
set-onented data models can be expressed as trees

Recently, Freytag has begun work on designing a rule-based
optimization scheme for the relational model [FREY86b]

Search strategies have been used 1n the areas of deduction
and theorem proving, and learning has been used to 1mprove
a programs performance, eg in game playing programs
[BARRS1]

Most of the query optimization research done to date,
as surveyed by Jarke and Koch [JARKS84], deals with rela-
tional systems and their extensions For the designers of pre-
Vious query optimization programs, the data model has been
a given fact For example, when reordenng join trees,
[SELI79] and [KOOI80] assume that the order in which
Jomns are executed makes no semantic difference In the
EXODUS optimizer generator, on the other hand, the opera-
tors and their semantics are left open, thus allowing the DBI
to design and experiment with new data models

Algebraic transformation laws have also been used 1n
the design and 1mplementation of the optimizer for the distri-
buted relational database system MICROBE [NGUYS82]
The goal of the MICROBE rule based optimization step was
to mintmize the number of operators and the amovnt of data
to be shipped between operators A set of transformation
rules was formulated and proven to guarantee a determumstic
result, independent of the actual sequence of transforma-
tions The MICROBE optimizer takes at most o(N log N)
steps, where N 15 the number of operators i the query
Their transformation rules were hand-coded in Pascal, the
implementation language of the project.

Our approach differs from the MICROBE approach
1n three important ways First, we do not assume a certain
fixed data model Second, we only assume soundness and
completeness of the rule set, requining no further properties
Proving determmstic results for a set of rules 1s sigmficantly
harder, perhaps not be possible for all data models and alge-
bras, and would be asking too much from the DBI Thurd,
the procedures that transform the query are generated 1n our
approach, allowing the DBI to concentrate on their correct-
ness The approaches are similar 1n that they both try to use
formal properties of the algebra and to do query opumuzation
"along" the theory of the data model

From an Al standpoint, our search program 1s a deds-
cated search algonthm with some adaptive learning capabili-
ties We would have liked to use a promise function and a
search strategy with stronger theoretical properties Since
the optimizer generator 1s not aware of the targef data model,
we were unable to use search algonthms hike A [HART68]
which would have guaranteed the optimal access plan for all
queries Even for the special case of the relational model,
we were not able to find a way to calculate the promuse of a
transformation, such that we can guarantee the properuies
needed for A and still direct the search in a reasonably
effective manner

6. Future Work

One interesting design issue that remains 18 to pro-
vide general support for predicates as some form of predi-
cates are likely to be appear 1n all data models Wnitng the
DBI code for predicates, and operator arguments 1n general,
was the hardest part of developing our optimizer prototypes
The current design 1s that the DBI must design his or her

own data structures, and provide all the operations on them
for both rule conditions and argument transfer functions It
may be difficult to invent an all-around satisfying definition
and support for predicates, but it would be a sigmficant
improvement to the optimizer generator The fact that predi-
cates are a special case of arguments poses an additonal
challenge, since the over all design of the argument data
structure must still remain with the DBI

The hill chimbing and the reanalyzing factors have a
significant effect on the amount of CPU time spent optimiz-
g a query These values are almost surely model and alge-
bra dependent. Thus, they must exther be set by the DBI or
must be determined automatically We feel that the former
alternative requires a level of sophistication or time for
experimentation that cannot be expected from the DBI In
order to provide the DBI (or DBA) with some control over
the optimization process, we ntend to leave some control
over the tradeoff between the quality of resulting access plan
and the cost of optimmzation

Our expeniments ndicate that, independent from the
hill chimbing factor, the reanalyzing factor, and the averag-
ing method, more than half of the nodes are typically gen-
erated after the best plan has been found An additional
stopping criterion might help to avoid a large part of this
wasted effort after the best plan has been found In commer-
cial INGRES, a comparnson between the optimization time
and the expected query execution time 1s introduced If the
optimizatton has consumed a certain fraction of the time
estimated for executing the best plan found so far, further
optimization 1s abandoned and this plan 1s executed We
mtend to explore two other criterta besides this one The
first involves the gradient of the last improvements Imagine
a graph with the ttme spent on optimuzation on the honzontal
axis, and the estimated execution time of the currently best
plan on the vertical axis This curve certainly flattens out
during the optimization process Instead of going all the way
to 1ts end, 1t mught be possible to stop when it has been flat
for some length of tme Another termination condition we
plan on evaluating 1s the number of nodes generated for a
single query before optimization 1s preempted In our
expeniments so far, we set a fixed hmt for all quenies We
mtend to calculate a reasonable limat for each query indivi-
dually This it will probably have to be exponential in
the number of operators 1n the query

We also plan on making several changes 1n the gen-
erated optimizers The first 1s to recognize common subex-
pressions when the final access plan 1s extracted from
MESH Common subexpressions are detected :n MESH and
optimuzed only once, but the procedure which extracts the
access plan from MESH does not exploit this feature Furth-
ermore, the cost of common subexpressions 1s not spread
over the various occurences When common subexpressions
are satisfactonly supported, optimization of multiple quenes
in a single optimizer run will be easy to implement The
other future change 1s to implement nested method expres-
sions to allow the defimtion of method classes, with one
operator, eg exact-match index look-up, bemg used 1n all
1mplementation rules requining index look-up, eg index join,
index selection, etc This would be useful when adding a
new access method to a system In the current design, an
implementation rule has to be added once to the model
description file for each rule where the new access method
can be used Instead, by using a method class, the new
access method only has to be added once, to the class

170

We intend on exploring the 1dea of improving the
search strategy through the introduction of phases into the
search process In the first phase, only proven heuristics
would be used (1e rules with very low expected cost factors)
with a very limited amount of hill chmbing and reanalyzing
When this search has ended, the query tree has hopefully
mproved sigmficantly, and the currently best cost now
establishes an upper bound for the second phase This phase
1s a broader search, basically what was described as the
search here, but staring with the result of the first phase
mstead of the imtal query tree Fnally, the third phase
would do work analogous to peep hole optimization 1n com-
piler technology, eg predicate clause reordering [HANA77]
Other assignments of tasks to phases could be designed as
well The 1dea of phases 1s quite simlar to (actually a gen-
eralization of) ti.. 1dea of a "pilot pass” [ROSER6]

The first real test for the optimizer generator will
come when 1t 1s used for a real system The EXODUS pro-
Ject team 1ntends to 1mplement a relational database system
The first real system will be relational because relational
technology 1s sufficiently known and systems exist for per-
formance comparison purposes With other data models, we
would work on and expeniment with EXODUS and the
model simultaneously, which 1s probably not a good 1dea
We will then be able to assess more realistically whether the
general design 1s useful, and where its most significant
shortcomings are The second real test will be when we set
out to design an optimuzer for one of the recently proposed
new data models, eg ABE [KLUGS2], Daplex [SHIP81],
Probe [DAYAS85, MANOS6], or LDL [TSUR86])

Finally, we realize that the optimizer generator works
largely on the syntactic level of the algebra The semantics
of the data model are left to the DBI’s code This has the
advantage of allowing the DBI maximal freedom with the
kind of data model to implement, but 1t has the disadvantage
of leaving a sigmficant amount of coding to the DBI We
therefore would lke to 1incorporate some semantic
knowledge of the data model into the descniption file How-
ever, this 1s a long term goal which we have not yet given
much attention

7. Conclusion

The most important result demonstrated by this work
on rule-based optimizer generators 1s that 1t 1s possible to
separate the search strategy of an optimizer from the data
model Thus, 1t 1s possible to implement a genenc optimizer
and search algorithm that 1s suitable for many data models
The model of optimization chosen, algebraic optimization, 1s
expected to fit most modern (set-oriented) data models

The archatecture of the EXODUS optimizer generator
enforces a modular, extensible design of the DBI’s query
optimizer code The transformation and implementation
rules are independent from one another, and the property and
cost functions are well defined, mited programming tasks
for the DBI As a consequence, incremental design and
evaluation of a new data model’s optirmzer 1s encouraged
‘While most of the generator’s inputs are fairly easy to design
and to code, some pieces can be tricky For example,
depending on the design of the arguments, wnting rule con-
ditions and argument transfer functions can be fairly burden-
some More work 1s needed to achieve adequate support for
the DBI 1n this area

Our preliminary performance evaluation of an optim-
1zer generated for a subset of the relational data model,

demonstrates that 1t 1s not necessary to use exhaustive search
in the query optimization process While our experiments
cover only one data model, we behieve that this generaliza-
tion 1s justified Also, the DBI does not have to tune the
search strategy Instead, a good part of the tuning can be
done automatically by the system In terms of both
optimization speed and quality of access plans produced, a
generated opumzer appears competiive with a hand-coded
optimizer With the exception of a few cases, we found that
the access plans found by our prototype for the relational
model were as good as those produced by exhaustive search
We are currently desigming a set of queries to compare sys-
tematically a generated optumizer for the complete relational
model with an existing commercial relational query optim-
1Zer

Acknowledgements

The authors appreciate the encouragement and the
helpful suggestions by the other EXODUS project members
Michael Carey, Damel Frank, Joel Richardson, Eugene
Shekita, and M Muralikrishna

References

[ASTR76] MM Astrahan, et al, "System R Relational
Approach to Database Management,” ACM Transac-
tions on Database Systems, Vol 1(2), pp 97-137,
(June 1976)

[BARR81] A Barr and E A Feigenbaum, The Handbook
of Artificial Inteligence, Wilham Kaufman, Inc,
Los Altos, CA (1981)

[BOBR83] DG Bobrow and M Stefik, "The LOOPS
Manual,” 1n LOOPS Release Notes, XEROX, Palo
Alto, CA (1983)

[CARES85] MJ Carey and DJ DeWitt, "Extensible Data-
base Systems," Proceedings of the Islamorada
Workshop, (Feb 1985)

[CARE86a] MJ Carey, DI DeWitt, JE Richardson, and
EJ Shekita, "Object and File Management 1n the
EXODUS Extensible Database System," Proceedings
of 1986 VLDB Conference, pp 91-100 (Aug 1986)

[CARE86b] M I Carey, DJ DeWitt, D Frank, G Graefe,
JE Richardson, EJ Shekita, and M Muralikrishna,
"The Architecture of the EXODUS Extensible
DBMS A Preliminary Report," Proceedings of the
International Workshop on Object-Oriented Database
Systems, (Sep 1986)

[CLOC81] W Clocksin and C Mellish, Programming 1n
Prolog, Springer-Verlag, New York (1981)

[COPE84] G Copeland and D Mazer, "Making Smalltalk a
Database System,” Proceedings of ACM SIGMOD
Conference, pp 316-325, (June 1984)

[DAYA85] U Dayal and JM Smth, "PROBE A
Knowledge-Oriented Database Management Sys-
tem," Proceedings of the Islamorada Workshop, (Feb
1985)

[DEWI86] DJ DeWitt, RH Gerber, G Graefe, ML
Heytens, KB Kumar, and M Muraliknshna,
"GAMMA - A High Performance Dataflow Database
Machine," Proceedings of 1986 VLDB Conference,
pp 228-237, (Aug 1986)

[FORG81] CL Forgy, "OPS5 Reference Manual," Com-
puter Science Technical Report 135, Carnegie-
Mellon Umversity, (1981)

[FREY85] CF Freytag, "Translating Relational Quernes into
Iteratve Programs,” PhD Thesis, Harvard Univer-
sity, (Sep 1985)

[FREY86a] CF Freytag and N Goodman, "Translating
Relational Quernes into Iterative Programs Using a
Program Transformation Approach," Proceedings of
ACM SIGMOD Conference, (June 1986)

[FREY86b] CF Freytag, "A Rule-Based View of Query
Optimuzatton”, subnutted for publication, (Oct
1986)

[HANA77] MZ Hanam, "An Optimal Evaluation of
Boolean Expressions i an Online Query System,"
Communications of the ACM, Vol 20(5) pp 344-
347, (May 1977)

[HART68] PE Hart, NJ Nilsson, and B Raphael, "A For-
mal Basis for Heuristic Determination of Minimum
Path Cost," IEEE Transactions on SSC, Vol 4, pp
100-107 (1968)

[JARK84] M Jarke and J Koch, "Query Optimization 1n
Database Systems,” ACM Computing Surveys, Vol
16(2) pp 111-152, (June 1984)

[KLUGS82] A Klug, "Access Paths in the ABE Statistical
Query Facility," Proceedings of ACM 1982 SIG-
MOD Conference, pp 161-173, (June 1982)

[KLUGS82a}] A Klug, "Equivalence of Relational Algebra
and Relational Calculus Query Languages Having
Aggregate Functions," Journal of the ACM, Vol
29(3), pp 699-717, (July 1982)

[KOOI80] R P Kooi, "The Optimization of Queries in Rela-
tional Databases,” PhD Thesis, Case Western
Reserve University, (Sept 1980)

[LYNGS86], P Lyngback and W Kent, "A Data Modehng
Methodology for the Design and Implementation of
Information Systems," Proceedings of the Interna-
tional Workshop on Object-Onented Database Sys-
tems, (Sep 1986)

[MANO86] F Manola and U Dayal, "PDM An Object-
Orented Data Model," Proceedings of the Interna-
tional Workshop on Object-Onented Database Sys-
tems, (Sep 1986)

174

[NGUY82] GT Nguyen, L. Ferrat, and H Galy, "A High-
Level User Interface for a Local Network Database
System," Proceedings of IEEE Infocom, pp 96-105,
(1982)

[RICH87] JE Richardson and MJ Carey, "Programming
Constructs for Database System Implementation 1n
EXODUS," Proceeding of ACM SIGMOD Confer-
ence, (1987)

[ROSE86] A Rosenthal, U Dayal, and D Rener, "Fast
Query Optimzation over a Large Strategy Space
The Pilot Pass Approach,” unpublished manuscript

[SELI79] P Gnffiths Selinger, MM Astrahan, DD
Chamberlin, RA Lone, and TG Price, "Access
Path Selection 1n a Relational Database Management
System,” Proceedings of 1979 ACM SIGMOD
Conference, (June 1979)

[SHIP81] DW Shipman, "The Functional Data Model and
the Data Language DAPLEX," ACM Transactions on
Database Systems, Vol 6(1), pp 140-173, (Mar
1981)

[SMIT75] JM Smuth and PY.T Chang, "Optimizing the
Performance of a Relational Algebra Database Inter-
face," Communications of the ACM, Vol 18(10), pp
568-579, (1975)

[STON76] M Stonebraker, E Wong, P Kreps, and GD
Held, "The Design and Implementation of INGRES,"
ACM Transactions on Database Systems, Vol 1(3),
pp 189-222, (Sept 1976)

[STON86] M Stonebraker and L A Rowe, "The Design of
POSTGRES,” Proceedings of 1986 SIGMOD
Conference, pp 340-355, (May 1986)

[TSURS86] S Tsur and C Zamolo, "LDL A Logic-Based
Data-Language,” MCC Technical Report, (DB-026-
86)MCC, (Feb 1986)

[WARR77] DHD Warren, L M Pereira, and F Pererra,
"PROLOG - The language and its implementation
compared with Lisp," Proceedings of ACM
SIGART-SIGPLAN Symp on Al and Programming
Languages, (1977)

[WONG76] E Wong and K Youssefi, "Decomposition - A
Strategy for Query Processing," ACM Transactions
on Database Systems, Vol 1(3), pp 223-241, (Sept
1976)

[YOUS79]1 K Youssefi and E Wong, "Query processing 1n a
relational database management system,” Proceed-
ngs of 1979 VLDB Conference, pp 409-417, (Oct
1979)

[ZANI83] C Zamolo, "The Database Language GEM,"
Proceedings of 1983 ACM SIGMOD Conference,
(May 1983)

172

