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Abstract 

Most databases contain “name constants” like course num- 
bers, personal names, and place names that correspond to 
entities in the real world. Previous work in integration of 
heterogeneous databases has assumed that local name con- 
stants can be mapped into an appropriate global domain 
by normalization. However, in many cases, this assumption 
does not hold; determining if two name constants should be 
considered identical can require detailed knowledge of the 
world, the purpose of the user’s query, or both. In this pa- 
per, we reject the assumption that global domains can be 
easily constructed, and assume instead that the names are 
given in natural language text. We then propose a logic 
called WHIRL which reasons explicitly about the similarity 
of local names, as measured using the vector-space model 
commonly adopted in statistical information retrieval. We 
describe an efficient implementation of WHIRL and evalu- 
ate it experimentally on data extracted from the World Wide 
Web. We show that WHIRL is much faster than naive in- 
ference methods, even for short queries. We also show that 
inferences made by WHIRL are surprisingly accurate, equal- 
ing the accuracy of hand-coded normalization routines on 
one benchmark problem, and outperforming exact match- 
ing with a plausible global domain on a second. 

1 Introduction 

The integration of distributed, heterogeneous databases, 
sometimes called data integration, is an active area of re- 
search [14; 27; 2; 19; 40; 61. Largely inspired by the pro- 
liferation of database-like sources on the World Wide Web, 
previous researchers have addressed a diverse set of prob- 
lems, ranging from access to “semi-structured” information 
sources [38; 1; 391 to combining databases with differing 
schemata [26; 131. 

In this paper we will consider another aspect of data 
integration: the integration of databases that lack common 
domains. To illustrate this problem, consider a relation p 
with schema p (company, industry) that associates compa- 
nies with a short description of their industries, and a second 
relation q with schema q(company,website) that associates 
companies with their home pages. If p and q are taken from 
different, heterogeneous databases, then the same company 
might be denoted by different constants x and x’ in p and 
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q respectively, making it impossible to join p and q in the 
usual way. 

In general, most databases contain many domains in 
which the individual constants correspond to entities in the 
real world; examples of such “name domains” include course 
numbers, personal names, company names, movie names, 
and place names. Most previous work in data integration 
either assumes these “name domains” to be global, or else 
assumes that local “name constants” can be mapped into a 
global domain by a relatively simple normalization process. 
However, examination of real-world information sources re- 
veals many cases in which creating a global domain by nor- 
malization is difficult. In general, the mapping from “name 
constants” to real entities can differ in subtle ways from 
database to database, making it difficult to determine if two 
constants are co-referent (i.e., refer to the same entity). 

For instance, in two Web databases listing educational 
software companies, we find the name constants “Microsoft” 
and “Microsoft Kids”: do these denote the same company, 
or not? In another pair of Web sources, the names “Kestrel” 
and “American Kestrel” appear: do these denote the same 
type of bird, or not? To take examples from a domain fa- 
miliar to most readers, under what circumstances should 
“MIT” and “MIT Media Lab” be considered identical? Fi- 
nally, which pairs of the following names correspond to the 
same research institution: “AT&T Bell Labs”, “AT&T Labs”, 
“AT&T Labs-Research”, “AT&T Research”, “Bell Labs”, 
and “Bell Telephone Labs”? 

In short, in many real-world data sources-particularly 
those found on the Web-determining if two name constants 
are co-referent is far from trivial. Frequently it requires 
detailed knowledge of the world, the purpose of the user’s 
query, or both. We also note that the problem of common 
domains is both critical and fundamental: critical, since an 
inappropriate mapping from local to global domains will 
lead to erroneous or missing answers to user queries, and 
fundamental, since all previous techniques for integration of 
heterogeneous databases require common domains. 

In this paper, we reject the assumption that common do- 
mains exist, or can be easily constructed. Instead, we will 
assume that the names assigned to real-world entities are 
given in natural language test. Under this assumption, de- 
termining if two names are co-referent is a problem of under- 
standing unrestricted natural language, leading immediately 
to the conclusion that it is impossible determine co-reference 
reliably. Therefore, determining name co-reference should 
not be handled by automatic means which are hidden to 
the user. 

Instead, we propose a new logic for database integration 
called WHIRL. WHIRL retains the original local names and 
reasons explicitly about the similarity of pairs of names, 
using statistical measures of document similarity that have 

201 



been developed in the information retrieval (IR) community. 
As in conventional database systems, the answer to a user’s 
query is a set of tuples; however, these tuples are ordered 
so that the Libest” answers are presented to the user first. 
WHIRL considers tuples to be “better” when the name co- 
reference conditions required by the user’s query are more 
likely to hold. 

WHIRL thus combines some properties of statistical IR 
systems, and some properties of database systems. Like sta- 
tistical IR systems, WHIRL reasons about the similarity of 
documents, and outputs an ordered list of answers. (In sta- 
tistical IR systems, documents are generally presented in 
order of estimated relevance to the user’s query.) However, 
like a database system, WHIRL’s answers are tuples instead 
of documents, and WHIRL queries can involve many differ- 
ent relations, instead of a single document collection. 

In the remainder of the paper, we will first present the se- 
mantics of the WHIRL query language, and then describe an 
efficient query algorithm for WHIRL. Semantically WHIRL 
is much like earlier probabilistic or “fuzzy” database logics 
[18; 4] ; however, certain properties of text make efficient 
inference a bit trickier. In particular, it is typically the case 
that many pairs of names will be weakly similar, but few will 
be strongly similar; this leads to inefficiencies for probabilis- 
tic inference algorithms that compute all tuples with non- 
zero probability. Our query-answering algorithm is novel 
in that it finds the highest-scoring answer tuples without 
generating all the low-scoring tuples. 

Finally, we evaluate the algorithm experimentally on real- 
world data extracted from the Web. We show that our al- 
gorithm is much faster than naive inference methods, even 
for short queries. We also show that the inferences of the 
system are surprisingly accurate, as measured with average 
precision. In one case WHIRL’s performance equals the per- 
formance of a hand-constructed, domain-specific normaliza- 
tion routine. In a second case, WHIRL’s performance gives 
better performance than matching on a plausible global do- 
main. 

2 Semantics of the WHIRL Query Language 

2.1 The vector space representation for documents 

As noted above, we will adopt a data model in which real- 
world entities are named by natural language text. One 
widely used method for representing text is the vector apace 
model [36], which we will now briefly review. We assume 
a vocabulary T of terms, which will be treated as atomic; 
terms might include words, phrases, or word stems (mor- 
phologically derived word prefixes). A fragment of text is 
represented as document vector: a vector of real numbers 
v E RIT’, each component of which corresponds to a term 
t E T. We will denote the component of v which corresponds 
to t E T by vt. 

A number of schemes have been proposed for assign- 
ing weights to terms. We found it convenient to adopt the 
widely used TF-IDF weighting scheme with unit length nor- 
malization. Assuming that the document represented by v is 
a member of a document collection C, define Gt to have the 
value zero if t is not present in the document represented by 
v, and otherwise the value Of = (log( TF~,~)+l).log(lDFt), 
where the “term frequency” TFv,t is the number of times 
that term t occurs in the document represented by v, and 
the “inverse document frequency” IDFt is #, where Ct is 
the subset of documents in C that contain the term t. This 
vector is then normalized to unit length. 

The similarity of two document vectors v and w is given 
by the formula aim(v, w) = xtET vt . wt, which is usually 
interpreted as the cosine of the angle between v and w. 
Since every document vector v has unit length, aim(v, W) is 
always between zero and one. 

We note in passing that although these vectors are con- 
ceptually very long, they are also very sparse: if a doc- 
ument contains only Ic terms, then all but k components 
of its vector representation will have zero weight. There 
are well-known methods for efficiently manipulating these 
sparse vectors. 

The general idea behind this scheme is that the magni- 
tude of the component vt is related to the “importance” of 
the term t in the document represented by v. Two docu- 
ments are similar when they share many “important” terms. 
The TF-IDF weighting scheme assigns higher weights to 
terms that occur infrequently in the collection C.’ In a col- 
lection of company names, for instance, common t)erms like 
“Inc.” and “Ltd.” would have low weights; uniquely appear- 
ing terms like “Lucent” and “Microsoft” would have high 
weights; and terms of intermediate frequency like “Acme” 
and “American” would have intermediate weights. 

2.2 Conjunctive queries over relations of documents 

We will assume that all data is stored in relations, but that 
the primitive elements of each relation are document vectors, 
rather than atoms. We call this data model STIR, for Simple 
Texts In Relations-“simple” emphasizing the fact that the 
texts are assumed to have no additional structure. 

More precisely, an extensional database (EDB) consists 
of a term vocabulary T and set of relations (~1, . . . ,pn}. 
Associated with each relation p is a set of tuples tuplea(p). 
Every tuple (VI,. . , vk) E tuplea(p) has exactly k compo- 
nents, and each of these components vi is a document vector 
over T. We will also assume that a score is associated with 
every tuple in p. This score will always be between zero and 
one, and will be denoted acore((vl, . . . , vk) E tuplea(p)). In 
most applications, the score of every tuple in a base relation 
will be one; however, it will be cbnvenient to allow non-unit 
scores, so that materialized views can be stored. 

WHIRL (for Word-based Heterogeneous Information Re- 
trieval Logic) is a query language for accessing these rela- 
tions. A conjunctive WHIRL query is written B1 A.. . A Bk 
where each B; is a literal. There are two types of literals. An 
EDB literal is written p(X1,. . . , X,) where p is the name of 
an EDB relation, and the X1’s are variable symbols (or sim- 
ply variables). A similarity literal is written X N Y, where 
X and Y are variables; intuitively, this will be interpreted as 
a requirement that documents X and Y be similar. We will 
henceforth assume that if X appears in a similarity literal 
in a query Q, then X also appears in some EDB literal in 
Q. 

Example 1 To return to the example of the introduction, 
the join of the relations p and q might be approximated by 
the query Q1: 

p(Companyl,Industry) A q(Company2,WebSite) 
A Companyl~Company2 

(Note that this is different from an equijoin of P 
and q, which could be written p(Company,Industry) A 
q(Company,WebSite) .) To find Web sites for companies in 

‘The weighting scheme also gives higher weights to terms that oc- 
cur freyvently in a document. However, in this context, this heuristic 
is probably not that important, ~mce names are usually short enough 
so that each term occurs only once. 
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the telecommunications industry one might 
Qz: 

use the query 

p(Companyl,Industry) A q(Company2,WebSite) 
A Companyl~Company2 A constl (IO) 
A Industry-10 

where the relation constl contains a single document de- 
scribing the industry of interest, such as “telecommunica- 
tions equipment and/or services”. 

To define the semantics of WHIRL, we will extend the 
notion of score to single literals, and then to conjunctions. 
Let B be a literal, and 8 a substitution such that BB is 
ground. If B is an EDB literal p(Xi, . , X,), we define 
score(B8) = score((Xilf9,. , XkO) E p) if (X10,. . . ,XI;B) E 
tuples(p), and score(B0) = 0 otherwise. If B is a similarity 
literal X N Y, we define score(B0) = sim(X0, Ye). 

Now, if Q = B1 A . . A Bk is a query and QS is ground, 
we define score( Q0) = n:=, score(B,B). In other words, we 
score conjunctive queries by combining the scores of liter& 
as if they were independent probabilities.’ 

Recall that the answer to a conventional conjunctive 
query is the set of ground substitutions that make the query 
“true” (i.e., provable against the EDB). In WHIRL, the no- 
tion of provability has been replaced with the “soft” notion 
of score: substitutions with a high score are intended to 
be better answers than those with a low score. It seems 
reasonable to assume that users will be most interested in 
seeing the high-scoring substitutions, and will be less inter- 
ested in the low-scoring substitutions. We formalize this as 
follows. Given an EDB, we define the full cmwer set SQ 

for a conjunctive query Q to be the set of all 0, such that 
Qe, is ground and has a non-zero score. We define an r- 
answer f?Q for a conjunctive query Q to be an ordered list 
of substitutions 01 , . . . ,8,. from the full answer set SQ such 
that: 

l for all et E RQ and CJ E SQ - RQ, score(QO,) > 
score( Qa); and 

l for all 0i, e3 E RQ where i < j, score( Qe,) 2 acore( Qe,). 

In other words, RQ contains r highest-scoring substitutions, 
ordered by non-increasing score. 

We will assume the output of a query-answering algo- 
rithm given the query Q will not be a full answer set, but 
rather an r-answer for Q, where r is a parameter fixed by the 
user. To motivate the notion of an r-answer, observe that 
in typical situations the full answer set for WHIRL queries 
will be very large. For example, the full answer set for the 
query Qi given as an example above would include all pairs 
of company names Companyi, Company2 that both contain 
the term “In?‘. This set might be very large. Indeed, if we 
assume that a fixed fraction 2 of company names contain 
the term “Inc”, and that p and q each contain a random 
selection of n company names, then one would expect the 
size of the full answer set to contain (5)” substitutions sim- 
ply due to the matches on the term “Inc”; further the full 
answer set for the join of m relations of this sort would be 
of size at least (X)“. 

To further illustrate this point, we computed the pair- 
wise similarities of two lists p and q of company names,3 

20f course, similarity scores are not independent probabilities, so 
there is no reason to expect this combination method to be opti- 
mal. However, this combination method is simple and relatively well- 
understood, and is in our view a reasonable starting point for research 
on this sort of data integration system. 

3These lists are the relations HooverWeb and Iontech from Table 1 
below. 

with p containing 1163 names, q containing 976 names. Al- 
though the intersection of p and q appears to contain only 
about 112 companies, over 314,000 name pairs had non-zero 
similarity. In this case, the number of non-zero similarities 
can be greatly reduced by discarding a few very frequent 
terms like “Inc”.4 However, even after this preprocessing, 
there are more than 19,000 non-zero pairwise similarities- 
more than 170 times the number of correct pairings. This is 
due to a large number of moderately frequently terms (like 
“American” and “Airlines”) that cannot be safely discarded. 

In conclusion, it is in general impractical to compute full 
answer sets for complex queries, and antisocial to present 
them to a user. This leads to the assumption of an r-answer. 

2.3 Unions of conjunctive queries 

The scoring scheme given above for conjunctive queries can 
be fairly easily extended to certain more expressive lan- 
guages. Below we consider one such extension, which corre- 
sponds to projections of unions of conjunctive queries. 

A basic WHIRL clause is written p(X,, . , Xk) t Q, 
where Q is a conjunctive WHIRL query that contains all of 
the XI’s, A basic WHIRL view V is a set of basic WHIRL 
clauses with heads that have the same predicate symbol p 
and arity k. Notice that by this definition, all the literals in a 
clause body are either EDB literals or similarity literals-in 
other words, the view is “flat”, involving only extensionally 
defined predicates. 

Now, consider a ground instance a = p(xl, . . . , xk) of 
the head of some view clause. We define the support of a 
(relative to the view V and a given EDB) to be the set of 
triples (A t Q, 0,3) satisfying these conditions: 

1. (A t Q) E V; and 

2. A6’ = a, and QB is ground; and 

3. score( QO) = S, and s > 0. 

The support of a will be written support(a). We then define 
the score of (Xl,. , xk) in p as follows:5 

score((x1,. . , rXk)EP)=l-- l-I (1-s) 

(C,e,S)E~~PPort(P(~,....,Xk)) 

(1) 

We can now define the materialization of the view V to be a 
relation with name p which contains all tuples (x1,. . , xk) 
such that score((x,, ,xk) E p) > 0. 

Unfortunately, while this definition is natural, there is a 
difficulty with using it in practice. In a conventional setting, 
it is easy to materialize a view of this sort, given a mecha- 
nism for solving a conjunctive query. In WHIRL, we would 
prefer to assume only a mechanism for computing r-answers 
to conjunctive queries. However, since Equation 1 involves 
a support set of unbounded size, it appears that a r-answers 
are not enough to even score a single ground instance a. 

Fortunately, however, low-scoring substitutions have only 
a minimal impact on the score of a. Specifically, if (C, 0,s) 
is such that s is close to zero, then the corresponding fac- 
tor of (1 - s) in the score for a is close to one. One can 
thus approximate the score of Equation 1 using a smaller 

41n fact, certain common “stop words” are generally discarded in 
statistical IR systems. 

‘As a brief motivation for this formula, note that it is some sense 
a dual of multiplication: if el and ea are independent probabilistic 
events with probability pl and pz respectively, then the probability of 
(elAe2) ispl ‘~2, and the probability of (elVe2) is I-(I-pl)(l-~2). 
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set of high-scoring substitutions, such as those found in an 
r-answer for moderately large r. 

In particular, let V contain the clauses A1 t QI, . . . , 
A, t Qn, let RQ,, . , Rg, be r-answers for the Q,‘s, and 
let, R = lJ,Rg,. Now define the r-support for a from R to 
be the set 

{(A t Q, 0, s) : (A t Q, 0, s) E support(a) and 8 E R} 

Also define the r-score for a from R by replacing support(a) 
in Equation 1 with the r-support set for a. Finally, define the 
r-materialization of v from R to contain all tuples Xi,. . . , Xk 

with non-zero r-score, with the score of x1, . . . , xk in p being 
its r-score from R. 

Clearly, the r-materialization of a view can be constructed 
using only an r-answer for each clause body involved in the 
view. As r is increased, the r-answers will include more and 
more high-scoring substitutions, and the r-materialization 
will become a better and better approximation to the full 
materialized view. Thus given an efficient mechanism for 
computing r-answers for conjunctive views, one can effi- 
ciently approximate the answers to more complex queries. 

2.4 Relation to other logics 

At the level described so far, WHIRL is closely related to 
earlier formalisms for probabilistic databases. In particular, 
if similarities were stored in a relation sim(X ,Y) instead of 
being computed ‘(on the fly”, and certain irredundancy as- 
sumptions are made, then WHIRL is a strict subset of Fuhr’s 
probabilistic Datalog [18].6 There are also close connections 
to existing formalisms for probabilistic relational databases 
[41 . 

Given this, it might well be asked why it is necessary 
to introduce a new and more restricted probabilistic logic. 
Our response is that the assumptions made in WHIRL en- 
able relatively efficient, inference, without making the logic 
too restricted to handle its intended task: integration of het- 
erogeneous, autonomous databases by reasoning about the 
similarity of names. In particular, these restrictions make 
it possible to generate an r-answer for conjunctive queries 
efficiently, even if the full answer set is large, and even if the 
document vectors used to represent local entity names are 
quite diverse. These claims will be substantiated more fully 
in Section 4 below. 

3 The Query Processing Algorithm 

3.1 Overview of the algorithm 

The current implementation of WHIRL implements the op- 
erations of finding the r-answer to a query and the r- 
materialization of a view.’ In this section we will describe 
an efficient strategy for constructing an r-answer to a query, 
and then present some detailed examples of the algorithm. 
First, however, we will give a short overview of the main 
ideas used in the algorithm. 

‘Specifically, if one assumes that queries B1 A Bk are “irredun- 
dant” in the sense that there is no ground substitution % with non-zero 
score such that E,6 = B,% for i # j, and also make the same inde- 
pendence assumptions made in Fuhr’s Datalogpio, then the score for 
a WHIRL predicate is exactly the probability of the corresponding 
compound event, which is the same as the probability computed by 
Datalog,,,“. 

‘However, note that not every relational algebra query can be ex- 
pressed in WHIRL, since there is no equivalent of negation or set dif- 
ference. Nor ape SQL operations like grouping and sorting supported. 

In WHIRL, finding an r-answer is viewed as an optimiza- 
tion problem; in particular, the query processing algorithm 
uses a general method called A* search [33; 251 to find the 
highest-scoring r substitutions for a query. Viewing query 
processing as search is natural, given that the goal is to find 
a smell number of good substitutions, rather than all satisfy- 
ing substitutions; the search method we use also generalizes 
certain techniques used in IR ranked retrieval [41]. However, 
using search in query processing is unusual for database sys- 
tems, which more typically use search only in optimizing a 
query. 

To motivate our use of search, consider finding an r- 
answer to the WHIRL query 

insiderTip A publiclyTraded A XNY 

where the relation publiclyTraded is very large, but the 
relation insiderTip is very small. In processing the corre- 
sponding equijoin insiderTip A publiclyTraded A 
X=Y with a conventional database system, one would first 
construct a query plan: for example, one might first find 
all bindings for X, and then use an index to find all values 
Y in the first column of publiclyTraded that are equiva- 
lent to some X. It is tempting to extend such a query plan 
to WHIRL, by simply changing the second step to find all 
values Y that are similar to some X. 

However, this natural extension can be quite inefficient. 
Imagine that insiderTipcontains the vector xl, correspond- 
ing to the document “Armadillos, In?‘. Due to the frequent 
term “In?, there will be many documents Y that have non- 
zero similarity to xl, and it will be expensive to retrieve all 
of these documents Y and compute their similarity to xl. 

One way of avoiding this expense is to start by retriev- 
ing a small number of documents Y that are likely to be 
highly similar to xl. In this case, one might use an index to 
find all Y’s that contain the rare term “Armadillos”. Since 
“Armadillos” is rare, this step will be inexpensive, and the 
Y’s retrieved in this step must be somewhat similar to xl. 
(Recall that the weight of a term depends inversely on its 
frequency, so rare terms have high weight, and hence these 
Y’s will share at least one high-weight term with X.) Con- 
versely, any Y’ not retrieved in this step must be somewhat 
dissimilar to xl, since such a Y’ cannot share with xl the 
high-weight term “Armadillos”. This suggests that if r is 
small, and an appropriate pruning method is used, a sub- 
task like “find the r documents Y that are most similar 
to xl” might be accomplished efficiently by the subplan of 
“find all Y’s containing the term ‘Armadillos’ “. 

Of course, this subplan depends on the vector xl. To 
find the Y’s most similar to the document “The American 
Software Company” (in which every term is somewhat fre- 
quent) a very different type of subplan might be required. 
The observations suggest that query processing should pro- 
ceed in small steps, and that these steps should be scheduled 
dynamically, in a manner that depends on the specific doc- 
ument vectors being processed. 

In the query processing algorithm described below, we 
will search through a space of partial substitutions: for ex- 
ample, one state in the search space for the query given 
above would correspond to the substitution that maps X 
to xl and leaves Y unbound. The steps we take through 
this search space are small ones, as suggested by the discus- 
sion above; for instance, one operation is to select a single 
term t and use an inverted index to find plausible bindings 
for a single unbound variable. Finally, we allow the search 
algorithm to order these operations dynamically, focusing 
on those partial substitutions that seem to be most promis- 
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ing, and effectively pruning partial substitutions that cannot 
lead to a high scoring ground substitution. 

3.2 A* search 

A* search (summarized in Figure 1) is a graph search 
method which attempts to find the highest scoring path be- 
tween a given start state SO and a goal state [33; 251. Goal 
states are defined by a goalstate predicate. The graph be- 
ing searched is defined bv a function children(s), which 
returns the set of states directly reachable from state s. TO 
conduct the search the A* algorithm maintains a set OPEN of 
states that might lie on a path to some goal state. Initially 
OPEN contains only the start state SO. At each subsequent 
step of the algorithm, a single state is removed from the OPEN 
set; in particular, the state s that is “best” according to a 
heuristic function, h(s), is removed from OPEN. If s is a goal 
state, then this state is output; otherwise, all children of s 
are added to the OPEN set. The search continues until r goal 
states have been output, or the search space is exhausted. 

The procedure described above is a variant of the A* pro- 
cedure normally studied, but it has similar desirable prop- 
erties. In particular, define a heuristic function h(.) to be 
admissible iff for all states s and all states s’ reachable from 
s, h(s) 2 h(s’). Define a graph G to be a bounded tree if it is 
a tree of finite depth in which the goal states are all leaves. 
It is straightforward to show that if h(.) is admissible and 
the graph G defined by the children function is a bounded 
tree containing at least r goal states, then this A* variant 
will output in non-increasing order the r goal states with the 
largest heuristic values. Thus the A* search will compute an 
r-answer for Q, whenever the conditions above are met, each 
state s encodes a substitution 8,, and h(s) = score( Qe,) for 
ground 8,. 

3.3 The operators and heuristic function 

We will now explain how this general search method has 
been instantiated in WHIRL. We will assume that in the 
query Q, each variable in Q appears exactly once in an 
EDB literaL In processing queries, the following data struc- 
tures will be used. An inverted index will map terms t E T 
to the tuples that contain them: specifically, we will as- 
sume a function index(t,p, i) which returns the set of tu- 
ples (VI,. . . ,Vi,. . , vk) in tuples(p) such that vi’ > 0. We 
will also precompute the function maxweight (t,p, il, which 
returns the maximum value of vit over all documents vi in 
the i-th column of p. 

The states of the graph searched will be pairs (0, E), 
where B is a substitution, and E is a set of exclusions. Goal 
states will be those for which B is ground for Q, and the 
initial state SO is (0,0). An exclusion is a pair (t, Y) where t 
is a term and Y is a variable. Intuitively, it means that the 
variable Y must not be bound to a document containing the 
term t. Formally, we will say that a substitution 6 is E-valid 
if V(t, Y) E E, (YO)t = 0. Below we will define the children 
function so that all descendents of a node (s, E) must be E- 
valid; by making appropriate use of these exclusions we will 
force the graph defined by the children function to be a 
tree. 

We will adopt the following terminology. Given a sub- 
stitution 0 and query Q, a similarity literal X N Y is con- 
straining iff exactly one of XB and Y6’ are ground. Without 

‘This restrictmn is made innocuous by an additional predicate 
eq(X,Y) which is true when X and Y are bound to the same doc- 
ument vector. The implementation of the aq predicate is relatively 
straightforward, and will be ignored in the discussion below. 

loss of generality, we assume that XB is ground and YB is 
not. For any variable Y, the EDB literal of Q that contains 
Y is the generator9 for Y, the position ! of Y within this 
literal is Y’s generation index. 

Children are generated in two ways: by exploding a state, 
or by constraining a state. Exploding a state corresponds 
to picking all possible bindings of some unbound EDB lit- 
eral. To explode a state s = (0, E), pick some EDB lit- 
eral p( YI , . , Yk ) such that all the Y’s are unbound by 
H, and then construct all states of the form (0 U {YI = 
vl,. , Yk = vk}, E) such that (VI,. . ,vk) E tuples(p) and 
Ou{Y, = vl,. . . , Yk = vk} is E-valid. These are the children 
of s. 

The second operation of constraining a state implements 
a sort of sideways information passing. To constrain a state 
s = (0, E), pick some constraining literal X w Y and some 
term t with non-zero weight in the document X0 such that 
(t,Y) @ E. Let ~(YI,. . . , 1%) be the generator for the (un- 
bound) variable Y, and let L be Y’s generation index. Two 
sets of child states will now be constructed. The first is a 
singleton set containing the state s’ = (0, E’), where E’ = 
E U {(t, Y)}. Notice that by further constraining s’, other 
constraining Iiterals and other terms t in XB can be used to 
generate plausible variable bindings. The second set St con- 
tains all states (e,, E) such that 8, = 6U(Yi = VI,. . . , fi = 
vk} for some (vi,. . . ,vk) E index(t,p, !) and 6, is E-valid. 
The states in St thus correspond to binding Y to some vector 
containing the term t. The set children(s) is St U {s’}. 

It is easy to see that if s1 and s3 are two different states 
in St, then their descendents must be disjoint. Furthermore, 
the descendents of s’ must be disjoint from the descendents 
of any si E St, since all descendents of s’ are valid for E’, 
and none of the descendents of s; can be valid for E’. Thus 
the graph generated by this children function is a tree. 

Given the operations above, there will typically be many 
ways to “constrain” or “explode” a state. In the current im- 
plementation of WHIRL, a state is always constrained using 
the pair (t, Y) such that xt . maxweight(t,p, l) is maximal 
(where p and e are the generator and generation index for 
Y.) States are exploded only if there are no constraining 
literals, and then always exploded using the EDB relation 
containing the fewest tuples. 

It remains to define the heuristic function. (For con- 
venience, we will use h(B, E) for h((B, E)) below.) Recall 
that the heuristic function h(B, E) must be admissible, and 
must coincide with the scoring function score( QS) on ground 
substitutions. This implies that h(B,E) must be an upper 
bound on score(q) for any ground instance q of Q6. We 
thus define h(B, E) to be nt, h’(B,, 8, E), where h’ will be 
an appropriate upper bound on score(B,B). We will let this 
bound equal score(B,8) for ground B,B, and let it equal 1 for 
non-ground B;, with the exception of constraining literals. 
For constraining literals, h’(.) is defined as follows: 

h’(B,, B, E) s c xt .maxweight(t,p,C) (2) 
tET:(t,Y)BE 

where p and .! are the generator and generation index for 
Y. Note that this is an upper bound on the score of B,u 
relative to any ground superset u of 0 that is E-valid. 

‘Notice that for well-formed queries, there will be only one gener- 
ator for a variable Y. 
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Generic A* search As used in WHIRL 

procedure A*(r,so,goalState(.),children(.)) 
begin 

OPEN := {so} 
while (OPEN# 0) do 

s := argmaxsleopE,h(s’) 
OPEN := OPEN - {s} 
if goalState then 

output (9, h(s)) 
exit if r answers printed 

else 
OPEN := OPEN U children(s) 

endif 
endwhile 

end 

Initial state 30: (0,0) 

goalState((B,E)): true iff 919 is ground 

children((6,E)): see text 

h((0, E)): I-I,=, h’(B$) where 
/a’(B,e) = score(B,8) for ground B,B 
h’((X - Yp) = 

CtU:(t,Y)CE xt . maxweight(t,p, e) 
where XB = x, Y is unbound in 6 with 
generator p and generation index e (see text) 

Figure 1: Implementation of WHIRL 

3.4 Additional details 

In the current implementation of WHIRL, the terms of a 
document are stems produced by the Porter stemming algo- 
rithm [34]. In general, the term weights for a document vi 
are computed relative to the collection C of all documents 
appearing in the i-th column of p. However, the TF-IDF 
weighting scheme does not provide sensible weights for re- 
lations that contain only a single tuple. (These relations 
are used as a means of introducing “constant” documents 
into a query.) Therefore weights for these relations must be 
calculated as if they belonged to some other collection C’. 

To set these weights, every query is checked before in- 
voking the query algorithm to see if it contains any EDB 
literals p(X1,. . . , Xk) for a singleton relation p. If one is 
found, the weights for the document xi to which a variables 
X; will be bound are computed using the collection of docu- 
ments found in the column corresponding to Yi, where Y, is 
some variable that appears in a similarity literal with X,. If 
several such Y,‘s are found, one is chosen arbitrarily. If Xi 
does not appear in any similarity literals, then its weights 
are irrelevant to the computation. 

The current implementation of WHIRL keeps all indices 
and,document vectors in main memory, and consists of about 
5500 lines of C and C++.” 

3.5 Examples of WHIRL 

We will now walk through some examples of this procedure. 
For clarity, we will assume that terms are words. 

Example 2 Consider the query 

constl(I0) A p(Company,Industry) A IndustryNIO 

where constl contains the single document “telecommuni- 
cations services and/or equipment”. With B = 0, there are 
no constraining literals, so the first step in answering this 
query will be to explode the smallest relation, in this case 
constl. This will produce one child, 51, containing the ap- 
propriate binding for IO, which will be placed on the OPEN 
list. 

Next s1 will be removed from the OPEN list. Since 
Industry-10 is now a constraining literal, a term from the 
bound variable IO will be picked, probably the relatively rare 
stem “telecommunications”. The inverted index will be 

“‘Although it would have been preferable to implement both STIR 
and WHIRL using MIX [23]. 

used to find all tuples (~01, indl), , (con, ind,) such that 
ind, contains the term LLtelecommunications”, and n child 
substitutions that map Company=co, and Industry=ind, will 
be constructed. Since these substitutions are ground, they 
will be given h(.) values equal to their actual scores when 
placed on the OPEN list. A new state s; containing the ex- 
clusion (telecommunications, Industry) will also be placed 
on the OPEN list. Note that h(si) < /a($~), since the best 
possible score for the constraining literal Industry-10 can 
match at most only four terms: “services” “and”, “or”, 
“equipment”, all of which are relatively frequent, and hence 
have low weight. 

Next, a state will again be removed from the OPEN list. It 
may be that h(si) is less than the h(.) value of the best goal 
state; in this case, a ground substitution will be removed 
from OPEN, and an answer will be output. Or it may be that 
h(si) is higher than the best goal state, in which case it 
will be removed and a new term, perhaps “equipment”, will 
be used to generate some additional ground substitutions. 
These will be added to the OPEN list, along with a state 3:’ 
which has large exclusion set and thus a lower h(.) value. 

This process will continue until r documents are gener- 
ated. Note that it is quite likely that low weight terms such 
as “or” will not be used at all. 

In a survey article, Turtle and Flood [41] review a num- 
ber of query optimization methods for ranked retrieval IR 
systems. The post effective of these was one they call the 
mQz.sco~e optimization. It can be shown that the behavior 
of WHIRL on queries of the sort shown above is identical to 
the behavior of an IR system using the maxscore optimiza- 
tion. 

Example 3 Consider the query 

p(Companyl,Industry) A q(Company2,UebSite) 
A CompanylNCompany2 

In solving this query, the first step will be to explode the 
smaller of these relations. Assume that this is p, and that p 
contains 1000 tuples. This will add 1000 states ~1,. . . , ~1000 
to the OPEN list. In each of these states, Company1 and 
Industry are bound, and CompanylwCompany2 is a con- 
straining literal. Thus each of these 1000 states is analogous 
to the state s1 in the preceding example. 

However, the h(.) values for the states 31,. . . , S~OOO will 
not be equal. The value of the state si associated with the 
substitution 8, will depend on the maximum possible score 
for the literal CompanylwCompany2, and this will be large 
only if the high-weight terms in the document Companylei 
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appear in the company field of q. As an example, a one-word 
document like “3Com” will have a high h(.) value if that term 
appears (infrequently) in the company field of q, and a zero 
h(.) value if it does not appear; similarly, a document like 
“Agents, In? will have a low h(.) value if the term “agents” 
does not appear in the first column of q. 

The result is that the next step of the algorithm will be 
to choose a promising state sz from the OPEN list-a state 
that could result in an good final score. A term from the 
Company1 document in s,-say “3Com”-will then be picked 
and used to generate bindings for Company2 and WebSite. 
If any of these bindings results in perfect match, then an 
answer can be generated on the next iteration of the algo- 
rithm. 

In short, t,he operation of WHIRL is somewhat similar to 
time-sharing 1000 simpler queries on a machine for which the 
basic unit of computation is to access a single inverted index. 
However, WHIRL’s use of the h(.) function will schedule the 
computation of these queries in an intelligent way: queries 
unlikely to produce good answers can be discarded, and low- 
weight terms are unlikely to be used. 

Example 4 Consider the query 

p(Company1 ,Industry) A q(Company2 ,WebSite) 
A CompanylNCompany2 A constl(I0) A Industry-10 

where the relation consti contains the single docu- 
ment , “telecommunications and/or equipment”. In solv- 
ing this query, WHIRL will first explode consti and gen- 
erate a binding for IO. The literal Industry-10 then be- 
comes constraining, so it will be used to pick bindings for 
Company1 and Industry using some high-weight term, per- 
haps “telecommunications”. 

At this point there will be two types of states on the 
OPEN list. There will be one state s’ in which only IO is 
bound, and (telecommunications, Industry) is excluded. 
There will also be several states sir.. . , sn in which IO, 
Company1 and Industry are bound; in these states, the lit- 
eral CompanylwCompany2 is constraining. If s’ has a higher 
score than any of the sI’s, then s’ will be removed from the 
OPEN list, and another term from the literal Industry-10 
will be used to generate additional variable bindings. 

However, if some s; literal has a high h(.) value then 
it will be taken ahead of 3’. Note that this possible when 
the bindings in s, lead to a good actual similarity score for 
Industry-IO as well as a good potential similarity score for 
Companyl~Company2 (as measured by the h’(.) function). If 
an si is picked, then bindings for Company2 and WebSite will 
be produced, resulting a ground state. This ground state 
will be removed from the OPEN list on the next iteration only 
if its h(.) value is higher that of 9’ and all of the remaining 
s,‘s. 

This example illustrates how bindings can be propagated 
through similarity literals. The binding for IO is first used to 
generate bindings for Company1 and Industry, and then the 
binding for Company1 is used to bind Company2 and Website. 
Note that bindings are generated using high-weight, low- 
frequency terms first, and low-weight, high-frequency terms 
only when necessary. 

Example 5 We observe that if all scores of all tuples in 
the EDB are equal to one, and if all documents contain a 
single term, then the score of all substitutions will be either 
zero or one. In this case, the full answer set for a WHIRL 
query Q corresponds exactly to the substitutions that satisfy 
the query obtained replacing every similarity literal X N Y 
with an equality literal’equal (X,Y) (or equivalently, resolv- 
ing against the unit clause X N X c.). Let us consider 

computing the full answer set (or equivalently, an r-answer 
for some very large r) for a query of the form 

Pl(X1) A ... A PL(XI;) A x1 N x2 

A x2 N x3 A . A Xk-1 N XI, 

over a such a “conventional” EDB. We will also assume that 
there is no duplication of documents within a single pi; in 
other words, the query corresponds to a k-way join using 
unique keys. 

Although the query algorithm is designed for quite dif- 
ferent problems, it is instructive to examine its behavior on 
this sort of “conventional” k-way join. We claim that in this 
case, the running time for the WHIRL query algorithm is 
O(k . ni log n,), where 12; is the size of the smallest relation 
p,. To see this, consider the operation of the algorithm on 
such a query. 

The fist step for the algorithm will be to “explode” the 
smallest relation p, . This will place nr states ~1,. . , sn, 
on the OPEN list, where each sJ contains a substitution 6, 
binding X, to a different document xj. 

Now consider some state s3. State sj contains at most” 
two constraining liter&, Bi = X, - X,+1 and Bz = Xi-1 - 
X,, and h(sJ) = h’(B1,8~,0). h’(Bz,O,,0). For this sort of 
“conventional” data, /a’(Bl , B,, 0) is easy to interpret: Equa- 
tion 2 will evaluate to 1 for B1 (respectively Bz) only when 
the single term t contained in xj is contained in some doc- 
ument in p,+l (respectively p,-1) and zero otherwise. So 
WHIRL will pick some sj from the OPEN list that binds xj 
to a value appearing in both pt-l and pi+l, and constrain 
this state by picking a value for either Xi-1 or Xi+i. In 
either case, the unique possible binding for the newly con- 
strained variable will be computing in constant time using 
the index function, sJ will be removed from the OPEN list, 
and a single new state 3: will be placed on the OPEN list in 
its stead. This process can now be repeated for state si, 
leading eventually to either a goal state descendent of s3, or 
to a “dead end” state with an h(.) value of zero. 

Following this argument, it is easy to see that the OPEN 
list never contains more than ni elements, and that the 
depth of every state (in the graph defined by the children 
function) is at most k. This means that at most n, . k itera- 
tions of the while loop of Figure 1 are possible, and leads to 
a running time of O(k . n, log n,). The final factor of log n, 
bounds the time required to remove a state from an OPEN 
list of size ni-although it is unnecessary for this sort of 
“conventional” data, in general the OPEN list is implemented 
as a heap. 

4 Experimental Results 

To evaluate WHIRL, we used the relations described in Ta- 
ble 1. Most of these relations are from Web sites that, are 
plausible subjects for data integration. 

We evaluated our implementation of WHIRL along two 
dimensions. First, we wished to measure the time needed 
to evaluate queries, and compare this time cost with other 
strategies. Second, we wished to measure the accuracy of 
the answers produced by WHIRL. In this evaluation we used 
the measures of precision and recall traditionally used in the 
statistical IR community. 

All experiments were performed using a prototype imple- 
mentation of WHIRL, which keeps all indices and document 
vectors in main memory. 

“If the smallest relation is p, or pb, then there will be only one 
constraining literal, but a similar argument applies. 
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#Tuples Schema source 
31,281 I!lDB(movieBame,year) http://us.imdb.com 
37,572 VideoFlicks(movieIiame,year,genre) http:// www.videoflicks.com 

232 Review(movieBame,nenspaper,revien) http://www.cinema.pgh.pa.us/movie/reviews 
78 MovieLink(movielYame,cinema8ame,address,phone,zipcode) http:// www.movielink.com 

2,474 Hoovers(companyBame,industry) http:// www.hoovers.com 
1,163 HooversUeb(companyBame,industry,nebsite) http://www.hoovers.com 

976 Iontech(companyBame,nebsite,tickertape,industry) http:// www.iontech.com 
13,625 ReutersTrain(story, keywords) http://www.research.att.com wlewis/reuters21578.html 
6,188 ReutersTest(story, keywords) t~ttp://www.research.att.com/~lewis/reuters21578.html 

990 Animall(commonBame,scientificlame) http://endeavor.des.ucdavis.edu/nps 
4,719 Animal2(commonBame,scientificBame,Range) llttp://www.nceet.snre.umich.edu/EndSpp/ES.lists.html 

Table 1: Relations used in the experiments 

4.1 Timing results 

We evaluated run-time performance with CPU time mea- 
surements on a specific class of queries, which we will hence- 
fort,h call similarity joins. A similarity join is a query of the 
form 

naive method by a factor of 20 or more. Note that the abso- 
lute time required to compute the join is fairly modest-with 
n = 30,000, WHIRL takes well under a minute13 to pick the 
best 10 answers from the 900 million possible candidates. 

p(x’,,..., x, ,..., Xk) 
A C,(Yl,. ,Yj,. .,Y,, A x, N YJ 

An answer to this query will consist of the r tuples from p 
and 4 such that X, and YJ are most similar. 

This type of query has several advantages for benchmark- 
ing purposes. It is highly relevant to our research goals, since 
it is directly related to the sort of data integration problem 
which led us to develop WHIRL. This class of queries is suf- 
ficiently constrained in form so that it can be handled using 
simple algorithms built on top of well-known, previously ex- 
isting IR search methods. This makes it possible to compare 
the query optimizations used in WHIRL with previous query 
optimizations. In particular, we will compare WHIRL with 
the following algorithms. 

We also joined ReutersTrain and Hoovers using the 
company name column of Hoovers and the story column 
of ReutersTrain. This application of similarity joins corre- 
sponds to searching for all mentions in the Reuters corpus of 
any company listed in Hoovers, and illustrates an interest- 
ing blending of IR search with data integration. The results 
are shown in the second graph of Figure 2. On these prob- 
lems the maxscore method does not improve over the naive 
method with respect to CPU time.14 However, WHIRL 
speeds up the naive method by a factor of 2-4. The ab- 
solute time required is again small-about 5 CPU seconds 
for n := 2474. 

l The naive method for similarity joins takes each doc- 
ument in the i-th column of relation p in turn, and 
submits it as a IR ranked retrieval query to a corpus 
corresponding to the j-column of relation q. The top r 
results from each of these IR queries are then merged 
to find the best r pairs overall. This might be more ap- 
propriately be called a “semi-naive” method; on each 
IR query, we use inverted indices, but we employ no 
special query optimizations. 

It should be noted that the run-time for these queries is 
fast in part because some of the documents being joined are 
names. Names tend to be short and highly discriminative, 
and thus behave more like traditional database keys than 
arbitrary documents might. This point can be illustrated 
experimentally [9]. 

Elsewhere we present timing results for typical queries 
posed to a prototype data integration system based on WHIRL 
[IO]. In this setting the queries are more complex (e.g., four- 
and five-way joins) but the relations are somewhat smaller, 
containing a few hundred to a few thousand tuples. Query 
processing time for these queries is usually a tenth of a sec- 
ond or less. 

l As noted above, WHIRL is closely related to maxscore 
optimization [41]. We thus compared WHIRL to a 
maxscore method for similarity joins; this method is 
analogous to the naive method described above, except 
that the maxscore optimization is used in finding the 
best r results from each “primitive” query. 

To see how these algorithms behave, we used them to 
compute the top 10 answers” for the similarity join of sub- 
sets of the IMDB and VideoFlicks relations. In particular, 
we joined size n subsets of both relations, for various val- 
ues of n between 2000 and 30,000. The results are shown 
in Figure 2. For this data, WHIRL speeds up the maxscore 
method by a factor of between 4 and 9, and speeds up the 

4.2 Average precision on similarity joins 

To evaluate the accuracy of the answers produced by WHIRL, 
we adopted the following methodology. Again focusing on 
similarity joins, we selected pairs of relations which con- 
tained two or more plausible “key” fields. One of these 
fields, the “primary key”, was used in the similarity literal 
in the join. The second key field was then used to check the 
correctness of proposed pairings; specifically, a pairing was 
marked as “correct” if the secondary keys matched (using an 
appropriate matching procedure) and “incorrect” otherwise. 

We then treated “correct” pairings in the same way that 
“relevant” documents are typically treated in evaluation of a 
ranking proposed by a standard IR system. In particular, we 
measured the quality of a ranking using (non-interpolated) 

“In other experiment (not reported here due to space considera- 
t,ions) we have explored the result of increasing T up to several thou- 
sand For these sorts of problems the compute time for WHIRL grows 
no worse than linearly with T 

13All timing results are given in CPU seconds on a MIPS Irix 6.3 
with 200 MHz RlOOOO processors. 

141t cdoes, however, greatly reduce the number of accesses to the 
inverted index, as Turtle and Flood observed. 
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Figure 2: Runtime for similarity joins (in seconds) 

Similarity Joins Similarity Joins with 
Incompatible Schemata 

Table 2: Average precision for similarity joins 

average precision. To motivate this measurement, assume 
the end user will scan down the list of answers and stop at 
some particular “target answer” that he or she finds to be 
of interest. The answers listed below this “target” are not 
relevant, since they are not examined by the user. Above 
the target, one would like to have a high density of correct 
pairings; specifically, one would like the set S of answers 
above the target to have high precision, where the precision 
of S is the ratio of the number of correct answers in S to 
the number of total answers in S. Average precision is the 
average precision for all “plausible” target answers, where 
an answer is considered a plausible target only if it is correct. 
To summarize, letting ok be the number of correct answers 
in the first k, and letting c(k) = 1 iff the k-th answer is 
correct and letting c(k) = 0 otherwise, average precision is 
the quantity CL=, c(k). y. 

Note that average precision is 1 only when all correct 
answers precede all incorrect answers. In the experiments 
below, we used r-answers of size r = 1000 to compute aver- 
age precision. 

We used three pairs of relations from three different do- 
mains. In the business domain, we joined Iontech and 
HooversWeb, using company name as the primary key, and 
the string representing the “site” portion of the home page 
as a secondary key. In the movie domain, we joined Review 
and MovieLink, using film names as a primary key. As a 
secondary key, we used a special key constructed by the 
hand-coded normalization procedure for film names that is 
used in IM, an implemented heterogeneous data integration 
system [27]. In the animal domain, we joined Animal1 and 
Animala, using common names as the primary key, and sci- 

entific names as a secondary key (and a hand-coded domain- 
specific matching procedure). 

The results are summarized in Table 2. On these do- 
mains, similarity joins are extremely accurate-in the movie 
domain, the performance is actually identical to the hand- 
coded normalization procedure. These results contrast with 
the typical performance of statistical IR systems on retrieval 
problems, where the average precision of a state-of-the art 
IR system is usually closer to 50% than 90%. This sug- 
gests that the similarity reasoning required to match names 
is easier than the similarity reasoning required to process a 
typical IR ranked retrieval query. 

In the experiments, we used the secondary key as a “gold 
standard” ; however, in most of the domains, the matching 
procedure for the secondary keys is somewhat error prone. 
Checking all pairings manually would be too time consum- 
ing, but to get some idea of the accuracy of the secondary 
keys we took the top 100 pairs in the business domain, and 
manually checked the 13 pairs marked as “incorrect’ accord- 
ing to the secondary key. Of these 13 pairings, there were 11 
in which the secondary keys were wrong, one in which the 
WHIRL pairing was wrong (at rank 77), and one pair where 
correctness could not be easily determined. This suggests 
that the similarity join is actually more accurate than the 
use of Web sites as a key. 

4.3 Joins with incompatible schemata 

Another problem which occurs in integrating heterogeneous 
data is the problem of incompatible schemata. For example, 
consider trying to find employees of a university using the 
following two relations: professor (name, workAddress) 
and university(name,state). It is plausible that concate- 
nating a university name and state would give a document 
similar, but not identical, to an employee’s workAddress. 
(Typically a workAddress would have a number of extra 
terms, such as “Department of Computer Science”, in addi- 
tion to some variant of the university name and its state.) 
Thus in this case, an appropriate similarity join might give 
a useful result, even though the objects being joined are in 
fact different. 

We explored this possibility by considering different 
schemata for the MovieLink and Review relations, with the 
aim of constructing problems that are similar to the sort of 
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incompatible-schemata problem given above, but still pos- 
sible to evaluate rigorously by checking individual pairings. 
For MovieLink, we considered a variation in which each tu- 
ple contains a single document containing a movie name 
plus a complete cinema address. (In the table, we call this 
document a “movieListing”.) For Review, we considered a 
variation in which each tuple contains only a review entry, 
and no separate movie name field.15 We then computed sim- 
ilarity joins with each possible combination of a MovieLink 
variant and a Review variant. 

One would expect the irrelevant “noise” words that ap- 
pear along with the movie names to have some adverse af- 
fect on precision. In our experiments with the Review and 
Movielink relations, however, the effect was quite slight: 
joining movie names to movie listings reduces average pre- 
cision by only 2%, and joining movie listings to complete 
reviews reduces average precision by less than 7%. Finally, 
joining movie listings to movie names leads to no measur- 
able loss in average precision. These results are summarized 
in Table 2. 

5 Related Work 

Chaudhuri et al present efficient solutions to the problem 
of loosely integrating Boolean text queries with database 
queries [8]. In contrast, we have considered a much tighter 
integration between databases and statistical IR queries. 
The assumptions made by Chaudhuri et al are not particu- 
larly appropriate in the context of heterogeneous database 
integration. 

As noted above in Section 2.4, WHIRL is closely related 
to probabilistic databases (e.g., [18; 41). To our knowledge 
such database systems have not been used in data integra- 
tion tasks. Furthermore, the implementation of WHIRL is 
unique in generating only a few “best” answers to a query; 
existing probabilistic database systems typically find all tu- 
ples with non-zero probability. As we argued above in Sec- 
tion 2.2, this would often be impractical for the problems en- 
countered in this sort of heterogeneous database integration, 
due to the prevalence of weak matches between documents. 

The WHIRL query algorithm borrows heavily from tech- 
niques previously used to optimize ranked retrieval searches 
in statistical IR. To our knowledge, these techniques have 
not been previously used for approximating the join of lists 
of documents. More generally, the sort of approximate join 
implemented in WHIRL does not seem to have been investi- 
gated in the IR literature, although numerous other hybrids 
of statistical IR techniques with database representations 
have been proposed (e.g., [37; IS]). 

There has also been much work on approximate match- 
ing techniques for the removal of duplicates and merging of 
heterogeneous data sources [32; 16; 22; 21; 20; 311. Most of 
the approximate matching methods proposed are domain- 
specific (e.g., using Soundex to match surnames), a notable 
exception being the Smith-Waterman edit distance adopted 
by Monge and Elkan [31]. Applying these techniques is a rel- 
atively expensive off-line process which is usually not guar- 
anteed to find the best matches, due to the nearly universal 
use of “blocking” heuristics which restrict the number of 
similarity comparisons. 

Here, we have considered approximate matching using 
the vector space model of similarity. This model enjoys a 
number of advantages. Like Smith-Waterman, it is domain- 
independent. It is extremely well supported experimentally 

15The review documents virtually always contain a title nammg the 
movie being rewewed, as well as a lot of additional text. 

as a similarity metric for text; we note that in a previous 
comparison, a simple term-weighting method gave better 
matches than the Smith-Waterman metric [30]. Finally, by 
using inverted indices, it is possible to quickly locate items 
similar to a given item. Exploitation of this property re- 
sults in a approximate matching algorithm that is guaran- 
teed to find the best pairings, but still fast enough to inter- 
leave with query-answering. Note that interleaving match- 
ing with query-answering, rather than computing the best 
matches off-line, has an important consequence: rather than 
commit early as to whether a match is correct or incorrect, 
one can propagate uncertainty about approximate matches, 
and then use the propagated uncertainty to rank answers 
presented to the end user. 

There have also been a number of approaches to data 
integration which address issues orthogonal to the problem 
of lack of common domains. Examples of such work include 
“semi-structured” data models [38; 1; 391; while we have 
focused here on relational models, due to their simplicity, 
we believe that many of the basic principles of WHIRL can 
be applied to more complex data models as well. Other 
data integration systems provide a database-like view of t.he 
Web (e.g., [17; 29; 24]), in which queries can express com- 
binations of keyword searches and hypertext connectivity 
constraints; in effect, these languages offer a means declara- 
tively navigating the Web. As suggested by the experiments, 
we believe that our work is most appropriate for integrating 
sites that contain no explicit links connecting them. WHIRL 
also differs from such models in that it includes statistical 
IR methods for searching within documents, rather than 
boolean keyword search methods. 

In its basic motivation, our work is inspired by previous 
work in the integration of heterogeneous data sources, such 
as data sources on the Web [27; 2; 19; 3; 40; 61. None of 
these previous systems, however, include a “fuzzy” matching 
procedure for names; instead they generally construct global 
domains using hand-crafted domain-specific normalization 
schemes. Use of domain-specific matching algorithms has 
also been proposed as an alternative to normalization [15]. 

The connection between WHIRL and other data integra- 
tion systems is discussed more fully in another paper [lo], 
which describes a WHIRL-based data integration system for 
Web data sources. The focus of that paper is on mecha- 
nisms for converting HTML information sources into STIR 
databases, and other practical issues in fielding a data inte- 
gration system. In contrast, this paper focuses on efficient 
theorem proving algorithms for WHIRL and rigorous eval- 
uation of WHIRL in controlled experiments. 

Some of the results of this paper have also appeared pre- 
viously in preliminary form [9]. 

6 Conclusions 

In an ideal world, one would like to integrate information 
from heterogeneous autonomous databases with little or no 
human effort. In other words, one would like data to be 
easily shared among databases. Unfortunately, such data 
sharing is difficult with current data models. One funda- 
mental and critical problem is the lack of global domains: 
different databases are likely to use different const,ants to 
refer to the same real-world entity, making operations like 
joins across relations from different databases impossible. 

We believe the data model and query language presented 
in this paper represent a significant advance toward the long- 
term goal of easily sharable data. We have outlined an ap- 
proach to the integration of structured heterogeneous infor- 
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mation sources, based on extended conventional database 
query languages with standard IR methods for reasoning 
about textual similarity. The approach is embodied in an 
implemented logic called WHIRL. WHIRL is intended for 
integration of relations that are semantically heterogeneous 
in the sense that there is no common naming scheme for 
entities. 

The problem of integrating relations without global do- 
mains has received little prior attention. Current data inte- 
gration systems typically use domain-specific rules to nor- 
malize entity names, and then use the normalized versions 
of these names as keys. These normalization rules are devel- 
oped manually, sometimes at considerable effort. In prac- 
tice, the cost of this process in terms of human time limits 
data integration systems to relatively well-structured data 
collected from a relatively small number of sites. Further- 
more, normalization is prone to error, and unlike WHIRL, 
a system based on normalized keys has no way of either as- 
sessing the likelihood of such errors or (more importantly) 
informing the user of potential errors. 

Our experiments show that the accuracy of WHIRL’s 
“similarity joins” are quite good, even compared to hand- 
coded int,egration schemes based on normalization. In one 
case WHIRL’s performance equals the performance of a hand- 
constructed, domain-specific normalization routine. In a 
second case, WHIRL’s performance gives better performance 
than matching on a plausible global domain. WHIRL is also 
efficient; the current implementation can handle join opera- 
tions on moderate sized databases (containing a few tens of 
thousands of t,uples) at interactive speeds. 

Although t,hese results are encouraging, many additional 
topics remain to be addressed. There are many well-known 
methods for conducting an approximate A* search; some 
or all of these may lead to substantial performance im- 
provements. The current version of WHIRL handles het- 
erogeneous data, but not in a distributed fashion; this is 
another intriguing topic for future work. We would also 
like to consider the issue of closely integrating WHIRL with 
appropriate learning methods for text categorization [28; 
121, adjusting numerical parameters for queries [5; 7; II], 
and learning logical expressions [35]. 

Finally, we plan to continue our evaluation of WHIRL on 
actual data integration tasks [lo]. These experiments allow 
us to evaluate WHIRL on less artificial queries, and suggest 
necessary extensions. One drawback of such work, how- 
ever, is that any system integrating data from existing Web 
information sources requires some sort of human-directed 
translation of these sources--for instance, our data integra- 
tion system requires translation from HTML to STIR. This 
makes it impossible to separate the performance the integra- 
tion system as a whole from the cleverness and industry of 
the humans that are doing the translation. In a better world, 
of course, translation would be unnecessary; instead data 
would be encoded directly in STIR, or some other sharable 
data model. 
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