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Traditional database systems provide a user with the ability to query and manipulate one
database state, namely thecurrent database state. Howrever, in several emerging applications,
the ability to analyze “what-i~ scenarios in order to reason about the impact of an update
(before committing that update) is of paramount importance. Example applications include
hypothetical database access, active database management systems, and version manage-
ment, to name a few. The central thesis of the Heraclitus paradigm is to provide flexible
support for applications such as these by elevating deltas, which represent updates proposed
against the current database state. to be first-class citizens. Heraclitusl Alg, Cl is a database
programming language that extends C to incorporate the relational algebra and deltas.
Operators are provided that enable the programmer to explicitly construct, combine, and
access deltas. Most interesting is the when operator, that supports hypothetical access to a
delta: the expression E when 8 yields the value that side effect free expression E would have if
the value of delta expression 3 were applied to the current database state. This article
presents a broad overview of the philosophy underlying the Heraclitus paradigm, and
describes the design and prototype implementation of HeraclituslAlg, C]. A model-indepen-
dent formalism for the Heraclitus paradigm is also presented. To illustrate the utility of
Heraclitus, the article presents an in-depth discussion of how Heraclitus[Alg, Clean be used
to specify, and thereby implement, a wide range of execution models for rule application in
active databases; this includes both prominent execution models presented in the literature,
and more recent “customized” execution models with novel features.
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base Management 1:Miscellaneous= cti(,edatabases
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1, INTRODUCTION

The primary focus of a database management system is to maintain and
provide access to the current dctahase state, which holds a representation
of some portion of reality. In many applications it is also common to
maintain more than one version of the state or parts of it, either at a
semantic or a physical level. Speaking at a semantic level. the most
prominent examples are versioning systems such as those that arise in
computer-aided engineering, temporal databases, and systems for support-
ing hypothetical data analysis. The emerging area of active databases also
makes use of multiple versions of the database state, and “deltas” between
them. At a more physical level, multiple states and the deltas between
them arise in support of concurrency control. recovery, and archiving. In
most cases, the semantics and implementation of multiple states and deltas
have been developed on an ad hoc basis for each of the different application
areas.

The goal of the Heraclitus project is to develop language constructs and
implementation techniques for representing multiple states, using the
approach of making deltas “first-class citizc’ns” in database prokpamming
languages (DBPLs I. These language constructs can be used directly in
support of”“what-if” scenario analysis. More ~eneral[y, hy supporting deltas
as first-class citizens in a DBPL, Heraclitus provides a testbed both for
experimenting \vith a wide variety of approaches to existing applications
such as version control and active databases, and also opens the possibility
of developing new applications, such as systems for detecting and resolving
conflicts between proposed updates. This article gives a comprehensive
description of the first phase of the Heraclitus project, which focuses on the
desi~n, implementation and application of Heraclitusl A1.g, (~1. a relational
DBPL that cxt(’nds C with relations and constructs for creatin~ and
‘accessing deltas, and hence, multiple virtual database states. It also
provides an abstract and model-independent perspective on the Heraclitus
paradi~m, and illustrates how the Heraclitus paradigm can he used to
unify and generalize current research on active datal)ase systems.

Speaking intuitively, in the Heraclitus paradigm a delta corresponds to a
proposed update to the database that is not necessarily applied. Perhaps
the most interesting operator for accessing deltas is when. This is a binary
operator, written infix. If E is a side effect free expression (more precisely,
an exprc’ssion \vith no side effects on the database state ) and Fi is an
expression yielding a delta, then “E when 3“ e~’aluates to the value that E
would have, //’ the value of 8 were applied to the database, (Here E might
be. e.g. , a query. an expression evaluating to a delta. or a function call that
returns an integer based on a complex analysis of the database state. ) This
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is called hypothetical access, because it views the database state under the
hypothesis that the delta had been applied. To illustrate, one can express
“compute total payroll” when “give everybody in the sales department a
10% raise.” Different deltas can be used to represent different hypothetical
states or versions of the world. Operators are also provided to combine
deltas; for example, the composition operator applied to 81 and 82 forms the
delta that corresponds to applying al followed by applying &

As a richer illustration of using deltas and the when operator in support
of hypothetical database access, consider a stock market database and a
financial analyst managing several portfolios. The analyst is allowed to
change each portfolio’s investment by either selling or buying shares.
However, most of the time the analyst speculates on the trends in the
market, the change in price of different shares, and his or her possible
response to these changes. Using the Heraclitus paradigm, the analyst may
represent each speculation as a delta. Using the delta operators, the
analyst may query and reason about the impact of one or more deltas on
the final value of a portfolio, combine several deltas into one, and detect
and resolve conflicts among deltas. If a decision is made to use a delta
reflecting a given management strategy, then the delta can be applied to
the database to achieve the result. An unusual feature of the Heraclitus
paradigm is that several deltas corresponding to several different market
trends and management strategies can be maintained simultaneously, and
the hypothetical states that they represent can be compared against each
other. Unlike most version management systems, Heraclitus provides
support for rapidly switching contexts between hypothetical states, and for
comparing them.

Heraclitus[Alg, C] is a full-fledged DBPL; that is, it blends the full power
of a programming language (C) with concurrent access to persistent bulk
data (relations and deltas). The primary challenge of Heraclitus is the
identification of appropriate general-purpose language constructs for creat-
ing, accessing, and combining deltas. The main contribution of the lan-
guage Heraclitus[Alg, C] is the design and implementation of such con-
structs for the pure relational model (i.e., no duplicate tuples and no tuple
identifiers). In this context, a delta is viewed as a set of tuples to be

inserted (possibly into more than one relation) and a set of tuples to be
deleted (possibly involving more than one relation). We feel that the
language constructs chosen for Heraclitus[Alg, C] are sufficiently rich to
support in a flexible manner a variety of applications. Heraclitus[Alg, C]
has already been used for investigations concerning active databases and
their applications, including the development of new execution models for
active databases [Chen et al. 1994; Dalrymple 1995], and the use of active
technology to support software and database interoperation [Dalrymple
1995; Zhou et al. 1995].

The design and implementation of Heraclitus[Alg, C] provided us with
significant experience and insight into the notion of deltas and how to
support them in terms of both language design (Section 3) and implemen-
tation (Section 4). In connection with the language design, two issues are
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notable. First, interesting algebraic equivalences are developed for the

when operator. Subtleties arise, because nested function calls involving

whens preclude the possibility of compile-time optimization. The second
issue involves the “intended meaning” of deltas. As detailed in Section 3.3,

the intended meaning of an update such as “give everyone in the sales
department a 1(1~ raise” is not captured directly by a delta, but rather by a
function that returns possibly different deltas for different database states.

A primary focus of Heraclitus[Alg, C] has been on the context of using
deltas within a single transaction (as arises in many execution models for
active databases ), and/or the use of deltas in a single-user environment fas
found in many personal-computer database systems ). For completeness,
Heraclitus[Alg, C ] does incorporate some basic operators for concurrency
control. It is possible in Heraclitus[Alg, C] to construct and use deltas that
persist across transaction boundaries in a multi-user environment, but
little support is currently provided to ensure that the intended meaning of
deltas is preserved as the underlying database state evolves. Providing
such support is an open research problem currently under investigation
IDoherty and Hull 1995; Doherty et al. 1995al.

At the physical level, the when operator is implemented in combination

with algebraic operators. For example, when evaluating the expression ( R

join S 1 when 8, the system will simultaneously (a) form the join of R and S

and ( b ) “filter” the values of R and S through 6. This approach avoids the

computation of the full values of R when 8 and S when ~. We have
experimented with two approaches for accessing deltas, one based on
hashing and the other using sort-merge techniques. Benchmarking experi-
ments verified (Section 4.3) that the cost of hypothetical access with a
relational operator is a linear function of the cost to execute the operator
and the size of the delta.

The Heraclitus project was initiated in 1991, with the development of an
abstract Heraclitus language based on the relational calculus [Jacobs and
Hull 1991 I and a study of its utility in connection with specifying execution
models for active databases IHull and Jacobs 1991 ]. A prototype implemen-
tation of the algebraic operators for deltas in the relational model was
developed in Ghandeharizadeh et al. [19921, and subsequently expanded
into Heraclitus[Alg, C ] [Ghandeharizadeh et al. 19931. The present article
provides a complete, unified, and refined description of this work, and
includes many details that were omitted from the conference publications.
It also introduces an abstract model of deltas and their operators {Section
5 ) that is independent of the relational model, thus providing a starting
point for extending the Heraclitus paradigm to other data models, for
example, functional data model, object-oriented data model, relations with
duplicates, and the like,

The rest of this article is organized as follows. Section 2 surveys related
research. Section 3 describes the language level of Heraclitus[Alg, Cl in
considerable detail in a tutorial form. Section 4 describes the implementa-
tion of Heraclitus[Alg, C], and briefly outlines the results of initial bench-
marking experiments with the prototype. Section 5 presents the model-
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independent perspective of deltas and their operators. Section 6 considers
how the Heraclitus paradigm can be used to specify, and thereby imple-
ment, a wide variety of execution models for active databases. Finally,
Section 7 offers brief conclusions and describes some current and future
research efforts in connection with the Heraclitus paradigm.

2. RELATED WORK

The work on Heraclitus was inspired and influenced by many related
research efforts; in the following we list some of the most important ones.

One of the prime motivations for developing the Heraclitus paradigm is
the importance of deltas in connection with the execution model, or seman-
tics of rule application, in active database systems [Widom and Ceri 1995;
Hanson and Widom 1992; Stonebraker 19921. Indeed, as first indicated in
Hull and Jacobs [1991] and detailed in Section 6, conceptually viewing
deltas as first-class citizens provides a useful basis for specifying and
clarifying a variety of different execution models for active databases
including, for example, the Starburst Active Database Rule System [Widom
and Finkelstein 1990; Widom 1993; Widom and Ceri 1995], AP5 [Cohen
1986, 1989; Zhou and Hsu 1990], POSTGRES [Stonebraker et al. 1990;
Widom and Ceri 1995], ARIEL [Hanson 1989; Widom and Ceri 1995], and
LOGRES [Cacace et al. 1990]. Several recent articles on active database
systems, including [Widom 1993; Simon and Kiernan 1995; Collet et al.
1994], describe the semantics of their systems in terms of deltas. These
systems construct and manipulate deltas solely in the context of applying
rules within a single transaction. Unlike Heraclitus, these systems do not
support persistent deltas, or constructs to create, manipulate, and compare
completely unrelated deltas. Furthermore, as detailed in Section 6.4,
Heraclitus can be used directly to specify, and thereby implement, novel
execution models for specialized purposes.

Differential files [Severance and Lohman 1976] are a low-level imple-
mentation technique that supports efficient representation of multiple
versions of a database. Unlike differential files, deltas in the Heraclitus
framework are manipulated directly by constructs supported by the user-
level programming language. Furthermore, we support a family of opera-
tors for explicitly constructing and combining deltas in addition to those for
explicitly and hypothetically accessing them.

A version of hypothetical relations is introduced in Woodfill and Stone-
braker [1983]. Although the work there describes carefully crafted implemen-
tation strategies for such relations, it cannot be extended easily to provide the
full generality of delta usage supported in the Heraclitus framework.

Gabbay [19851 and Bonner [1990, 1995] consider extensions of Datalog
that incorporate hypothetical reasoning. That work is focused primarily on
the development of a proof theory and model theory that includes hypothet-
ical reasoning. Similar to Heraclitus[Alg, C], hypothetical changes to a
database state are represented as sets of atoms to be added to or deleted
from the state.
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It has been suggested that a reasonable approach to support the basic
functionality of the when operator would be to augment existing concur-
rency control mechanisms, using the following steps: (a) evaluate E when 6
by applying 8 to the database (but do not commit), (b) evaluate E in the
context of the new database, and (c) roll back the transaction in order to
undo 6. Although this rollback technique will be useful in some contexts, it
is just one of several feasible implementation strategies that warrant
investigation. In the case of complex algebraic expressions involving sev-
eral not necessarily nested deltas, it may be more efficient to incorporate
optimization of when into the conventional optimization of the other alge-
braic operators, rather than relegating it to the orthogonal rollback mech-
anism. Also, the use of rollbacks to support hypothetical database access
may cause unacceptable delays in the concurrency system, complicate the
transaction protocols, and degrade the performance of the system.

The development of Heraclitus[Alg, C] was greatly influenced by other
research on DBPLs [Atkinson and Buneman 19871, and in particular by
DBPLs that combine the relational model with an imperative programming
language, such as PASCAL/R [Schmidt 19771.

3. THE LANGUAGE OF HERACLITUSIALG, C]

The foundation of the Heraclitus paradigm is the notion of delta values, often
simply termed deltas; each of these is a function that maps the family of
database states to the family of database states. Intuitively, a delta can be
thought of as a “delayed update,” that is, a command that can be used to
update an arbitrary database state, but is not necessarily applied. Three
operations are fundamental to deltas: applying them to a given database state
to obtain a new one, function composition, and hypothetical access using the
when operator.

This section presents a tutorial introduction to Heraclitus[Alg, C 1,a partic-
ular realization of the Heraclitus paradigm for the pure relational model [i. e.,
no duplicates and no tuple-ids). An algebraic perspective on how deltas are
supported for the relational model is presented in Section 3.1. The embedding
of deltas and their operators into C is presented in Section 3.2. Figure 3 of this
section summarizes the algebraic and language-level operators of Heraclitu-
S[Alg, C 1.Some unexpected subtleties arise; these are discussed in Section 3.3.
We conclude in Section 3.4 with a brief note on support for concurrency in
Heraclitus[Alg, C]. A running example is used in this section both to illustrate
the basic components of the language and also to illustrate the use of the
Heraclitus paradigm in connection with hypothetical database access.

Because Heraclitus combines several familiar concepts in a novel man-
ner, it may be difficult to understand some of the subtleties of Heraclitu-
SIAlg. C I during a first reading of this section. The following three sections
of the article provide different perspectives on the Heraclitus paradigm and
Heraclitus[Alg, C]. Specifically, Section 4 describes the implementation of
Heraclitus[Alg, C 1,with special emphasis on implementation of the various
language-level operators. Section 5 gives a more abstract perspective on the
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Supplier Part

m
Suppliers

Part Quantity Supplier Expected
frame I 400 I Trek I 8/31/93
brakes I 150 campy 9/1/93

Orders

Fig. 1. Relations forinventory control example: database state Sa.

Heraclitus paradigm that is essentially model independent. And Section 6
shows how Heraclitus[Alg, Cl can be applied to specify a variety of
execution models for active databases. That section provides rich examples
of pseudocode written in Heraclitus[Alg, C].

3.1 The Algebraic Perspective

This section describes the algebraic level of the Heraclitus paradigm for the
pure relational model. The focus is on delta values and the algebraic
operators that manipulate them. The following sections describe how this
algebra is embedded into the imperative programming language C; the
focus there is on delta expressions.

We begin with a few philosophical remarks. Several factors affect the design
of a specific realization of the Heraclitus paradigm. Obviously we expect that
all deltas considered are computable. Furthermore, the family of deltas should
be closed under composition. Even in this case, there is a tradeoff between the
expressive power of the family of deltas incorporated, and the eficiency with
which they can be manipulated and accessed. In Heraclitus[Alg, C] we use a
restricted family of deltas that permits efficient access and manipulation while
retaining enough expressiveness to support a variety of applications. (The
tradeoff between different representations of delta values is considered in
Section 5, in connection with Requirement 3 there.)

We now describe the representation for deltas used in Heraclitus[Alg, Cl,
and the function on database states that each represents. We sometimes refer
to the representation of deltas as “tabular.” This is because each delta is
represented using what amounts to a table that lists the tuples to be inserted
or deleted. (Other representations might be based on, e.g., a functional
notation.) We also describe the binary algebraic operators smash and merge on
deltas.

Delta values are defined in the context of a fixed relational database
schema. As a running example, we use a simple database concerning
inventory control in manufacturing. Figure 1 shows part of state S’a for a
database used by a hypothetical bicycle manufacturer. The Suppliers
relation holds suppliers and the parts they supply, and the Orders relation
shows currently unfilled orders for parts. Other relations, not shown in
Figure 1, might hold information about the parts usage of different bicycle
models, and the expected demand for these parts based on the production
schedule of the company.

A signed atom is an expression of the form + {rein-name) (tuple) or –
(rein-name) (tuple); intuitively these correspond to “insertions” and “dele-
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tions,” respectively. In the context of Heraclitus[Alg, Cl, a delta (uaiue) is
represented as a finite set of signed atoms (referring to relations in the
current database schema) that is consistent; it does not include both
positive and negative versions of the same atom. An example is:

[

+ Suppliers(Shimano, brakes),
+ SupPliers(Trek, frame),

A, =

1

- Orders(brakes, 150, Campy, 9/1/93),

+ Orders (brakes, 300, Shimano, 9/6/93)

Note that signed atoms involving more than one relation can be elements of
a single delta. We also include a special delta value fail, that corresponds to
inconsistency.

For non-fail delta A, we set

A-={A1+AEA}

A ={ AI–AE A}.

The consistency requirement on deltas is that A + n 3- = 0. Also, we say
that a pair of signed atoms conflict if they violate the consistency require-
ment, that is, if they have the form +t and –t. (In general, the notion of
delta value used may depend on the underlying data model and the
underlying application. For example, if key dependencies were considered
to be part of the data model, and if relation R[A, B I has key A, the
consistency requirement might be expanded to say that there cannot be two
signed atoms of the form +R(a, b) and +R(a, c), where b # c.)

The delta value A represents the function that maps a database statel S
to(su~’)–~, which, due to the consistency requirement, is equal to

(s A ) U A+. The result of applying a delta .3 to state S is denoted
apply (S, L ~.Speaking informally, applying A has the effect of adding tuples
of.4 preceded by a “+”, and deleting tuples preceded by a “–”. The insertion
and deletion of these tuples can be viewed as occurring simultaneously, or
in an arbitrary sequence; the consistency requirement ensures that any of
these will yield the same net result.

The result of applying Al to state S. of Figure 1 is shown as state S~ in
Figure 2. Because we are working with the pure relational model, the
signed tuple +Suppliers(Trek, frame) can be viewed as a ‘no-op” in this
context; it has no impact when apply is used on state S.. Deletes are
“no-ops” if the associated tuple is not present in the underlying instance. A
mechanism to express “modifies” is also incorporated; see Section 3.2.

At the algebraic level, the composition operator for deltas is called smash,
denoted “!”. The smash of two delta values is basically their union, with

‘In this context, we view the database state to be a set of atoms, for example, {Suppliers{ Trek,
frame ). Supplters( Campy, brakes), . . . . Orders(frame, 400, Trek, 8/31/93), . ..1.
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Supplier Part
I Tkek frame I

Suppliers

Fig. 2.

Part Quantity Supplier Expected
frame I 400 I Tkek I 8/31/93
brakes ] 300 I Shimano I 9/6193

I ,. ,

Orders

Result of applying A,: database state Sh

conflicts resolved in favor of the second argument. For example, given

1
+ Suppliers(Cat Paw, light),

– Suppliers (Cantpy, pedals),
A2 =

1

- Orders(brakes, 300, Shimano, 9/6/93), ‘

+ orders(brakes, 500, Shimano, 9/20/93)

then JI!A2 equals

( + Suppliers(Shimano, brakes),

+ Suppliers (Trek, frame),

-t Suppliers(Cat Paw, light),

– Suppliers{ Campy, pedals),

– Orders(brakes, 150, Campy, 9/1/93),

- Orders(brakes, 300, Shimano, 9/6/93),

+ Orders(brakes, 500, Shimano, 9/20/93)

Formally, for arbitrary non-fail delta values Al and AZ, their smash is
defined by

(Al ! A,)+ = A; U (A; – A2)

(Al ! A,)- = A; U (A; – A;)”

It is easily verified that smash realizes function composition for the family
of deltas, that is, for state S and deltas Al, Az,

apply (S, Al ! Az) = apply (apply (S, Al), AZ).

Most active database systems use smash when combining the impact of
different rule firings. In contrast, the AP5 active database system uses a
special “merge” operator. The merge, denoted ‘&”, of two non-fail deltas A~
and A ~ is given by:

{

A,u A2
(Al & AZ) =

if this is consistent,

fail otherwise.

The merge of the two deltas of the previous example is fail, because of the
presence of the conflicting signed atoms + Orders( brakes, 300, Shimano,
9/6/93) and – Orders(brakes, 300, Shimano, 9/6/93).
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create

access

combine

Operator
atomic

bulk

application
peeking
hypothetical

smash
compose

merge

weak-merge

Algebra
+R(al,. ... an)
–R(al, . . . . an)

app/y(DB, A)

A] ! Az

A, & A2
Al W& A2

Heraclitus[Alg,C]
[ins R(T~,..., ~n)]
[delfi?(n, . . ..rn)]
[mod R(Tl,..., ~~; r{, ~~)]~~)]
bulk(ins 11(~1, . . ..~n). p)

bulk(del R(Tl, . . .. Tn). p)

apply 6;
peekins (R, 6), peekdel (R, 6)
f when 6

Fix. 3. Algebraic and language-level operators of Heraclitusl Alg, (’1

As noted before, smash captures a form of composition, or sequential
application, between deltas. In contrast, merge provides a commutative
mechanism for combining pairs of deltas. Speaking intuitively, merge has a
more declarative flavor than smash, because a merge of 3 ~ and Az is
non-fail if the intended modifications represented by the two deltas do not
conflict with one another. Merge is used in AP5 to combine the effects of
rule firings; a transaction is aborted if the actions proposed by different
rule firings conflict with each other. As detailed in Zhou and Hsu [19901,
this semantics for rule application has similarities to the least- fixpoint
semantics used in logic programming [Lloyd 19871, and can be used to
obtain sufficient conditions on rule-bases that ensure consistent termina-
tion and order-independence of rule firing sequences.

Several other binary operators for combining deltas can be defined, for
example. [Leak-merge, that is, union but delete all conflicting pairs of
signed atoms tcf. Simon and de Maindreville 119881 and Cacace et al.
[ 1990] I, or union giving priority to inserts in the case of conflict. At present
Heraclitus[Alg, C I provides explicit constructs for smash, merge, and
weak-merge; other binary operators can be built up from more primitive
Heraclitus[Alg, C I constructs.

3.2 Embedding Into C

In this and in Section 3.3 we describe how relational deltas and the
algebraic operators previously described are embedded into C. The primary
focus is on Heraclitusl Alg, C ] expressions for (a) creating deltas, (b)
combining deltas, and (c) accessing deltas. The algebraic and language-
level operators of Heraclitus are summarized in Figure 3.

Heraclitus[Alg, C] supports the manipulation of both persistent and
transient relations and deltas. Suppose that suppliers and Orders are
persistent relations as defined in the previous section. The following

A(”M TransactIons on Database Systems, Vol. ’21, NO 3. September 1996
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declares two variables that can hold pointers to these, and a variable that
points at a transient relation Big:

relation *Supp, *Oral, *Big;
Supp = access_relation( ’’Suppliers” );
Ord = access_relation( ’’Orders” );

Big=empty_relation(part:char[ 30],qty:int, sup:char[30], exp:int);

Signatures for variables Suppand Ordare taken from the corresponding
persistent relations. The signature for transient relation variable Big is
specified explicitly upon initialization. Here empty_relation( ) is a func-
tion that builds a new empty relation having the specified signature and
returns a pointer to it. Although names may be associated with the
individual coordinates (i.e., attributes) of relation types as indicated here,
at present the algebra is based on coordinate positions. However, most of
our examples use coordinate names to simplify the exposition. (We assume
that Ord has the same field names as Big, and that supp has field names
sup and part. ) Variables can also hold relations directly, without a level of
indirection.

The algebra used is essentially the standard relational algebra, except
that system- and user-defined scalar functions can be used in projection
target lists, and in selection and join conditions. Transient relations can be
made persistent using the make>ers is tent ( ) function. To illustrate,
suppose that foo is a user-defined scalar function in the following.

relation temp;
temp = project( [part, qty*2 ] , select( {foo(sup) >qty}, Oral) ) ;
make~ersistent ( “New_Temp_Reln”, temp ) ;

In the select expression, dereferencing of the value of Ord is automatic.
Deltas are supported in Heraclitus[Alg, C] by the type delta. Deltas can be
created using atomic commands, such as

delta Dl, D2;
D1 = [del Supp( “Campy”, “pedals” ) ] ;
D2 = [ins Big( ’’brakes”, 500, “Shimano”, “9/20/93”) ];

After execution D1 has {–Suppliers (Campy, pedals)) and D2 has

I+_HERA14_(brakes, 500, Shimano, 9/20/93)1, where _HERA14_ is the
relation identifier chosen during program execution for the transient
relation Big. Variables can also hold pointers to deltas. Analogous to
relations, deltas may be transient or persistent.

The bulk operator can be used to construct a “large” delta from data
currently in the database. For example,3

bulk(ins Big(part, qtyr sup, exp), select( {qty > 300}, Oral))

‘We assume that date values are stored as integers.
3As noted previous] y, in the current Heraclitus[Alg, C] prototype, coordinate positions rather
than names are used. The coordinate positions are indicated using the %3” symbol. Typing
information is also included here to simplify the task of preprocessing into C, given the fact
that the signature of a relation variable is permitted to change over the lifetime of a program
execution. The actual syntax of this command is bulk ( ins Big ( @cl, @i2, @c3, @i4 ) ,
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evaluates in the context of state S(, (Figure 1 ) to

{ +_HERA 14_(franze, 400, Trek, 8/31/93)}.

More generally, the first argument to bulk must be what amounts to an
atomic delta expression containing scalar expressions built up from column
names and scalar values. These names are assigned possible values by the
second argument to bulk, which must be a relation expression. Thus a
bulk operator can be viewed as a composition of relational projection
followed by parallel creation of atomic delta expressions.

Heraclitus[Alg, C Jalso supports atomic nzodi~v expressions, such as [ mod
Ord( ’’brakes”, 150, “Campy”, “9/1/93”; “brakes”, 300, “shi-

mano” , “9 /6/93” ) ]. Evaluation of this expression depends on the current
state: if (brakes, 150, Campy, 9/1/93) is present in Orders (as it is in state
S,l I this expression evaluates to

I -Orders(brakes, 150, Campy, 9/1/93),

1~ +Order,s(brakes, 300, Shimano, 9/6/93)

On the other hand, if (brakes, 150, Camp-v, 9/1/93) is not present in Orders
(as in state S~) then the expression evaluates to the empty delta. We have
experimented with permitting explicit modifies inside delta values on an
equal footing with deletes and inserts. However, as reported in Ghande-
harizadeh et al. 11992], in the context of the pure relational model the
semantics for consistency and for smash become quite cumbersome if
modify atoms are supported at the algebraic level. (If tuple identifiers are
supported in the underlying model, as in Widom and Finkelstein [ 1990],
then modify atoms are easily supported. ) This has led us to the compromise
that modifies can be written at the language level explicitly, but their value
depends on the state. Regardless of this decision, the presence of modify
expressions in a program may give the compiler opportunities for optimiza-
tion (e.g., by avoiding two traversals of an index).

Heraclitus[Alg. C I also permits “wildcards” in delete and modify com-
mands. When used in atomic deletes and the left-hand part of atomic
modifies, wildcards, denoted by “’~,” match any value. Evaluation of expres-
sions with wildcards again depends on the current database state. As a
simple example, [del Supp( “Campy”, * ) ] evaluates to

i

-- Suppliers (Campy, brakes),

1–Suppliers(Campy, peduls} ‘

when applied in the context of the state S,,. When a wildcard is used in a
given coordinate in the right-hand part of a modify command, it takes on
the value on the same coordinate of the tuple being replaced. For example,

select ({@i2 > 300} , Ord ) ), where “c” indicates the type character string, and “i”

indicates integer.
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in state S~ the expression [mod Ord( ’’brakes”, *, “Campy”, “9/1/93”;
“brakes”, 300, “Shimano”, *)] evaluates to

{

–Orders(brakes, 150, Campy, 9/1/93),

I+Orders(brakes, 300, Shimano, 9/1/93) -

Complex algebraic expressions can be created by using the binary opera-
tors smash ( ! ), merge (&), and weak-merge explicitly. A fourth operator,
compose (#), is also supported; this is described in Section 3.3.

We now turn to the four operators for accessing deltas. The first is apply:
the command apply 8 first evaluates 8 and then applies the resulting delta
value to the current state. (If 6 evaluates to fail, then apply 8 yields a
run-time error. ) Although the delta expression 8 may evaluate to a delta A
containing many signed atoms, the command apply 8 is viewed as a
nondecomposable or “atomic” command, that is, all of A is applied, or an
abort occurs.

Hypothetical expression evaluation is supported by the when operator. As
a simple example,

Big = select( {qty > 300}, Oral) when
( [ mod Ord ( “brakes”, *, “Shimano”, *; “brakes”, 500,

“Shimano” , “9/20/93”)]
& [ins Ord( ’’light”, 300, “Cat Paw”, “9/3/93”) ]) ;

when evaluated in state S~ yields {(frame, 400, Trek, 8/31/93), (brakes, 500,
Shimano, 9/20/93)}. Note that side effect free functions (more precisely,
functions that do not modify the database state) can be called within the
context of a when.

Nesting of whens is also permitted, and it is easily verified that

(E when 81) when & - E when (8, ! (i31when 8,)).

This plays a key role in the implementation of delta expressions consisting
of nested whens (see Section 4).

The final operators for accessing deltas involve “peeking”; these permit
the programmer to directly inspect a delta. The expression peekins(l?, 8)
evaluates to the relation containing all tuples that are to be inserted into R
according to the value of 6, and the expression peekdel(R, 8) evaluates
analogously. For example, peekdel ( Supp, [ del ( “Campy”, * ) ] ) evalu-
ates on state S~ to {(Campy, brakes), (Campy, pedals)).

3.3 Loss of Intended Meaning

This section illustrates a subtlety concerning the intended meaning of delta
values, and introduces the compose operator for delta expressions.
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Suppose in the running example that all orders are to be increased by
10$?. Consider the following program fragment.4

delta order_inc;
order inc = bulk(xnod Ord(part, qty, sup, exp; part, qty*l.1,

sup; exp), Oral)

lfthisfragment were executed in the context of state S,,, then dl would

hold the delta

I
–Orders(frame,400, Trek, 8131193),

+Orders(frame, 440,Trek,8/31193),
A:, =

1

-Orders(brakes, 150, Campy, 9/1/93), “

+Orders(brakes, 165, Campy, 9/1/93),

If this delta were applied to So, then all orders would be increased by 10%.
As an alternative, the delta might be used hypothetically. For example, if
total_brakes_on_order ( ) is a side effect free function that returns the
total number of brakes on order, then the expression

total_ brake s_on_order( ) when order inc.

evaluated for state S,, would return the value 165.
Suppose now that an update is made to the database state, yielding the

state S1, (Figure 2). In this case, the delta order inc no longer corresponds
to increasing each order by 107.. For example, t~e expression

total_brakes_on order ( ) when order_inc—

will now return the value 165 + 300 = 465. What went wrong? The problem
is that the variable order_inc holds the result of evaluating the delta
expression with reference to state S,,, and does not carry the same “intend-
ed meaning” in connection with the new database state S~. This is reminis-
cent of the “phantom problem” [Eswaran 19761 that can arise when
executing database transactions. As a simple example of the phantom
problem, imagine a transaction that is intended to decrease by 20% all
orders that have quantity ? 100. Imagine further that it is written naively
to examine each tuple (p, q, s, e), to delete that tuple, and to append (p, q ‘-
.8, s, e) to the end of the relation. If care is not taken, the newly inserted
tuples will also be visited by the transaction, and the net result will be that
all orders will he reduced to have a quantity lower than 100 {see Gray and
Reuter i 19931).

Because the “intended meaning” of a delta can be lost, care must be
taken when using a delta that was created with reference to a previous
database state. Heraclitus[Alg, C] currently provides no support for testing

‘In a (’ program, the order_inc assignment should type cast the expression qty*l .1 to an
integer, for example, using ( int ) (qty*l .1 ) In the interest of readability, we generally do
not include tvpe casting in this article.
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whether a delta value is “out of date ,“ nor for preventing the application of
“out of date” deltas. Thus in its present form Heraclitus[Alg, Cl is best
suited for environments where deltas do not lose their “intended meaning”
between the time of creation and the times of usage. This is easily ensured
if deltas are created and used within a single transaction (as arises in
active database execution models), and it is relatively easy for a user to
ensure in the context of a single-user database environment (as found in
many personal-computer DBMSS ). Richer environments might also satisfy
this requirement, for example, a concurrent environment where the data-
base schema is partitioned, with each user creating deltas that range only
over a privately controlled component of the partition. More generally, the
issue of detecting conflict between deltas, and whether a delta has become
“out of date” is a topic of current research [Doherty and Hull 1995; Doherty
et al. 1995a].

As an aside, we note that delta functions, that is, functions that return
deltas, can be used to capture the intended meaning of hypothetical
updates in a manner that is independent of the underlying state. For
example, consider the function

delta i.ncrease_orders_by_ lO_percent ( )

{
return bulk (mod Ord( part, qtyt sup, exp; part, qty*l. 1,

sup, exp), Oral);

}

Now the expression increase_order_by_l O~ercent ( ) will return a
delta value that corresponds to increasing all orders by 10%, relative to the
current database state. In particular, the expression

total_brakes_on_order ( ) when increase_orders_by_ lO~ercent ( )

when evaluated in state S. will yield 165, and when evaluated in state S~
will yield 330. A more general perspective on the “intended meaning” of
delta values is provided in Section 5.

It was noted earlier that at the algebraic level, the smash operator acts
as a composition operator; that is, given a state S and delta values Al and
Az>

apply (S, A1!A2) = apply (appiy(S, Al), Az).

Because of the potential loss of intended meaning resulting from state
changes, this equivalence does not hold for delta expressions. For example,
the equivalence does not hold for

~l=[ins Ord( ’’light”, 400, “Cat Paw”, “9/18/93”)]

82= [mod Ord(*, *, 400, *; *, *, 450, *)].
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In particular, in the context of state SO,

81 evaluates to { +Order(light, 400, Cat Paw, 9/18/93)};

[ 1–Order( frame, 400, Trek, 8/31/93), .
82

‘Va]uates ‘0 +Order( frame, 450, Trek, 8/31/93) ‘

[

+ Order(light, 400, Cat Paw, 9/18/93),

i51! i52evaluates to

1

– Order( frame, 400, Trek, 8131193), .

+order( frame, 450, Trek, 8/31193)

If al ! 82 is applied, then Order will include the tuple (light, 400, Cat Paw,
9/18/93 ). However, in the state resulting from apply 61; apply 62, no order
will have quantity equal to 400.

The compose operator, denoted “#”, has the property that the command
apply (81 # 82) is equivalent to apply al; apply 8Z. In Heraclitus[Alg, Cl,
compose is defined in terms of smash and when, by til # 82 = 51 ! (62 when
fil ). With 8, and 82 as before,

?II # i3zevaluates to

–Order(light, 400, Cat Paw, 9/18/93),

+Order(light, 450, Cat Paw, 9/18/93),

-Order(frame, 400, Trek, 8/31/93),

~+ Order( frame, 450, Trek, 8/31/93)

This definition illustrates the difference twtween smash and compose. In apply
(81 ! i$z), both al and ~ are evaluated with respect to the current state, then
smashed, and then applied to the current state. In other words, apply (al ! &) is
equivalent to dl = al; d2 = 82; apply dl; apply d2. In contrast, 81 # ~ is
equivalent to dl = 81; apply d 1; d2 = 82; apply d2. It is straightforward to
verify that compose is associative. (In other data models, the compose operator
may not be definable in terms of smash and when; see Section 5.)

Compose is especially useful in the context of hypothetical database
access. We present an example involving two functions. The first function
builds a delta that has the effect of canceling all October orders:

delta cancel_Oct_orders ( )
{

return bulk(del Ord(*, *, *, EXP) ,
select (

}

The second one builds
all orders with Qty >

(in_Oct(Exp )}, Oral)); -

a delta that delays the expected date by two weeks of

500:
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delta delay_big_orderso

{
return bulk(mod Ord(part, qty , sup, exp; part, qty,

sup, add_two_weeks (exp)),
select({qty > 500}, Oral));

}

Suppose as before that the function total_brakes_on_order computes
the total number ofbrakes on order. Then theexpresslon

total_brakes_on_order( ) when

cancel_Oct_orderso # delay_big_orderso

performs ahypothetical evacuation oftotal_brakes_on_order, assuming
that first the October orders where canceled, and then the big orders were
delayed. Note the value resulting fromthecallto delay_big_orders takes
into account the updates proposed by the value of cancel_Oct_orders.
The following performs the hypothetical evaluation, but with the applica-
tion of the two delta functions reversed.

total_brakes_on_order( ) when
delay_big_orderso # cancel_Oct_orderso

In general these two expressions will evaluateto different values.

3.4 ANote on Concurrency

We conclude this section with abriefdiscussion of concurrency control in
connection with Heraclitus[Alg, Cl. At an abstract level, the goals of the
Heraclitus paradigm are largely orthogonal to the goals of traditional
concurrency control, although there is some interaction between them. In
its present form, the Heraclitus[Alg, C] prototype provides minimal support
for concurrent access to the persistent store. Specifically, portions of a
Heraclitus[Alg, C] program maybe surrounded by the commands begin_
transaction and end_transacti.on. Nested transactions are not sup-
ported because we have not as yet extended the underlying storage man-
ager, Exodus version 3.1 [Carey et al. 19861, to support this concept. As
noted previously, tools are not currently provided to detect or prevent the
use of’’out ofdate” deltas.

4. THE IMPLEMENTATION OF HERACLITUSIALG, C]

The implementation of Heraclitus[Alg, C] has two components: HERALD, a
library of functions supporting the relational and delta operators, and a
preprocessor that maps Heraclitus[Alg, C] programs into C programs with
calls to HERALD. Developing and experimenting with this implementation
has given us additional insight into the semantics of the Heraclitus
paradigm and its operators, as well as providing a testbed for implementa-
tion strategies.

File services, persistence, and concurrency control in HERALD are
provided by the Exodus Storage Manager, version 3.1 [Carey et al. 1986].
We have implemented relational algebra and delta operators using Exodus.
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HERALD is quite independent of Exodus and could be ported to other file

systems with minimal difficulty. (Indeed, our first Heraclitus prototype

IGhandeharizadeh et al. 19921 was developed on top of WiSS IChou et al.

1985]. )

Figure 4 presents the overall architecture of the system. Given a Heracli-

tusl Alg, C I program. we use a preprocessor to transform this into a C

program with calls to the HERALD library. This C program is compiled and

linked with HERALD to generate an executable program that accesses and

manipulates the database.

The preprocessor and HERALD are now described in more detail. The
section closes with a description of benchmarking experiments performed
with the prototype.

4.1 The Preprocessor

The preprocessor for Heraclitus[Alg, Cl was constructed by modifying a
GNLT C compiler [available from the public domain). The primary challenge
in developing the preprocessor was to develop a systematic understanding
of the semantics of’ complex Heraclitus expressions involving the when

opera tor-. ln this section we first describe this semantics, which is of

independent interest and relevant to any implementation of the Heraclitus

paradigm. We then describe how the semantics is supported in the current

Herac]itusl Alg, C 1 preprocessor.

Similar to relational algebra queries, Heraclitus expressions can be

translated into a tree format, where each node represents an operator that

.4(’M TransactIons on Database Systems, Vol 21, NO :;. September 1996



388 w S. Ghandeharizadehet al.

when join
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Fig. 5. Syntax tree andcorresponding executable tree.

manipulates one or two inputs. The result is called a syntax tree. By
analogy with the relational algebra, we would expect that syntax trees
could be evaluated in a bottom-up fashion, using a unary or binary operator
for each internal node. However, the presence of when operators requires
that a transformation be made to syntax trees before they can be evaluated.
The results of this transformation are called executable trees. (These
correspond to the notion of ‘query trees” processed by query interpreters of
conventional relational DBMSS; we use the more general term “executable”
because not all expressions considered here are queries. ) The transforma-
tion from syntax trees to executable trees is now illustrated through
several examples.

We begin with a very simple example. Consider the expression join ( R,
s ) when D where R and S are relation variables and D is a delta variable.
Figure 5(a) shows the syntax tree of this expression. Suppose that this is to
be evaluated using separate, independent operators for join and when.
Under a bottom-up evaluation, first the values of R and S would be joined,
and then the when operator applied. This evaluation would give the wrong
result, because the contents of D refer to changes that are to be made
(hypothetically) to R and S; but the impact of those changes cannot be
determined by analyzing the output of join (R, S ) independent of R and S.

The executable tree for the expression is shown in Figure 5(b). This was
obtained by “pushing” the when through the join operator down to individ-
ual relation variables. Assuming again that each internal node represents
an independent operator, this tree can be evaluated directly. Indeed,
executable trees provide a naive but failsafe approach to reducing arbitrary
Heraclitus expressions to a sequence of unary and binary operations.

Because expressions creating deltas may refer to relations, their evalua-
tion can be influenced by the presence of a when. Consider the expression
(referring to the example of Section 3)

bulk(del Supp(sup, part) , select ( {qty<100}, Oral) ) when D

In the executable tree corresponding to this expression the when D is
“pushed” to the relation variable Oral, yielding the equivalent expression

bulk(del Supp(sup, part) , select ( {qty<100}, (Oral when D) ) )
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As a general rule, if nested whens are not present, then the executable tree
corresponding to a syntax tree is obtained by “pushing” all whens to the
leaves of the tree that hold relation variables.

Of course, direct evaluation of the executable tree of Figure 5(b J will be
very inefficient. In a direct evaluation, first a copy of R would be con-
structed that reflects the changes called for in D; then a copy of s would be
made with changes from D; and finally the join would be computed. As
detailed in Section 4.2, HERALD provides library routines that can com-
bine conventional relational algebra operators with when to provide more
efficient implementation tin much the same way that project, select, and
join are combined in conventional implementations of the relational alge-
bra ).

In the case of nested whens the transformation from syntax trees to
executable trees is a bit more interesting. Consider first the following three
expressions, where E is an arbitrary side effect free expression, and 31 and
?iZare delta expressions.

e, =Ewhen(al when fiz)

c’l=, ?lwhen (81 # 8L)

e+ = (E when i51) when 8Z.

The following are equivalent expressions that correspond to the top level of
the executable trees of these expressions. (Further transformation would
probably be required to “push” whens into the expressions 81 andlor &z.)

The first expression is not transformed. The second expression is trans-
formed directly according to the syntactic definition of compose. The
transformation of the third expression corresponds to an algebraic identity
of the when operator isee Section 3). As an aside, it follows from this
identity that

(E when 8, ) when i5z = E when (3, # 51) .

In order to create the executable tree for an expression with multiple
nested when operators, we can repeatedly perform the translation step used
previously for e:] in a top-down manner. For example, consider the syntax
tree representation of the algebraic expression ((E when fil J when tizJwhen
3:] shown in Figure 6(a). In the first iteration, we perform the translation on
the when node at the root to construct the tree in Figure 6~b ). We apply the
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E 5, 82 S3
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Fig. 6. First step in translation involving nested whens.

translation step once again to obtain the tree in Figure 7, which forms the
top portion of the executable tree corresponding to the original expression.
(Rewriting the when modifying 82 before rewriting the when at the root
yields a different but equivalent executable tree. ) Note that the executable
tree of Figure 7 has two common subtrees (circled with dotted lines). These
could be detected at compile time and evaluated only once.

In order to understand the current implementation of the Heraclitus[Alg,
C] preprocessor, we must compare conventional query languages with
DBPLs. In conventional query languages, even when embedded into an
imperative language, the trees corresponding to the queries can be con-
structed at compile-time, and a considerable amount of optimization can
also be performed then. In contrast, in full-fledged DBPLs, expressions
might involve function calls and so the full expression may not be available
until run-time. As a simple example in the context of Heraclitus, consider
the expression f oo ( u, v ) when 81, where f oo ( ) contains a conditional, and
one of the return clauses of foo ( ) includes the subexpression R when 82.
The expression ( (R when 82) when al) might be produced at run-time, but
it is impossible to predict at compile-time all possible expressions that
might arise. The fact that expressions are not known at compile-time is
especially important in the context of Heraclitus, where syntax trees
cannot be interpreted directly.

The focus of the first phase of the Heraclitus project has been to create a
working prototype. As a result we adopted a somewhat utilitarian ap-
proach, which leaves considerable room for optimization. The central idea
of the current implementation is to maintain a “run-time when stack.”
During the execution of a program the top of the stack holds (conceptually,
at least) a delta that reflects the full effect of all deltas relevant to the
evaluation of the expression currently under consideration. The delta at the
top of the run-time when stack is used to “filter” all relations that are
accessed.
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Fig. 7, Top portion of corresponding executable tree

As a simple example, suppose that f oo( u, v ) when 31 is to be executed,

and that the run-time when stack is currently empty, During execution, the

value JI of 61 will be pushed onto the run-time when stack, and foo( ) will
be invoked. Suppose that inside f oo ( ) an expression of the form E when Ax

is encountered. First, ilz will be evaluated with reference to the current top

of the run-time when stack. This will yield .J2, which has the value of i52
when 81. Second, .31 ! A2, or equivalently, the value of 81 ! ~82 when S1) = 31
# 82, is pushed onto the run-time when stack. Now E is evaluated with
reference to the top of the stack, that is, in the hypothetical state corre-
sponding to the result of applying the top of the stack. This yields the value
of Ewhen(i51 #ti2J = (E when 82) when 81. Speaking intuitively, using the
run-time when stack provides a dynamic realization of the transformation
of syntax trees into executable trees.

The current implementation of the run-time when stack is eager, in the
sense that each delta placed on the stack is fully evaluated. We are
currently developing a lazy implementation, where the stack holds delta
expressions that are evaluated only as necessary.

4.2 HERALD

The HERALD system is a library of routines that supports the full
relational algebra, deltas, and the delta operators described in Section 3.
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The implementation of the relational operators is very generic. A primary
motivation for developing HERALD was to develop a basic understanding
of how deltas and their operators might be implemented.

A central aspect of the HERALD system is to combine the evaluation of
whens with evaluation of the algebraic operators. For example, suppose
that R and s are relation variables, and 8 a delta expression. HERALD
provides a hypothetical join function j oin_when, that evaluates the expres-
sion join((cond), R, S ) when 8 (or equivalently, join( (cond) , R when 8, S
when 3)), without materializing R when 8 or S when 8. HERALD provides
hypothetical versions of all the relational operators.

HERALD currently supports two strategies for obtaining access to deltas
in connection with the hypothetical algebraic operators and other delta
operators, one based on hashing and the other on a sort-merge paradigm. A
third approach to accessing deltas, based on B+ -trees, is currently under
development.

Conceptually, HERALD represents a delta as a collection of pairs (R~,
Rj ), specifying the proposed inserts and deletes for each relation variable R
in the program. Here, R; and R; are called subdeltas, and are stored as
relations (actually, files) in Exodus. Hash-based access is best suited for the
situation where a subdelta pair (R;, R;) fits into (the page buffer sup-
ported in) main memory, and sort-based access is more appropriate when a
subdelta pair is larger than main memory (see Section 4.3). With large
subdeltas, the current hash-based implementation may cause the buffer
pool to exhibit a thrashing behavior. With both the hash-based and sort-
based access, HERALD updates the system catalogue to maintain either
the existence of a hash index or a sorted relation order. This persistent
information enables HERALD to eliminate redundant work (e.g., sorting an
already sorted relation) both during the execution of a program and across
repeated execution of programs that employ the same set of relations and
deltas. These two approaches to delta access are discussed in detail shortly.

The focus of the prototype implementation of Heraclitus[Alg, C] was to
provide strong evidence that deltas can be incorporated into a relational
DBMS with nominal loss of efficiency. Conceptually, it is straightforward to
extend our hash-based implementation to form variations of the Grace
[Kitsuregawa et al. 1983] and Hybrid hash join5 techniques, so that
thrashing behavior is eliminated for deltas that are considerably larger
than the main memory buffer. The design, implementation, and evaluation
of these algorithms as compared to sort-merge has been studied extensively
[Schneider and DeWitt 1989; DeWitt et al. 1990]. We expect that the
extensions of these algorithms to incorporate deltas and hypothetical
operators would behave similarly.

An alternative implementation for deltas and their operators would be to
build directly on top of an existing relational DBMS, where each subdelta is
represented as a relation. In general this would be less eficient than if the

%ee Bratbergsengen [1984], DeWitt et al. [1984], DeWitt and Gerber [1985], and Shapiro
[1986].
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techniques of HERALD were used. To see why, consider an expression
pro j ect ( [ (att-list) ] , R ) when D, where the subdeltas for R in D are R‘
and R- This expression would be rewritten as project ( [ <att-list> ] , ( R
U R‘ I – R’), and then passed to the optimizer of the relational DBMS for
evaluation. Most commercial optimizers for SQL or the relational algebra
provide little optimization for expressions involving difference. Typically
the full value of (R U R“+) – R- would be computed before evaluation of the
projection could begin. In contrast, the HERALD system provides clever
algorithms for evaluating expressions involving the special kinds of differ-
ence that arise in connection with the delta operators.

In the remainder of this section we discuss hash-based and sort-based
access to deltas. We develop analytical models to estimate the number of
disk 1/0 operations performed by each approach, These models can be
extended to incorporate the CPU cost associated with comparing keys or
hashing keys in main memory [Shapiro 1986].

4.2.1 Hash-Based Access to Deltas. When subdeltas are small enough to
fit in main memory, HERALD maintains a hash index on each subdelta.
The hash index key value to address this hash table is composite and
computed based on the values of all fields (or attributes) of a record. In the
following we describe the low-level algorithms for three representative
delta operators, namely, apply, select when, and join_when, The
algorithms described here assume that no ~ndexing is provided for base
relations. We have developed and implemented analogous algorithms to
support the composition of the other algebraic operators with when. We
omit consideration of the merge and smash operators, as their implementa-
tion closely follows that of their respective logical implementations de-
scribed in Section 3.

Apply. The inputs to this operator are a relation R and a delta A. It
removes from R the tuples in R; and inserts into R the tuples in R;
(without introducing any duplicates). Our implementation of this operator
is as follows:

( 1 ~ Open a scan on relation R.

(2) For each tuple t in R,

(a) Probe the hash index of R~ with t.

(b) If a match is found, then delete t. Otherwise, probe the hash index
of R; with t;if a match is found then mark the tuple in R:.

(3) Open a scan on Rj.

(4 I For each tuple t in R:,

(a) if t is not marked, insert t into R and clear its marked bit;

(b) if t is marked, clear its marked bit.

The “marking” of tuples in R: (1 R prevents the introduction of dupli-
cates into the output. The marking and clearing of tuples in R‘ does not
incur additional page 1/0s in cases where R: and R~ fitinto main memory.
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Marking a tuple of R; and clearing it can be an expensive operation as it
causes a disk page to become dirty, which may result in unnecessary disk
writes to reflect the setting of a bit that ultimately will be cleared. This
suggests a further optimization to control the buffer page replacement
policy to eliminate the possibility of redundant disk writes.

Select_when. The input arguments of this operator are: a relation R, a
selection condition, a delta A, and an output relation. Logically, this
operator selects tuples of R that satisfy the selection condition in the
hypothetical state proposed by A and stores the resulting tuples in the
output relation. Its implementation is as follows:

(1) Open a scan on R.

(2) Initialize t to hold the first tuple of R.

(3) While not eoflR),

(a) Evaluate the selection condition for t. If the tuple does not
qualify go to step e.

(b) Probe the hash index of R: with t for a matching tuple, if found
go to step e.

(c) Probe the hash index of R: with t for a matching tuple, if found
go to step e.

(d) Insert t into the output relation.

(e) Get the next tuple t in R.

(4) For each tuple s of R: do

(a) Evaluate the selection condition for S. If s satisfies this condi.
tion, then insert s into the output relation.

Note that we probe the hash index only if the tuple satisfies the selection
condition. This minimizes the number of disk accesses because probing the
hash index may result in a disk read operation.

We briefly analyze the expected 1/0 costs of this implementation of
select_when. Suppose that R;, R; are small enough to fit into main
memory, and that s70 of the tuples in R satisfy the selection condition.
Assuming that s >0, the algorithm will call for the following 1/0s:

(a) Scan R.

(b) Probe RA for s% of R.

(c) Probe R; for SYOof R.

(d) Scan RI.

(e) Write output relation.

Thus the expected overhead in 1/0 (as compared to the standard select
operator) is roughly equal to the number of pages of the hash tables for Rj
and R;, and the number of pages of R: and R; that are read during parts
(b), (c), and (d). (An additional scan of all of R: and RI is needed if hash
tables for these have not yet been created. )
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Our benchmarking experiments confirm this analysis, Specifically, they
show that if hash tables already exist for the subdeltas, then the overhead
(in terms of page 1/0s ) incurred by the select_when operator is about the
size of the delta as compared to the standard implementation of the
conventional select operator. The overhead is about twice the size of the
delta if the hash tables do not exist.

rloi77 u’}1(17. In the current implementation, the binary relational opera-
tors use sort-based implementations, In the case of hash-based delta
access. a key subroutine for all of them is sort_when. Suppose that R is

unsorted. The conventional approach to sorting R is to use heap-sort on
short (e.g., 100 page) segments of R, and then to perform n-way merges of
these segments. In sort_when, the impact of a delta is incorporated int(J

the heap-sort. For example, on relation R, as portions of R are read in for
heap-sorting, a hash-table for R> is probed, and the matching tuples are
not placed into the heap. Also redundant tuples in R~ are marked, to
prevent later duplication. After R is completely read, the remainder of R~
is also processed by the heap sort to provide additional sorted segments.
Then one or more merges is invoked to create a sorted file. In the current
implementation for join with hash-based delta access, sort when is used to
sort R (as influenced by R;, RA ) and S (as influenced kJyS;, ,9A ~.and then
a binary merge is used to create the join. In reality. the implementation is
slightly more efficient: the merges for sorting R and S are combined with
the binary merge for creating the join.

When using hash-based delta access for these operators, there is an
important interaction between the amount of buffer space used by the heap
versus the hash tables. To illustrate, suppose in the abstract that the total
available buffer pool consists of 100 pages (and so the heap-sort can
perform 100-way merges), Moreover, assume that R consists of 1000 pages,
R has about 90 pages that will be probed during a pass of R (termed
“hitting” pages), and R ‘ is empty. In this case a IO-page heap could be
established, and R -- R would be broken into roughly 100 (or fewer} sorted
segments. Now a single 100-way merge will yield a sorted version of
apply (R, R ); total cost is 2 IRI +- IR I page 1/0s. Suppose now that R has
2000 pages, R has about 80 “hitting” pages, and R ‘ is empty. It is now
optimal to devotc~ 20 pages to the heap-sort and the other 80 to hash
probing, (Fewer pages for the heap-sort result in more merge passes; and
fewer pages for the hash probing may result in thrashing. ) Thus providing
optimal support for hash-based delta access requires the ability to dynam-
ically partition the buffer pool between these two tasks. This capability is
supported by Exodus, and we plan to investigate these tradeoffs in our
future research.

4.2.2 Sort-Basca’ Access to Deltas. A delta may be so large that it does
not fit in main memory, causing the simple hash-based implementation
previously described to thrash at the buffer pool level. To remedy this, we
have designed and implemented algorithms that access deltas using a sort
and merge technique. We now briefly describe the low level algorithms for
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apply, se lect_when, and join_when; the implementation of other oper-
ators is analogous. Heraclitus[Alg, Cl maintains information on whether
relations and subdeltas are sorted, so that one or more of the sorting steps
of these sort-based algorithms can be eliminated.

Apply. The inputs to this operator are a relation R and a delta A with
relevant subdeltas consisting of R~ and R;.

(1) Sort R in place.

(2) Sort RI in place.

(3) Sort R: in place.

(4) Open a scan on relation R, RI, and RI.

(5) Initialize r as the first tuple of R, d– as first tuple of RI, and d + as
first tuple of RI.

(6) While not eoffR) OR not eof(R~) OR not eoflRl),

(a) Assign t to be the tuple with minimum value among r, d+, and d –.
(b) If t = r and t = d–, then delete r from R.

(c) If t # r and t = d+, then insert t to relation R.

(d) If t = r, then get the next tuple r from R.

(e) If t = d+, then get the next tuple d+ from RI.

(f) If t = d –, then get the next tuple d– from R~.

This operator sorts each relation R, R;, and R~. Next it performs a
three-way merge between these relations in order (1) to eliminate the
tuples in R that are proposed to be deleted by R~, and (2) to insert the
tuples proposed by RI while maintaining a duplicate-free relation.

Select_when. The input arguments of this operator are: a relation R, a
selection condition, a delta A, and an output relation. The algorithm
presented here assumes that all the inputs are unsorted; it is easy to
modify the algorithm if some of the inputs are sorted. A key function used
here is select_sort which takes as input a relation and a selection
condition. As with sort_when, this implements a two-phase sort, but in the
heap-sort phase it deletes all tuples violating the selection condition.

In the following algorithm, if no tuples of R satisfy the selection condition
(i.e., Temp is empty), then RI is scanned for the qualifying tuples and
returns. Otherwise, it sorts the qualifying tuples found in each of RI and
RI into two different temporary relations. Next it performs a three-way
merge on these relations, inserting one occurrence of entries of R that
match with R~ (prevent duplicates) and eliminating those that match with
RI (tuples proposed to be deleted).

(1) select_sort (R, selection condition) into a temporary relation Temp.

(2) If Temp is empty, then

(a) for each tuple t of RI, evaluate the selection condition for t. If t
satisfies this condition, then insert t into the output relation.
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(b) Exit.

(3) select_sort (R3, selection condition) into a temporary relation
Ternp

(4) select_sort (R:, selection condition) into a temporary relation
Temp’ .

(5) Initialize r as the first tuple of Temp, d– as first tuple of Temp-,
and d+ as first tuple of Tem.p~.

(6) While not eof(Ternp ) OR not eof(Temp”- ) OR not eof(7’emp” ),

(a) Assign t to be the tuple with minimum value among r, d+, and d–.

[b) If t * d–, then insert t into the output relation.

(c ) If t = r, then get the next tuple r from Temp.

[d) If t = d- , then get the next tuple d– from Temp

(e ) If t = d+, then get the next tuple d + from Temp ‘ .

We now analyze the expected 1/0 cost of this implementation of select-
_when, under the assumption that the inputs are not maintained in sorted
order. Let P(R) represent the number of disk pages for relation R; SP(R )
represents the number of disk pages that satisfy the selection condition,
and analogously for R; and R;. We assume that SPfR ) s the square of the
number of available pages in the buffer pool (i. e., that only one n-way
merge is required to sort the qualifying tuples of R), and similarly for R;
and R~. The total number of 1/0s incurred by the preceding algorithm can
be estimated as the sum of

select_sort(R): P(R) + 3* SP(R)

select-sort(R~ ): P(R: ) + 3* SP(R~ )

merge: 2* SP(R) + 2* SP(R~ ) + SP(R~ ).

This cost function is a worst-case estimate because it assumes: (a) none of
the inputs are ordered, (b) SP (R) is not zero, (c) the tuples of SP(R} are not
redundant with those in SP(R~ ), causing all their entries to be written to
the output relation, and (d) the tuples of SP(R) do not match with the
tuples found in R~. If the total number of segments of qualifying tuples in
R, R;, and RL after the heapsort phase in Steps (1), (3), and (4) is
sufficiently small, then the merging phases of those steps can be combined
with Step (6) for a savings of 2 * (SP(R) + SP(R~ ) + SP(R~ )) 1/0s,

The preceding algorithm also handles the case where the input relation
and delta are sorted. In this case, only Steps (5) and (6) of the algorithm are
executed, and the selection condition is incorporated into Step (6).

Join_ u~hen. The algorithm for join (and the other binary operators) in
this case is relatively straightforward. To compute the join of R and S
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under A, first sort each of R, R;, R~, S, S;, and Sj using attribute
orderings stemming from the join condition. This step can be optimized if
some of the inputs are already sorted. Then perform a 6-way merge,
retaining all appropriate tuples. Actually, as with the hash-based imple-
mentation, if the inputs are sufficiently small, then HERALD combines the
merging phase of the join with the separate merging phases of the sorting
of the six relations, thereby eliminating one reading and writing of all these
relations.

Another optimization, not implemented in the current version, is to
provide hash-based access to one of the subdeltas and sort-based access to
the other one.

4.3 An Evaluation of HERALD

Heraclitus[Alg, C] and the underlying library HERALD are currently
operational on a Sun SPARCstation 2 using the UNIX operating system.
We have used this implementation to characterize the performance of
HERALD for executing the delta operators and hypothetical relational
operators (some of these performance results appeared in Ghandeharizadeh
[19931; see Zhou et al. [19941 for detailed descriptions of the experiments
conducted and the results obtained). The goals of this evaluation were to
characterize the tradeoffs associated with the alternative techniques em-
ployed by HERALD, and quantify the different factors that have an impact
on the performance of the implementation. We analyzed the alternative
implementation of deltas as a function of alternative sizes for the buffer
pool, page size,6 relations, and deltas. Several other factors were also
considered including conflicts between deltas, and the percentage of redun-
dant tuples between two deltas.

The experiments confirmed the following hypotheses:

(1) The hash-based implementation is efficient for small deltas that fit in
main memory. It degrades due to thrashing of the buffer pool as the
delta size grows larger than main memory. In this case, the sort-based
implementation is more appropriate. (Another approach in this case
would be to employ either Grace or Hybrid hash-join algorithms to
eliminate the thrashing behavior. )

(2) Given a fixed amount of memory, the number of 1/0s performed by the

sort-based implementation decreases as a function of larger disk page

sizes, because each page-read brings in more tuples. The hash-based

implementation also benefits from the larger disk page size to a certain

point. However, very large page sizes lead to thrashing behavior with

deltas that are only slightly larger than the memory size. This is

because a larger page size results in partially empty hash buckets that

reduce the probability of a memory hit. This is best illustrated with an

‘It is difticult to change the page size in Exodus 3.1; the experiments involving page sizes were
performed with the earlier Heraclitus[Alg, C] prototype [Ghandeharizadeh 1992] that was
constructed using WiSS [Chou et al. 1985].
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example. In the extreme case, memory may consist of one frame, and a

hash table consist of two buckets, each half full of tuples. The two

buckets compete for the available frame, resulting in a 50% hit ratio.

(3) When executing a program, if the order of records in both the refer-
enced delta and relation are maintained, the sort-based access can
provide performance identical to hash-based access for small deltas.

t4 ) Both the sort-based and hash-based implementations benefit from a

“lazy” application of deltas as long as the deltas are smaller than the
referenced relations, In particular, in the current HERALD prototype
executing apply ( D1 ! D2 ) is generally faster than executing apply D1 ;
apply D2. This is because in the absence of indices on the base

relations, execution of apply D involves a pass through each base

relation for which D is nonempty. We expect that lazy application will
remain cheaper than eager application even in the presence of B ‘ -tree
indexes. This is because eager evaluation requires two sequences of
access using a large B +-tree (i. e., of some base relation) whereas lazy
evaluation requires a sequence of accesses using small B +-tree (i. e., to
compute smash of deltas} followed by one sequence of accesses using a
large B ‘ tree [of some base relations).

5. A MODEL-INDEPENDENT PERSPECTIVE

The notion of deltas and their basic operators provides a powerful para-
digm for supporting a variety of database applications across a wide
spectrum of database models. In the preceding discussion we have focused
on the development of a comprehensive realization of this paradigm and its
application for the pure relational model. This section briefly presents an
abstract, model-independent framework for the Heraclitus paradigm. This
is currently being used as a starting point for the development of an
object-oriented version of Heraclitus [Boucelma et al. 1995; Doherty et al.
1995a 1.

In principle, deltas can be adapted to any database model/programming
language combination. For this discussion we assume a conventional im-
perative host language. In the context of DBPLs, variables may range over
con~entional data types, such as integer and string, and over bulk data
types, such as relations, complex objects, class extensions, and so on. In a
broad sense, relation names in a relational DBMS can be viewed as special
global variables holding relations. In Heraclitus[Alg, C ] a rather sharp
distinction has been made between the bulk data type relation and other
data types. In Heraclitus[Alg, Cl deltas range exclusively over relations,
and only relations and deltas can be persistent. In the model-independent
perspective developed here, this distinction is relaxed: deltas may range
over all data types except for deltas, and persistence is viewed as orthogo-
nal to the type system and ignored. To simplify the exposition, many of the
examples presented in this section focus on the type integer rather than
bulk data types.
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To introduce the model-independent perspective on deltas, we make use
of the notations and techniques of formal semantic theory, albeit in a
somewhat informal manner. The semantics of a programming language can
be formally defined by giving “meaning functions” that map each syntactic
domain to an appropriate semantic domain. To set the stage, we first
present the formalism for the minimal elements assumed of an imperative
host language.

Syntactic Domains

Expression: ranged over by E.

Command: ranged over by C. This typically includes both atomic com-
mands and combinations of them, for example, through
compose (“;”).

Semantic Domains

Value: This typically contains values such as integers and strings, and
possibly more complex values such as arrays of integers, and
bulk values such as relations. We assume a special element
errorvalUe.

State: ranged over by a and containing the special element errorstaf=.

Each non-error state is typically viewed as a function from

program variables to values.

FSV = State *8 Value (“Functions from State to Value”).

FSS = State ~~ State (“Functions from State to State”), where L
E FSS denotes the function that maps every state to emorstate.

Meaning Functions

%: Expression d FSV.

%: Command + FSS.

The meaning %[E] E FSV of an expression E is a function that maps each
state to a value. Specifically, %[E](cr) is the value that the expression E
takes in the context of state u. The special value errorvalUe represents the
result of evaluating an expression containing an error. Similarly, the
meaning %[C] G FSS of a command C is a function mapping states to
states. Specifically, an initial state m is mapped by %[C] to the final state u’
that results from executing the command C starting in u. The special state
errorstate represents the result of executing a command containing an error.
Thus the function L E FSS maps every initial state to the error final state.
In the preceding, A -+, B denotes the set of functions from A to B that are
strict with respect to errors, that M, for all f E FSV, flerrorstate ) = errorV.lU.
and for all f G FSS, flerrorsfate ) = errorstat,. The compose (“;”) operator on
commands has the semantics

%[c~; cJj = %[C2]W[C1],
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where 0 denotes function composition (and f o g means apply g and then
apply f).

We briefly illustrate the preceding notation. For example, ?[x + l](a) =
W(X} + 1 says that the meaning of the expression x + 1 applied to the state
(7 is equal to the value of variable x in u plus one. Similarly, ‘{[x : =
x+ l](w) = w[x/&[x+ llcr] says that the meaning of the command x : = x+ 1
applied to the state u is equal to a state that is everywhere the same as o
except at x where it has the value ‘%[x+ l](a).

The model-independent perspective on the Heraclitus paradigm is pre-
sented in the form of a series of requirements that a language extension
involving deltas should satisfy. After that, some algebraic properties that
are implied by these requirements is presented.

A delta is an element of Value that represents a mapping from State to
State. Deltas are generated by evaluating delta expressions, ranged over by
3. The most basic delta expression has the form [C] where C is a command:
it is useful to think of this as a form of delayed command. For example, we
might turn the command x : = 37 into the delta expression [ x : = 37 ],
which would evaluate to a delta proposing that the variable x be changed to
3i’. In Heraclitus[A1g, C] a very restricted class of commands can be used in
expressions of the form [ C ] (namely, atomic inserts, deletes, and modifies),
but this can be extended to include more general commands. Also, other
mechanisms can be developed for specifying delta values (such as the bulk
commands of Heraclitus[Alg, Cl).

At the semantic level, a delta should have the same form as the meaning
of a command. In other words, a delta should be a function from states to
states.

Requirement 1 f[a](w): FSS. Speaking intuitively, Heraclitus[Alg, C ]
uses a natural tabular representation of deltas. This tabular representation
was used in Section 3 to illustrate deltas conceptually, and also served as
the basis of the implementation described in Section 4. It is important to
bear in mind that the choice of how deltas are represented is an implemen-
tation detail; conceptually the family of supported deltas should be viewed
as a possibly restricted family of functions from states to states.

Note that, in general, Requirement 1 introduces recursive domain equa-
tions: values include functions over states and states are functions map-
ping to values. Domain theory provides standard solutions to such equa-
tions IStoy 19771. Alternatively, if deltas cannot themselves range over
deltas, then it is possible to avoid such elaborate constructions. This was
the approach taken in Heraclitus[Alg, C], and the approach we take in the
remainder of this discussion.

The most basic operation involving deltas is application: the command
apply( ?)) evaluates the delta expression 8 and applies the resulting delta to
the current state.

Requirement 2. %[apply(8)](u) = (%[8](u))(u). For example, execution of
the command apply ( [ x : = X+ 1 ] ) begun in an initial state in which x is
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36 results in a final state in which x is 37. In general, we require the
following.

Requirement 3. %llappl y([Cl)] = ‘<[C]. A primary motivation for using
Requirement 3 instead of a stronger condition concerns a tradeoff between
the expressive power of the family of deltas incorporated and the efficiency
with which they can be manipulated and accessed. To see this, first note
that Requirement 3 is considerably weaker than requiring that the value of
delta expression [C] be equal to the meaning of command C; that is,
~[[C]](u) = %[C]. In the latter caes, the value of %[[C]]( a) would be
independent of the state u, and it would evaluate to the very function
specified by command C. In this case, deltas of the form [ C ] would most
likely be stored as blocks of code, and delta application would consist of
interpreting these code blocks. We refer to this semantics as the pure-
interpretation semantics for deltas,

In contrast, Heraclitus[Alg, C] satisfies Requirement 3, but upon encoun-
tering an expression such as [ C ] = [mod Ord (” brakes” , *, “Campy”,
“9/1/93”; “brakes”, 300, “Shimano”, * ) ] (see Section 3) it essen-
tially performs a “partial evaluation” or “boiling down” of the command C,
representing it in a tabular format (involving atomic update commands)
that depends on the underlying state. In particular, a delta represented in
this tabular format does not contain any variables or nested operations,
and applying a delta involves only very simple computational actions. We
refer to this and analogous design choices as partial-evaluation semantics
for deltas. As indicated in Section 3, even if a given realization of the
Heraclitus paradigm uses partial-evaluation semantics, the full-interpreta-
tion semantics can always be simulated by wrapping expressions of the
form [ C ] in delta functions.

Behaviorally, the difference between the partial-evaluation semantics
and the pure-interpretation semantics is that, in the former case, if the
state of the database changes between the time a delta is created and the
time it is applied or hypothetically accessed, then the delta may lose its
“intended meaning”. As a simple example, suppose that deltas of the form
[x:= . . . ] are partially evaluated into the form (x = c}, where c is a
constant. After executing

var d:delta;

x: integer;
X := 36;
d := [X,=X+1];
x := 0;

apply(d);

x has the value 37, even though x has the value O immediately before
application of d. This was illustrated in the context of Heraclitus[Alg, C] in
Section 3.3.
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Speaking intuitively, in a partial-evaluation semantics the reduction of
expressions [ c ] into a tabular format can be viewed as part of the work in
executing C, If the resulting delta value is to be applied or used hypotheti-
cally several times [as illustrated for active database execution models in
Section 6), then the overall cost of accessing [ c ] is reduced because the
first part of the evaluation occurs only once. This is particularly useful in
the context of bulk data types. Another motivation for the partial-evalua-
tion semantics is that a tabular representation of deltas can allow for
efficient implementations of operators to access and manipulate deltas.

There are a range of possibilities with respect to the choice of semantics
for deltas, with pure-interpretation at one end. and including several
possible forms of partial-evaluation, We say that one kind of delta is more
expressive than another if the set of functions represented by the first kind
properly contains that set of functions represented by the second kind. In
this article, in connection with the relational model we have focused on a
tabular representation of delta values involving atomic inserts and deletes.
Ghandeharizadeh et al. [ 19921 consider a more expressive kind of delta
value, in which atomic modifies may also be present. Doherty et al. 11995al
consider several choices of partial-evaluation semantics deltas in an object-
oriented database model.

If a partial-evaluation semantics is used in developing an instance of the
Heraclitus paradigm, primary issues are:

(a ) which commands C can be used in delta expressions [Cl; and

(b) to what extent should expressions of the form [cl be partially evaluated

when forming the corresponding delta values; that is, what is the form
of the tabular representation of deltas, if any.

The second point is pivotal in connection with the tradeoff between expres-
sive power and efficiency of implementation. Speaking intuitively, if one
kind of delta has more expressive power than a second, then the chance of
losing “intended meaning” is lower for the first kind of delta. On the other
hand, more expressive power generally implies a higher conceptual com-
plexity of delta operators, and a lower efficiency with regard to manipula-
tion and access.

We now return to requirements of the Heraclitus paradigm. H,vpotheticul
access is accomplished using the when operator.

Requirement 4 t [E when 8](w) = t[E](( 4[3](u))((J)). It is assumed here
that expression E has no side effects (or more precisely, no side effects on
the portion of store over which deltas range). For example, evaluation of
the expression x when [ x : = X+ 1 ] in a state in which x is 36 results in
the value 37 but leaves x unchanged.

Delta expressions are built up from atomic delta expressions using a
collection of operators. In addition to the data-model dependent atomic
delta expressions ICI, there are two data-model independent atomic delta
expressions: empty and fail.
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Requirement 5

%[empty](rr) = the identity function on states;
%[failn(cr) = 1.

From this and Requirement 2, it follows that %[appl y ( empty)](a) = u
and ‘%[apply ( fail ) ](c) = errorstote. This requirement 4 imply that %[E
when empty] ( a ) = %[E] ( u ) and %&?? when f ai l](m) = errorvalwe. The
delta associated with the expression fail is denoted by fail.

The operator smash on deltas, denoted ‘!,” corresponds to function
composition.

Requirement 6. %[81 ! tiz](a) = %[82](u) o %[81](CT). For example, evalua-
tion of the expression [x:=37 ] ! [y: =38] results in a delta proposing
that the variable x be changed to 37 and the variable y be changed to 38.
More interestingly, evaluation of the expression [x:=37] ! [x:=38]
results in a delta proposing that the variable x be changed to 38, that is,
the second update smashes the first one. With the simple tabular represen-
tation of deltas in Heraclitus[Alg, C], the smash operator has a very
straightforward implementation, namely, union with preference to the
second operand in case of conflict, We expect that smash will also have a
conceptually simple implementation in other data models whenever a
tabular representation for deltas is used.

The operator compose on deltas, denoted “#,” is like smash except that
the second delta expression is evaluated in the state that would result if
the value of the first delta expression were applied to the current state.

Requirement 7. %[81#6z](u) = %[8J(A(u)) o A where A = %Util](u). For
example, evaluation of the expression [x: =37 ] # [y: =x+1 ] results in a
delta proposing that the variable x be changed to 37 and the variable y be
changed to 38: the changes proposed in the first delta are taken into
account in creating the second delta. As discussed in Section 3, in the
context of Heraclitus[Alg, C] compose for delta expressions can be defined
in terms of smash and when; that is, til#/i2 abbreviates 81 ! (82 when 51). For
the model-independent perspective we choose to define compose from first
principles because, in a context where expression evaluation can have side
effects, we want to make it clear that the first delta expression should be
evaluated only once. For example, in an object-oriented database model, the
delta expression 61 might propose the use of a “new” object identifier. In the
formal definition of compose given by Requirement 7, this “new” identifier
will be created/allocated only once, whereas in the expression al ! (82 when
al) two identifiers will be created/allocated, one each for the two occur-
rences of the expression ‘t$l.” Similar problems arise with the expression
al! ( i32 when 81) in the context of tuple identifiers, and in other models
where delta evaluation has side effects on the overall program state.

Note that the compose operator is of interest only in the context of
partial-evaluation semantics. In the full-interpretation semantics, where
the value of a delta expression does not depend on the current state,
compose is the same as smash. Even in the context of partial-evaluation
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semantics there are times when smash and compose are equivalent. For
example, suppose that variables D1 and D2 hold delta values. Then7 D1 #
D2 = D1 ! D2, because the value held by D2 is independent of the current
state, and so %[D2](c~) = &UD2]((t[Dl](u) )(u)).

The operators when, smash, and compose form the basis of the Heraclitus
paradigm. In Heraclitus[Alg, C] the bulk operators are also provided for
creating deltas, the merge and weak-merge operators are provided for
combining them, and the peeking operators are provided for accessing
them, These operators depend explicitly on the specific tabular representa-
tion chosen for deltas, and are thus model dependent.

We now mention several simple algebraic properties implied by the
requirements given previously for the operators when, smash, and compose.
It is easy to show the following relationship between compose on deltas and
compose “:” on commands.

h~per-t.v 1 (Composition) apply(81#82) = apply(~l ) ; apply(82). As
indicated in Section 3.3, this property does not hold for smash; that is,
apply( 81 ! 32) = apply ( i51) ; apply(~z) does not necessarily hold.

Property 2 (Zero and One Laws)

Property 3 (Associativity)

61 !((3~!fs3) ==(f3,!i3~)!8~
fs1#(82#83) ==(&#&)#&3.

Property 4 (Nested When) (E when 81) when 82 s E when (82#81 ). The
following apply only if evaluation of the delta expression to the right of the
when has no side effects.

Property 5 (When L?istributivity (Assuming Euaiuation of 8 Has no Side
Effects)).

where f is a function of the host language. The Nested When and When
Distributivity laws are of particular interest because they allow an imple-
mentation where whens are “pushed inwards” towards individual variables.

As noted before, Heraclitus[Alg, C] supports the merge operator, denoted
by “L”. This operator is model dependent, although one could give it a fairly
general characterization by refining the semantics of merge presented in
Section 3. We present here the intuition behind a model-independent
version of this operator, and a collection of properties it is expected to

‘In the following, f?, = .?32means that ‘t [El] = ‘$[E2], and similarly for C’, = C2.
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satisfy. Conceptually, merge has a declarative flavor in that it attempts to

simultaneously satisfy the update demands of both of its arguments. If

conflicting updates are proposed, then the error delta value -L is generated.
For example, evaluation of the expression [x:=37] & [y:= 38 ] results in
a delta proposing that the variable x be changed to 37 and the variable y be
changed to 38. In contrast, evaluation of the expression [x: =37 ] &
[x: =38 ] results in the error delta, because both of these updates cannot be
performed simultaneously. Merge is expected to satisfy the following prop-
erties.

Property 6 (Zero and One Laws)

emtpy & 8 = 8 & empty = 8
fail & 8 = 8 & fail = fail.

Property 7 (Idempotence) 6 & 6 = 8.

Property 8 (Commutativity) 81 & 62 z & & al.

Property 10 (When Distributivity (Assuming Evaluation of 8 Has no Side
Effects))

None of these properties captures the intuition that the merge of two
deltas should correspond to a “union” of the proposed updates of these two
deltas; capturing this intuition would require a property that is model-
dependent.

6. ACTIVE DATABASE EXECUTION MODELS

Active database technology offers a relatively declarative style of specifying
database behavior. Triggers are the most primitive form of activeness;
these were enriched in Morgenstern [1983] by considering rules with more
complex conditions, possibly referring to more than one (virtual) state of
the database. Since then, a host of active database systems have been
proposed in the literature, along with considerable research demonstrating
the promise of activeness in connection with several application areas,
including constraint maintenance, heterogeneous database interoperation,
and incremental update for materialized views. The book by Widom and
Ceri [1995] presents detailed descriptions of several active database sys-
tems and some of their applications, and the articles by Hanson and Widom
[1992] and Stonebraker [1992] provide useful surveys of the field.

A major difficulty facing the field of active databases today concerns the
choice of execution model, or semantics, for rule application. Each of the
active database systems proposed in the literature has a different execution
model, and some [Cacace et al. 1990; Dalrymple 1995] permit the use of
multiple execution models within the same application. This variety of
alternatives highlights the fact that the “knowledge” represented in an
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active database stems from two distinct components: the rule base and the
execution model IAbiteboul 19881. The execution models in the literature
are generally described in an informal fashion, and so it is difficult to
compare them, or to fully understand their semantics. Furthermore, it
appears that a fixed collection of choices is unlikely to suffice for the
myriad present and future applications.

In this section we show how the Heraclitus paradigm can be used to help
provide a unified perspective on active database execution models. The
section begins with a brief review of execution models, including the
important notions of deferred versus immediate firing of rules. (This
discussion is included for completeness; readers familiar with the promi-
nent active database models may choose to skip it. ) In the subsequent
sections we illustrate how Heraclitus[Alg, C] can be used to specify a wide
variety of execution models based on deferred rule firing, immediate rule
firing, and hybrids of these. The section closes by briefly mentioning ways
that Heraclitus[A1.g, Cl has been used to generalize previous research on
activeness.

Because Heraclitus[Alg, Cl is an implemented DBPL, specifications of
execution models written in Heraclitus[Alg, Cl can be executed directly,
and we have done this for several execution models. As indicated in Section
4, in its current form Heraclitus[Alg, Cl does not provide extensive optimi-
zation, and so the current Heraclitus implementation is not especially
realistic for practical application. Nevertheless, the Heraclitus implemen-
tation is useful in the context of rapid prototyping of, and experimentation
with, execution models. Once an execution model is finalized, a more
efficient implementation can be developed from scratch, or by developing
appropriate optimizations for Heraclitus. If the community of practitioners
finds the Heraclitus paradigm to be useful for constructing customized
execution models, we expect that more optimized implementations of the
Heraclitus operators will become available.

Also, although Heraclitus[Alg, C ] can specify a wide variety of execution
models, the language constructs provided are admittedly somewhat low-
level for this purpose. As we gain experience with Heraclitus and alterna-
tive execution models we shall develop higher-level language constructs to
facilitate the specification of execution models.

6.1 An Overview of Execution Models

The space of most execution models described in the literature can be
characterized in terms of two dimensions: the coupling modes of the “ECA
model, and the use of “multi-state logic. ”

Briefly, the ECA or “event-condition-action” model introduced by the
HiPAC project [Dayal et al. 1988; Hsu et al. 1988; McCarthy and Dayal
1989: Widom and Ceri 1995] permits an active database rule to have the
form

on (event) if (condition) then (action),
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where event and condition are Boolean-valued expressions and action is a
database command (possibly consisting of several atomic commands). For
example, a rule might express that

on any deletion from Suppliers
if there are orders in Order from any deleted suppliers
then delete those orders from Order.

Typically the event refers to either an event external to the database, or a
change to the database state, In some models (e.g., POSTGRES) internal
database events are rather elementary and can be monitored deep within
the physical implementation of the database, whereas in other models (e.g.,
Gehani and Jagadish [19911; Gatziv and Dittrich [1994]) quite complex
“composite” events can be specified. The condition is typically specified
using the query language of the underlying DBMS, for example, SQL. The
action might be an explicit update to the database, as suggested here, or
might involve calling a procedure written in the host language.

An important contribution of HiPAC was the identification of various
coupling modes that specify, for a given rule for which the event has become
true, the relative timing of when the condition is tested, and if that is true,
when the action is executed. Briefly, HiPAC assumes that the underlying
DBMS supports concurrent nested transactions. Three coupling modes are
identified by HiPAC, these being immediate, deferred, and separate (or
decoupled). The coupling modes can be used in connection with the event-
condition pair and with the condition-action pairs Immediate coupling
means that the second activity (be it testing the condition or executing the
action) follows the first “immediately,” that is, before any other atomic
command of the transaction triggering the event is executed. Deferred
coupling means that the second activity is postponed until some later time,
but still falls within the same transaction. Separate coupling means that a
concurrent process is spawned to perform the second activity. (See Widom
and Ceri [1995] for more details. )

In HiPAC, if two rule conditions are to be tested at the same time, then
concurrent nested transactions are spawned for them. The same is true for
rule actions. This means that the execution model need not perform conflict
resolution between rules: all applicable rules are fired “simultaneously.”
On the other hand, because the concurrency manager ensures serializabil-
ity, the rule conditions and actions are in effect executed in a serial and
nondeterministic order. Furthermore, in many cases the condition testing
and firing of rules will be independent of each other because they are
considered in separate subtransactions. Thus the condition of one rule will
not be able to inspect the impact of other concurrently fired rules. An
extension of the HiPAC approach is presented in Beeri and Milo [1991].
This provides language constructs so that the user can specify more

‘A total of seven combinations are considered, because deferred-immediate and deferred-
deferred are considered to be equivalent, and separate-immediate and separate-deferred are
considered to be equivalent. (See Hsu et al. [19881.)
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explicitly the timing of action executions. (Beeri and Milo 119911 do not
support conditions. )

The ECA model and the coupling modes of immediate and deferred are
relevant even in the context of serial execution without nested transac-
tions. For example, the version of POSTGRES described in Stonebraker et
al. [19901 focuses on immediate coupling for both euent-condition and
condition-action pairs, and does not use nested transactions. In contrast,
AP5, the Starburst Rule System, and ARIEL support serial execution
models that use deferred testing of conditions with immediate execution of
rule actions. POSTGRES, Starburst, and ARIEL use priority schemes to
select the order of rule firing when two or more euents become true
simultaneously. The execution model of AP5 is based on cycles of rule
tiring; with each cycle all eligible rules are fired “in parallel.”

The second dimension of the space of execution models concerns the
explicit use of “multistate logic. ” A central element in active database
execution models is the fact that multiple (virtual) database states are
created during the application of a rulebase. Indeed, this forms one of the
key differences between active database technology and expert systems
technology: expert systems typically react only to the current state of the
underlying knowledge base, whereas many active database systems react
both to the “current” state, and also to how this state came about (see
Section 6.2). An early system in which conditions explicitly refer to two
virtual states is AP5; more recent systems include the Starburst Rule
System and A-RDL [Simon and Kiernan 19951 (a descendant of RDL1
[deMaindreville and Simon 19881). The execution models of each of these
systems uses a deferred coupling mode between event and condition, but
each supports a different convention concerning what virtual states are
accessible by rule events and conditions, and the syntax used to refer to
them.

As noted previously, HiPAC does not support access to multiple virtual
states in rule conditions. POSTGRES and ARIEL do permit access to the
original and new versions of individual tuples that trigger rules, but do not
support more general access to the original and new virtual states created
during the course of rule execution.

Almost all the execution models described in the literature can be
specified in terms of a particular combination of coupling modes and access
(by events and by conditions) to virtual states created during the process of
rule execution. In the remainder of this section we describe how Heraclitu-
s[Alg, Cl can be used to precisely specify several of the execution models
found in the literature, and many variations of them. At this time Heracli-
tusl Alg, C I does not support nested transactions, and so it cannot be used
to specify those aspects of the execution models of HiPAC or Beeri and Milo
[ 1991] that rely on nested transactions. (For example, Heraclitus[Alg, C]
can support the spawning of a rule action to be a separate and independent
transaction. However, it cannot support the spawning of a rule action to be
a separate but dependent transaction. )
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6.2 Transaction Boundary Rule Firing

The primary contribution of the Heraclitus paradigm in specifying execu-
tion models concerns the representation and accessing of multiple virtual
states. To illustrate this, we focus in this section on the somewhat simpli-
fied situation where the euerzt of each rule is simply “true,” the coupling
between event and condition is deferred, and the coupling between condi-
tion and action is immediate. (This implies that rules can respond only to
changes to the database state. ) We refer to such execution models as having
transaction boundary rule firing, because rule firing occurs only after the
execution of all atomic commands in a user-requested update. We return to
the more general ECA model in the following section.

Under transaction boundary rule firing, rule application constructs a
sequence of “virtual states”

of the database, where SOrlg is the “original” state and SPrOPis the result of
applying to So,lg the set of user-proposed updates collected during the
transaction. The subsequent virtual states result from a sequence of rule
firings according to the execution model. S,u,, denotes the “current” virtual
state that is being considered by the execution model. Execution either
aborts when an erroneous situation arises, or terminates when the execu-
tion model reaches a fixpoint (i.e., SCU,, = S,U,,_ ~), in which case the final
virtual state replaces SOrig, Prominent systemsg following essentially this
paradigm include AP5, A-RDL, LOGRES, the Starburst Rule System, and
ARIEL, and also expert systems such as 0PS5.

To illustrate, recall the inventory control example of Section 3. Consider
the referential integrity constraint stating that if there is an order for part
p from supplier s, then the pair (s, p) should appear in relation suppliers.
A possible rule for enforcing this might be written as

RI: if Orders(part, qty, sup, exp) and not Suppliers(sup, part)
then -Orders(part, qty, sup, exp).

(We use a pseudocode here, and describe in the following how such rules
are specified in Heraclitus[Alg, C]. ) With rules such as this it is implicit
which virtual state(s) are being considered by the conditions and actions. In
typical active database systems, if at some point in the application of rules
the state SCU,Tsatisfies the condition of R1 for some assignment of vari-
ables, then the action may be fired, depending on the presence of other
rules whose conditions are true. We say that Rule RI uses a “one-state”
logic, because the rule condition examines a single state, namely the

‘Some of these systems explicitly support nontrivial euerzts.
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“current” one. RI)L1 [de Maindreville and Simon 1988], LOGRES, and most

expert systems (e.g.. 0PS5) support only a one-state logic.

In the context of databases, a problem with Rule RI is that the appropri-

ate response to a constraint violation may depend on how the violation

arose. Rule R2 deletes all violating orders if a pair is deleted from the
Suppliers relation, but if the violation is the result of an update to
Orders. then R3 undoes that individual update and transmits a warning.

R2: if -suppliers(sup, part)
then –orders(part, *, sup, *).

R3: if ~Orders(pflrt, qtv, sup, exp) and not suppliers(sup, part)
then –-order s(pclrt, qty, sup, exp) and send_warning(part, qty,
sup, exp ).

The signed atoms in the conditions of these rules refer to proposed updates
rather than any database state. (The use of wildcards (“K”S) in the action of
R2 is analogous to their use in Heraclitus[Alg, C]. )

In essence, the conditions of Rules R2 and R3 make explicit reference to
the delta between two virtual states. Of course, some design choice needs to
be made about which pair of virtual states should be considered. The AP5
system focuses on the delta between S,,,,h, and S, ,,,.,:

S<,r)kr,s,,,<,,,,S2, s:,> “ 9 s,,,,,

L-Jl
Assuming this semantics for a moment, note that a one-state execution
model cannot simulate the effect of Rules R2 and R3 without using “scratch
paper relations” that essentially duplicate the contents of S,,,,g, Another
natural semantics for rule conditions supporting explicit access to a delta
would be to use the delta between S),,,,l, and S,,,,,.,. The Starburst Rule
System is more intricate: it uses the delta between virtual states S, and
S,.,,,.,.,where i is determined by the rule under consideration and the history
of previous firings of that rule (see Widom and Finkelstein [ 19901; Hull and
Jacobs 11991!).

LJnder one approach to specifying execution models using Heraclitus, the
original state S(),.,g remains unchanged during rule firing, and deltas are
used to represent the sequence of virtual states resulting from the user
update and rule firing. In this context, rules are represented as functions
that have as input zero or more deltas, and produce as output a delta
corresponding to the effect of the rule firing. For example, Rule R2 can be
expressed in Heraclitusl Alg-, C I (assuming the type declarations given in
Section 3) as follows:]”

“’Ttwhnicall.v. the type of input variable curr should be declared in a separate line of the type

declaration of rule_R2, given the version of C that was extended to form Heraclitus[Alg, Cl.

To simplify tbe exposition here, we use the ANSI-C style of declaring the types of input
parameters.
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delta rule_R2(delta curr)

{
return bulk(del Ord(part, *, sup,

}

*)~ peekdel(supp, curr));

Consider finally the rule

R4: ifthefiring ofrules resultsin a20%drop in orders

then inventory_warning .

Here we needto consider the change in orders between SP,OPand SCU,;

, L ,

Although this could be expressed using explicit access to a delta, it is much
easier to express it in terms of the virtual states, that is, to write:

R4’: if
count (Orders ) “in SC.,,”

< .8
count ( Orders ) “in SP,OP”

then inventory_warningo.

In current DBPLs there is no mechanism to write expressions such as the
condition of R4’, because they do not provide explicit access to virtual
states. The Heraclitus paradigm provides this by using deltas and the
when operator. One way to express Rule R4’ in the Heraclitus paradigm is
to construct deltas corresponding to the virtual states SP,OP and ScUr, as
follows:

Rule R4’ can be expressed in Heraclitus as:

R4”: if
count (Orders ) when ACU,,

< .8
count ( Orders ) when AP,OP

then inventory -warningo.

Using the Heraclitus[Alg, Cl syntax, this rule might be written as
follows:
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delta rule_R4(delta prop, curr)
{ if ( (float )(count(Ord) when curr) / (float )(count(Ord)

when prop) ~ .8) inventory_warning ( );
return *empty_delta;

}

This rule is more difficult to express in active database systems such as
POSTGRES and ARIEL, because they support explicit access only to the
previous and current ~’ersions ofindividual tuples, rather than to different
versions of the full virtual state.

We now describe how the Heraclitus paradigm can specify a large family
ofexecution models that use transaction boundary rule firing. We continue
with the simplifying assumption that the euent of each rule is simply
“true”. (We brie fly consider the incorporation of nontrivial events into this
framework near the end of this section. ) Hull and Jacobs [ 19911 show in
much greater detail how Heraclitus can simulate the kernels of two
prominent active database systems that use transaction boundary rule
firing, namely, the Starburst Rule System and AP5.

As suggested before, in the approach described here the original database
state S,,,lg remains untouched until termination, and deltas are constructed
to represent the virtual states corresponding to rule firing. (An alternative
would be to update the database state with each rule firing, and maintain
“negative” deltas that simulate previous virtual states in the sequence. )
Rules are represented as functions that have as input zero or more deltas
(corresponding either to virtual states or deltas between them), and pro-
duce as output a delta corresponding to the effect of the rule firing. The
rules might also invoke additional procedures such as inventory_warn -
ing ( ). Rules can be arranged to provide either “tuple-at-a-time” or “set-at-
a-time” operation IWidom and Finkelstein 1990]. The Heraclitus operators
merge and smash are used so that deltas corresponding to new virtual
states can be constructed from previous deltas and rule outputs. Using this
approach, the execution models of AP5, RDL1, LOCIRES, the Starburst
Rule System, and ARIEL can be specified within Heraclitus[Alg, C 1.

To provide a simple illustration of how Heraclitus[Alg, C I can be used
to specify execution models with transaction boundary rule firing, assume
that a total of 25 rules are written to capture the purchasing policy for the
inventory control application, all using input variables corresponding to
Sl,r<,,,and S,,,,,, [or more precisely, using input variables of type delta that
correspond to ~,,,,,~, and .L(,,,,.). In Heraclitus[Alg, Cl these can be combined
into an array of delta functions as follows:

delta (*policy [24] ) ( );
policy [O] rule_RO;
policy[ 1 ] – rule RI:—

policy [24 ] = rule_R24;

The following function specifies an execution model that takes in a delta
corresponding to a user-requested update and applies the rules according to
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a specific algorithm. Here, the assignment temp = *empty_delta initial-
izes temp as a transient delta holding the empty delta.

boolean apply_policy(delta prop)
{

delta curr, prev, temp;
if (prop == fail) return (false);
curr = prop;
do {

prev = curr;
temp = *empty-delta;
for (i=O; i<25; i++) ternp = temp &
(*policy [i]) (prop, curr);

curr = curr ! temp;
} while (curr != fail && prev != Curr);

if (curr == fail)
return (false);

else {
apply curr;
return (true); }

}

Here the inner for loop corresponds to a single, simultaneous, and
independent (set-oriented) application of each rule in policy, and com-
bines the results using merge. This is “simultaneous” application of the
rules, because each rule is evaluated on prop and curr; the resulting
deltas are accumulated in variable temp. The outer while loop repeatedly
performs the inner loop, using smash to fold the results ofeach iteration
into the value of curr already obtained. The outer loop is performed until
either a fixpoint is reached, or the inner loop produces the delta fail (either
because one of the rules explicitly called for an abort by producing fail, or
because in some execution of the inner loop, two rules produced conflicting
deltas).

In some active databases such as the Starburst Rule System, the rule
condition creates a relation which is passed to the rule action. This might
be called the “witness” relation, because the tuples created by the condition
serve as witnesses that the rule action should be fired. As illustrated in
Section 6.3, this is easily accommodated in Heraclitus[Alg, C]. In particu-
lar, relation variables in Heraclitus[Alg, C] can hold relations of different
signatures over the course of the program. Thus the Heraclitus[Alg, Cl code
for an execution model can use the same variable for the witness relations
of all the rules.

Suppose now that there is a second array keys that includes 15 rule
functions that capture key constraints, and that the preceding execution
model is to be modified so that after each execution of the inner loop, the
rules in keys are to be fired until a fixpoint is reached. Suppose further
that these rules use only a single input delta, corresponding to SCU,,. Now
let function apply_rules have the following signature

delta apply_ rules (delta curr, delta *rule_base[ ] ( ) , int size),
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and suppose that it applies the rules in rule_base until a fixpoint is

reached. Then the desired modification to apply_pol icy can be accom-

plished by adding

curr -- curr ! aPPIY_rules(curr, keys, 15 );

as the last line of the inner for loop.

These examples provide a very brief indication of the kind of flexibility

that Heraclitusl Alg, C ] provides in specifying active database execution
models with transaction boundary rule firing. Variations on this theme can
he developed. As a simple example, a rule-base can be “strati fied,” and the
execution model can fire each layer to a fixpoint before moving to the next
layer. More complex firing patterns subsuming the rule algebra of Imielin-
ski and Naqvi [1988] are expressed easily (see Section 6,4 t.

We now briefly consider how nontrivial events might be incorporated into
the framework just presented. As noted earlier, both events and conditions
are Boolean expressions. Typically, events are specified using a language
with considerably less expressive power than the language for conditions.
As a practical matter, in several prototype active database systems the
mechanism for testing events is deep within the physical implementation
so that it is inexpensive to identify the set of rules whose events are true.
We are concerned here primarily with capturing the logical semantics of an
execution model. and do not consider such optimizations here. It is typical
that the selection of a rule to be fired occurs in two phases, first identifying
the set of rules whose event is true, and from that set identifying one or
more rules whose condition is true. In some execution models, the seman-
tics of how an event or condition is tested or a rule action interpreted may
be affected by ~vhen the rule event has been true in tbe past. For example,
in the Starburst Rule System events refer to a delta that reflects some of
the previous rule actions (and possibly the user transaction), and rule
conditions can refer to the “current” state and also the delta just men-
tioned, To capture this kind of semantics in Heraclitus[Alg, C 1, separate
functions can bt’ created that correspond to testing rule events, testing rule
conditions, and constructing deltas corresponding to rule actions. In the
execution model written in Heraclitus[Alg, C] it is easy to store relevant
information about ~vhen the events andlor conditions of rules became true,
and thus provide the appropriate deltas to the events, conditions, and
actions. This is illustrated in Section 6.3 in the context of immediate-
immediate coupling (see also Hull and Jacobs [ 1991 J~.

6.3 Specifying Immediate-lmmediate Coupling

In this section we return to the case where nontrivial euents are permitted,
and focus on the case of immediate-immediate coupling. This follows the
spirit of the execution model of POSTGRES as described in Stonebraker et
al. 11990]. From this and the discussion of Section 6.2 it is clear how
families of rules with diverse coupling modes can be supported in Heracli-
tus.
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Fig. 8. Schematic illustration ofimmediate rule firing.

In the context of immediate-immediate coupling, a user-requested update
will generally be a sequence of several atomic update commands. In the
general case, some rules might fire before all these atomic commands are
executed. In the sequence of virtual states created by rule execution, there
may not be a state corresponding to SPrOPas in Section 6.2. Thus we now
consider a sequence of virtual states

s *r,g, Sl, s~, s~, . . . , Scurr,

where each state is the result of applying a single atomic update command
to the previous one.

As in the case of transaction boundary rule firing, an important design
issue concerns the virtual states that are accessible to rule events and
conditions. We consider now, rather microscopically, the execution of a few
steps of a user-requested transaction along with some immediate rule
firings.

Figure 8 presents a schematic representation of the first part of an
executionll of a user-requested update, along with the effects of some rules
that are fired along the way. The lowest long rectangle represents the
sequence of atomic commands that make up the user-requested update;
each shorter rectangle within the lowest one represents a single atomic
update command within that update request. The two long rectangles in
the upper left represent the actions of two rules (let us call them rule i and
rule j) that fire after the first atomic update. The other long rectangles
represent the actions of rules k and 1, that fire after the second atomic

IIwe mean ~executionn in ~ virtual sense; these updates will not be committed until rule firing

has successfully completed without aborting.
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update of the user request has been executed. The figure also suggests that
rules are fired as the result of some of the atomic updates of rules i, j, k,
and 1. This is possible because immediate firing of rules may be recursive.

The letters a through f depict different points in time during the
execution; for example, b indicates the point in time after the first atomic

update of the user request has been executed and before any other atomic

update has been executed, and e indicates the point in time just before the

second atomic update of the user request is executed. In the discussion that
follows, letting x range over {a,. . . . h), we use S1 to denote the virtual state
that corresponds to time x. In particular, S. is a synonym for S,,,,g. Alsoj
given two (virtual ) states S and S’, we let difflS, S’) denote the (minimal)
delta value that maps S into S’.

As noted previously, the event of a rule is generally focused on an
event external to the database, or on the difference diffl S, S’ ) between

two virtual states arising during execution of a user-requested update
and rule firing. Likewise, in most active database systems supporting
immediate-immediate rule firing, the condition makes reference to two
states, the “current” one and some previous one. (In some cases this is
accomplished by permitting explicit access only to the values of changed
tuples or objects, rather than permitting explicit access to an entire
virtual state. )

Consider now rule i. Presumably its event is true in difflS~, Sh), and its
condition is true relative to S. and S6. What about rule j? Is rule j to be
considered because its c[lent is true in difflSa, Sb), or because it is true in
diffl Sa, S,i )? Likewise for the condition of rule j: need it be true relative to
S,, and S~, or S,, and Sd? Continuing with the example, design choices must
also be made in connection with time C what states should be considered
when determining what rules should be fired between time f and h?

As with transaction-boundary execution models, the Heraclitus paradigm
can be used to specify a wide range of alternatives in connection with
immediate-immediate rule firing, and permit explicit specification of what
virtual states are to be accessed by rule events and conditions. To illus-
trate. we present in pseudocode a very simple execution model that
supports recursi~-e immediate-immediate rule firing.

We assume that the rulebase is represented using three arrays of size
rulebase_size, one each for the events, conditions, and actions of rules.
Events and conditions will take as input two deltas corresponding to
virtual states, and return Booleans. Conditions will also produce a “wit-
ness” relation, that is passed to the rule action. The witness relation might
be used, for example, to hold the set of tuples that violate a constraint that
the rule is supposed to maintain (cf. Ceri and Widom [ 1991]). In the case
where the events of two rules become true simultaneously, priority is given
to the rule having the lower number in the rulebase.

In the code we assume that there is a type atomic_command that holds
atomic database commands as C structures. The user-requested update and
rule actions are represented as arrays of such atomic commands. These
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arrays have fixed size max_s i ze, and array entries not containing atomic
commands hold a special null marker.

As before, we assume that the stored database state does not change
until the processing is completed, and that global variable curr holds the
delta corresponding to the “current” virtual state that the execution has
reached. The main routine is:

void invoke_rulebase ( atomic_command *user_request [max_size ] )

{
curr = *empty_delta;
apply_rules ( user_request );
if curr != fail apply curr;

}

The subroutine for applying the rulebase is given by the following
pseudocode. Here net effect ( curr, c ) is the delta value corresponding
to the effect that atom~c command c would have if applied to the result of
applying curr to the underlying database state; and net -dif f returns the
delta corresponding to the net difference between the states represented by
two deltas, (More precisely, let S be a database state and let the value of i5i
in S be Ai for i = 1, 2. Then the expression net_diff(i51, 82) evaluated in S
yields the minimal delta A such that apply(apply(S, A1),A) = apply(S, AZ), that
is, the minimal delta that takes state apply (S, Al) to state apply(S, A2).)

void apply_rules ( atomic_command *command_ array [max_size ] )
{

delta local start, local_event_end;
relation *wYtness;
for ( 1=0; more commands in command_ array; i++ )

{
local_ start = curr;
curr = curr ! net_effect (curr, command_ array[ i ] );
local_event_end = curr;
j= ();

while ( j < rulebase_size)
{

if (event[ j] (net_diff (local_ start, local_event_

end) ) && cond[ j] (local_ start, curr,

&witness ) )

{
apply_rules (action[ j ] (witness ) );
j= ();

}

else j++;
}

)
}1

In this execution model, referring to Figure 8, the event of rule j is tested
in connection with S. and S~, and the condition of rule j is tested in
connection with S= and Sd. In this example the event and condition are
satisfied, and so relevant data is passed to the rule action via the relation
variable witness.
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It is clear that a variety of other design choices in connection with what
events and conditions access can be specified using the Heraclitus para-
digm. Furthermore. the conditions could be designed to permit access to
more than two virtual states.

6.4 Novel Execution Models

A fundamental contribution of the Heraclitus paradigm and Heraclitus[Alg,
C I is to provide a very flexible and relatively straightforward mechanism
for specifying and experimenting with new execution models. In this
section we briefly consider two novel kinds of execution models that have
been developed using the Heraclitus paradigm, and that generalize previ-
ous resclarch on active databases. This illustrates a “value-added” contribu-

t ion of Heraclitus to the field of active databases: we have already seen that
Heraclitus provides a unifying perspective on existing execution models; we
show now that Heraclitus can be used to introduce fundamentally new
kinds of execution models.

The first kind of execution model is to combine more explicitly the
declarative style of rules with conventional imperative programming. We
illustrate with a simple example, and then mention a much richer use of
this approach.

To set the stage, recall that the semantics of a rulebase stem from both
the rules themselves and the execution model. Speaking intuitively, this
allows a partial separation of the specification of the logic of an application
from the specification of the flow-of-control. In some cases it may be
convenient to reduce this separation by supporting a two-tier approach that
uses rulebases for performing subtasks but uses the imperative paradigm
for sequencing and controlling the performance of these subtasks. An active
database system that supports this perspective in a limited fashion is
LOGRES, which provides mechanisms for specifying separate rule modules
that can be enabled or disabled. In contrast with LOGRES, the Heraclitus
paradigm affords great flexibility in how the imperative and declarative
paradigms can be combined. The Coral [Ramakrishnan et al. 1992, 19931
and Glue-Nail [Derr et al. 1993 I database programming languages also

combine the imperative and declarative paradigms. The emphasis there is
on efficient implementation of subprograms that are written in variants of
Datalog. A fundamental feature of Heraclitus, namely, the ability to specify
a wide variety of alternative semantics for rule application, is not sup-
ported,

As a simple example of specifying flow-of-control in an execution model,
suppose that in a business, based on certain conditions, rules will be fired
in order to remedy problems, for example, if sales volume is too low then
increase advertising, or lower prices by 570, or lay off 107[ of the employees.
Suppose further that the rules are clustered, with the remedies proposed by
some clusters being more “costly” than others; the more costly ones should
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be invoked only if the cheaper clusters are unable to remedy the problem. 12
The following procedure assumes that there are c rule clusters, ordered by
increasing cost, and attempts to find the cheapest solution for the current
state of the database. Here the function apply_ rules ( j, d ) returns a
delta corresponding to the application of the jth cluster of rules in the
context of delta d.

void apply_cheapest_ solution ( int c, delta prop)

{
delta attempt;
/*. . declarations for functions included here. . .*/
for (i = O; i < c; i++)

{
attempt = aPPIY_rules (i, prop);
if satisfies_constraints (attempt)
{

apply attempt;
return

}
}
print_message(”no cluster offers a solution”)

}

Itis clear that more complex firing patterns canbe developed.
A much more comprehensive investigation of combining the impera-

tive and active paradigms is described in Dalrymple [1995]. That work
explores three different interoperability problems, focused on interoper-
ating databases, interoperating software systems, and message-based
interoperation between diverse computer systems. In each case, the
overall task is broken into submodules following standard software
engineering principles. For example, in the database application there
are different submodules that focus on incremental update propagation
between databases holding overlapping information, remote object re-
trieval (for views maintained in a virtual manner), security and access
rights, and responding to external events. Several different execution
models were found useful in Dalrymple [1995] for supporting different
submodules arising in the three example applications. A working proto-
type was developed using Heraclitus[Alg, Cl in support of the applica-
tion for interoperating software systems.

Related investigations are found in Zhou et al. [19951 and Hull and Zhou
[1995], which concern the construction of mediators that maintain materi-
alized integrated views of multiple heterogeneous databases. A customized
execution model has been developed using Heraclitus[Alg, Cl to support the
incremental update propagation needed for these mediators.

A second kind of execution model generalizing previous active database
research is described in Chen et al. [1996]. This kind of execution model is
based on the use of “limited ambiguity rules” (LARs), that may have
disjunctions in their actions. The LAR execution model explores a directed

‘*The authors thank Serge Abiteboul for suggesting this example.
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acyclic graph (DAG I of possibilities, where a fork in the DAG corresponds to
the firing of a rule whose action involves a disjunction. In Chen et al. [ 1996 I
LARs and their associated execution model are applied to updating derived
data in semantic models (see, e.g., Hull and King [1987] for a description of
semantic data models ). As a simple example, suppose that the class
~mployed_Student is defined to be the intersection of classes Employee
and Student, that x is in the class Employ ed_Student, and that an
explicit request to delete x from Employ ed_Student has been made. This
implies that either x should be deleted from Employee, or from Student, or
from both these classes. Under the LAR approach, this is captured by the
rule (expressed here in pseudocode):

IF z 1s deleted from Employed Student
THEN [ delete z from Employee ]–

OR [delete z from Student]
OR [ delete z from Employee and delete z from Student]

The execution model for LARs creates a DAG of virtual states (represented
as deltas), with branching corresponding to rule actions that have more
than one disjunct. Branch merging can occur if rules applied to two
different states yield the same state. Execution stops when no rules can be
fired. Successful leaves of the tree correspond to valid “completions” of a
user-requested update; if there are two or more successful leaves then a
separate policy can be used to choose between them. Chen et al. [ 19961
describe the execution model in full, and provide a mechanism for compil-
ing semantic data model schemas into LAR rulebases.

The execution model of the LAR approach has been implemented both
directly in C [Chen et al. 19961, and using Heraclitus[Alg, Cl. There is
considerable nondeterminism in the basic LAR execution model. Because
the Heraclitus code was at a higher level than C, it was easy to write and
compare different optimizations in the Heraclitus version. However, for a
given strategy the C version was more efficient.

We expect that the LAR approach can be used in a variety of application
areas, where the repair of a violated constraint is not easily expressed
using a single (conventional) rule, For example, in some minimization
problems more than one local minimum may exist, but other constraints in
the application might disqualify some of them. The LAR approach might
also be useful in the context of backward chaining, in the sense of
Heineman et al. 119921, where there may be more than one way to cause a
given rule to fire. We expect that the LAR approach will be most useful in
the previously described hybrid framework of Dalrymple [19951, where
some subtasks are solved using the LAR approach, and others are solved
using more conventional execution models.

7. CONCLUSION AND FUTURE RESEARCH

The Heraclitus paradigm is a language extension for DBPLs that elevates
deltas to be first-class citizens. The paradigm provides constructs to create,
combine, and access deltas. Most important is the when operator, which
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permits hypothetical access to deltas, enabling a programmer to consider
“what-if” scenarios and to reason about their impact. The Heraclitus
paradigm can be used to support a variety of database applications.

This article describes a concrete realization of the Heraclitus paradigm,
in the form of the prototype language Heraclitus[Alg, Cl, an implemented
DBPL that extends C with relations and deltas for them. The article
describes (1) the syntax and semantics of Heraclitus[Alg, Cl, (2) the
subtleties that arise when manipulating deltas, including algebraic proper-
ties of the when operator, (3) two alternative implementations for operators
that access deltas, based on hashing and sort-merge techniques, (4) the
tradeoffs associated with these two alternatives, and (5) how Heraclitu-
s[Alg, C] can and has been used to specify a wide variety of execution
models for active databases. The article also (6) develops a formal and
model-independent framework for the core of the Heraclitus paradigm that
can be used when developing other realizations of it.

We are extending Heraclitus in several ways. From an implementation
perspective, we are currently investigating two enhancements. The first is
to further optimize both the compiler and the storage manager, primarily
through the use of B +-tree index structures. Both relations and deltas may
have B ‘-trees, so that the hypothetical relational operators can be more
efficient, The second enhancement is the development of high-level macros
to simplify the specification of execution models of active databases. As
detailed in Section 6, we have been using Heraclitus[Alg, Cl to develop and
experiment with novel active database execution models; this work is
continuing with application to database interoperation [Zhou et al. 19951.

The model-independent perspective of Heraclitus as described in Section
5 is a starting point to extend this paradigm to models other than the pure
relational model. For example, the Heraclitus[OOl (abbreviated H20)
project [Boucelma et al. 1995] is a broad project that includes the develop-
ment of a Heraclitus-based DBPL for object-oriented databases (see Bou-
celma et al. [19951 and Doherty et al. [1995al). Work is also in progress
[Doherty et al. 1995bl on developing a coherent understanding of how the
Heraclitus paradigm can be generalized to a variety of common database
data structuring constructs (including tuples, sets, bags, lists, and sets
with keys or object identifiers) and for complex data types built from these.
The work on bags is particularly relevant to incorporating the Heraclitus
paradigm into practical relational DBMSS, which typically view relations
as bags of tuples, that is, with duplicates permitted.

An interesting application of the Heraclitus paradigm concerns the
detection and resolution of conflicting updates. One application area in-
volves providing complex services, such as telephone or transportation
services, to large organizations. Given a desired upgrade in performance,
multiple alternative hypothetical updates to the current service might be
considered. Further, updates proposed to perform service upgrades con-
cerning different but related aspects of the organization might conflict in
some way (e.g., due to limitations of the underlying infrastructure). The
Heraclitus paradigm provides a useful starting point for representing
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multiple hypothetical updates and detecting conflicts among them. It will
be natural to use the rule-based paradigm of active databases to provide a
relati}’el.y declarative basis for specifying how conflicts should be resolved,
It is important to note that the proposed updates themselves can be
naturally represented as deltas. Thus the rules of an update conflict
resolution system will explicitly manipulate and analyze multiple deltas.
This capability is not supported by any existing system. A preliminary
investigation into this area is presented in Doherty and Hull 119951 and
Doherty et al. [1995 al.

Another preliminary investigation concerns the application of the Hera-
clitus paradigm to multimedia information systems lGhandeharizadeh
1995: Escobar-Molano et al. 1995]. The basic idea is to (i) represent a
complex scene as a collection of related atomic objects using spatial and
temporal constructs, and (ii) use delta operators to define how the relation-
ship between the objects evolves as a function of time. This will enable a
system to mason about the changes to the objects as a function of time and
space. and to construct logical concepts that might be queried, for example,
the concept of one car chasing another.
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