
Meaningful Change Detection
in Structured Data

Sudarshan S. Chawathe, Hector
Garcia-Molina

Presented by Lawrence Lin

Focus

Detecting meaningful changes in
hierarchically structured data
Use operations that move and copy entire
subtrees to describe changes meaningfully
with regard to semantic information
Algorithm reduces problem to computing a
minimum-cost edge cover of a bitartite graph.

Change detection examples

Detecting changes in a competitor’s
website.
System administrator detecting
differences between mirrored file
systems.
Engineer comparing different but
related chip designs.

Model

Rooted, labeled trees for structured data.
Each node n has a label l(n).
A tree T is defined by nodes N, parent
function p, and labeling function l. T=(N,p,l)
A cost model for edit operations is defined, so
goal is to find a minimum-cost script
transforming one tree to another.

Operations

Insertion: places a new node with a
given label at a given position in the
tree
Deletion: DEL(n) removes n from the
tree and makes its children the new
children of its parent node.
Update: UPD(n,v) changes the label of
the node n to v.

Operations (cont.)

Move: MOV(n,p) moves the subtree rooted at
n to another position in the tree specified by
the new parent p.
Copy: CPY(m,p) copies the subtree rooted at
n to another position.
Glue: inverse of copy, GLU(n1, n2) causes
subtree rooted at n1 to disappear when n1
and n2 are isomorphic.

Edit Script

An edit script is a sequence of zero or
more edit operations that can be
applied in the order in which they occur
in the sequence.

Cost Model

Each operation has a given cost, given
by constants ci, cd, cm, cc, and cg.
With certain operations being
symmetric, ci = cd, cc = cg.
Also, cm < cc.

The Graph

We start with the initial tree T1 and the final
tree T2
The idea is to find, for each node in T1, its
corresponding node in T2.
We start with a graph containing dashed lines
connecting nodes in T1 to nodes in T2, with
all the possible operations that can make the
transformation.
We want to find a subset K of the edges of
the graph B, telling us the correspondences.

Getting the Answer

First, we use conservative pruning
rules, removing edges of the graph
which we are sure cannot be part of a
minimum-cost edit script.
Then the edges that are not needed to
cover nodes (ie. choosing to eliminate
an edge or subset of edges whose
action is accomplished redundantly).

Getting the Answer (cont.)

Once the cost is defined for each edge
in the pruned induced graph, standard
techniques are used to reduce the
problem to a weighted matching
problem, and then further to solve that.

CtoS

Generates an edit script between two trees,
given an edge cover of their induced graph.
With the edge cover, edit operations are
computed in several different phases to
ensure simplicity (ie. INS phase after DEL
phase).
Order is DEL, CPY, UPD, MOV, GLU, INS.

DEL Phase

In DEL phase, if a node m is connected
to – (deletion node), a DEL operation is
added to the edit script.
Any node attached to – is absent from
the final tree.

CPY Phase

Algorithm searches for edges incident
on a common node m in T1.
It ignores nodes generated through a
copy of some ancestor.
Remaining edges found in this search
are logged as CPY operations.

Remaining Phases

UPD phase: straightforward, records a
CPY operation when an edge connects
nodes whose labels differ.
MOV: also straightforward (not
mentioned in paper)
GLU, INS: analogous to CPY, DEL
respectively

MH-DIFF

MH-DIFF is the algorithm which finds a
minimal edge cover of the induced
graph.
The goal is to find not just any minimal
edge cover, but one that corresponds to
a minimum-cost edit script, known as a
target cover.

Choosing Edges

The algorithm must decide for each
edge whether it should be included in
the cover.
The actual cost would be useful, but it
creates a “chicken and the egg
problem.”
Solution: compute upper and lower
bounds to the cost.

Pruning Rules

Take an edge e1 which we are
considering pruning. Let n1 be the
node in T1 and n2 be the node in T2.
If the lower bound cost of e1 is higher
than the combined cost of another
edge connected to n1 and another
edge connected to n2, we can prune
e1.

Pruning Rules (cont.)

Essentially, if it costs less to delete one
node and insert another, then we can
eliminate the edge matching the two
nodes to each other.

Choosing a Minimal Edge
Cover

After pruning, there may still be several
minimal edge covers possible for the pruned
induced graph.
Use the lower bound (or upper, or an
average) to approximate the cost of every
edge remaining.
Given constant estimated costs, reduce the
edge cover problem to a bipartite weighted
matching problem, which has established
solution methods.

Choosing a Minimal Edge
Cover (cont.)

Weighted matching problem can be
solved in O(ne) time, with n nodes and
e edges.

Performance

Performance (cont.)

50 experiments were run comparing the
result of MH-DIFF to the perfectly
optimal edit script.
In 48 (96%), MH-DIFF found the
optimal edit script, and the script costs
of the remaining 2 were about 15%
above the minimum possible.

Summary

The method presented compares data
structures and determines the minimum edit
script to transform the first into the second.
Edit scripts contain a set of edit operations,
arranged in a sequence.
Trees are constructed with edges
representing edit operations, and the
minimum cost edge cover chosen by the
algorithm presented.

