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Administrivia

§ Project status reports due today
§ Should have both a timeline and a plan for validating 

that your system does something useful
§ (If not, you need to work on that ASAP!)

§ On 4/16 you need to have enough of the project 
working that:
§ You can talk about it for 5 minutes
§ You can answer my detailed questions about 

how/how well it works (i.e., it’s not vaporware!)
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The Need for Schema Mediation

§ In any company, collaboration, university, etc.:
Different organizational units each have their own DBMS, schema, 
(partly overlapping) data, servers

Ø Often important to get global view of the data across an 
organization

Ø May want to share data with other organizations, 
business partners, collaborators, customers, etc.

Problem: mediating (translating) between schemas
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Approaches We’ve Seen to 
Schema Mediation

Data warehouse
§Design a single schema

Do physical DB design
§Map data into 

warehouse schema
§ Periodically update 

warehouse

Virtual data integration (EII)
§ Design mediated schema
§ Map sources to mediated 

schema
§ Queries are rewritten and 

answered on demand from 
sources
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A Single Centralized Schema 
is a Bottleneck!

Challenging to form a single schema for all domain data
§ People don’t agree on how concepts should be represented
§ Data warehouse:  physical design is a strong consideration
§ Mediated schema very different from original users’ schemas

Mappings may be challenging to create, and do not 
leverage work of previous source mappings

Each source gets mapped to mediated schema separately

Difficult to evolve this single schema as needs change
§ May “break” existing queries
§ Must build consensus for any schema changes
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What People Often Do…

Create ad hoc custom mappings between source pairs
§ Define some intermediary schema
§ Use custom code to export one source’s data
§ Import that into the opposite source

Easily extensible – no need to agree on single schema!
Disadvantages:
§ Point-to-point: O(n2) translators may be necessary
§ Often requires custom code, batch updates
§ Need to be careful to distinguish between local extensional data

and global domain data (what does a table represent?)
Separate between books at amazon.com and “books in general”
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One Solution – The Local Relational 
Model: Bernstein et al.

§ A “vision paper” (not yet an implementation) from U. Trento, U. 
Toronto

§ “Coordination formulas” between different peers’ relations:

These define how to import data from one source into another

§ Every time a data source is updated, its effects get propagated
§ No distinction between global and local concepts – all data is, by 

default, imported into the same tables

§ Contrast with the main paper for today…
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Peer Data Management:  Decentralized 
Mediation for Ad Hoc Extensibility

DB 
Projects

UPenn UW Stanford IIT Mumbai

Data integration:  1 mediated schema, m mappings to sources
Peer data management system (PDMS):
§ n mediated “peer schemas,” as few as (n - 1) mappings 

between them – evaluated transitively
§ m mappings to sources
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Peer-to-Peer at both Logical and 
Architectural Levels

A “logical” peer-to-peer model:
Every participant can contribute:
� Extensional data
� Mappings between schemas
� Computation (query answering) and caching
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Mapping Formalisms 
from Data Integration

GAV:  mediated relations as views 
over sources
§ Easy to rewrite queries:  unfold them 

using view definitions

LAV:  sources as views over 
mediated relations
§ More challenging to rewrite queries:  

answering queries using views (e.g., 
MiniCon [Pottinger & Levy 00])

§ More flexible in representing source 
properties

Med. Schema T1, …

…
MST1(X’) :- S1(X),…
MST2(Y’) :- S2(Y),…

Med. Schema T1, …

…
S1(X’) ⊆ MST1(X),…
S2(Y’) ⊆ MST1(Y),…

S1(X) S2(Y)

S1(X) S2(Y)
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Answering Queries in a PDMS:
Transitively Evaluating Mappings

Mappings in a PDMS are a generalization of LAV, GAV 
techniques (GLAV):
§ Query over schema 1 = Query over schema 2 (where possible)

But there are lots of limitations on when this is decidable!
§ Requires unfolding: p(X) :- v1(X’, Y), v2(Y, Z), …
§ Requires AQUV:  p(X, Y), p(Y, Z) :- v(X’, Y’)

Start with schema being queried
§ Look up mappings to neighbors; expand
§ Continue iteratively until queries only over sources

We use a rule-goal “tree” to expand the mappings
§ Extend some of the ideas of MiniCon to avoid unnecessary 

expansions
§ Challenges to avoid redundancy – see paper for optimizations
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Example of Query Answering

Mappings between peers’ schemas:
r0: SameProject(a1,a2,p) :- ProjMember(a1,p), ProjMember(a2,p)
r1: CoAuthor(a1,a2) ⊆ Author(a1,w), Author(a2,w)

Mappings to data sources:
r2: S1(a,p,s) ⊆ ProjMember(a,p), Sched(f,s,end)
r3: CoAuthor(f1,f2) :- S2(f1,f2)

Query: Q(a1, a2) :- SameProject(a1,a2,p), Author(a1,w), Author(a2,w)

Sched
(f,s,e)

SameProject
(a1,a2,p)

ProjMember
(a1,p)

CoAuthor
(a1,a2)

Author
(a,w)

S1 S2

r0

r2

r3

r1
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Example Rule-Goal Tree Expansion
q: Q(a1, a2) :- SameProject(a1,a2,p), Author(a1,w), Author(a2,w)

q



14

Example Rule-Goal Tree Expansion
q: Q(a1, a2) :- SameProject(a1,a2,p), Author(a1,w), Author(a2,w)

SameProject(a1,a2,p) Author(a1,w) Author(a2,w)

q
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Example Rule-Goal Tree Expansion
q: Q(a1, a2) :- SameProject(a1,a2,p), Author(a1,w), Author(a2,w)

SameProject(a1,a2,p) Author(a1,w) Author(a2,w)

q

Mappings between peers’ schemas:
r0: SameProject(a1,a2,p) :- ProjMember(a1,p), ProjMember(a2,p)
r1: CoAuthor(a1,a2) ⊆ Author(a1,w), Author(a2,w)



16

Example Rule-Goal Tree Expansion
q: Q(a1, a2) :- SameProject(a1,a2,p), Author(a1,w), Author(a2,w)

SameProject(a1,a2,p) Author(a1,w) Author(a2,w)

q

r0 r1 r1

Mappings between peers’ schemas:
r0: SameProject(a1,a2,p) :- ProjMember(a1,p), ProjMember(a2,p)
r1: CoAuthor(a1,a2) ⊆ Author(a1,w), Author(a2,w)
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Example Rule-Goal Tree Expansion
q: Q(a1, a2) :- SameProject(a1,a2,p), Author(a1,w), Author(a2,w)

SameProject(a1,a2,p) Author(a1,w) Author(a2,w)

ProjMember(a1,p) ProjMember(a2,p) CoAuthor(a1,a2) CoAuthor(a2,a1)

q

r0 r1 r1

Mappings to data sources:
r2: S1(a,p,s) ⊆ ProjMember(a,p), Sched(a,s,end)
r3: CoAuthor(f1,f2) = S2(f1,f2)
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Example Rule-Goal Tree Expansion
q: Q(a1, a2) :- SameProject(a1,a2,p), Author(a1,w), Author(a2,w)

SameProject(a1,a2,p) Author(a1,w) Author(a2,w)

ProjMember(a1,p) ProjMember(a2,p) CoAuthor(a1,a2) CoAuthor(a2,a1)

q

r0 r1 r1

Mappings to data sources:
r2: S1(a,p,s) ⊆ ProjMember(a,p), Sched(a,s,end)
r3: CoAuthor(f1,f2) = S2(f1,f2)

r3 r3r2 r2
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Example Rule-Goal Tree Expansion
q: Q(a1, a2) :- SameProject(a1,a2,p), Author(a1,w), Author(a2,w)

SameProject(a1,a2,p) Author(a1,w) Author(a2,w)

ProjMember(a1,p) ProjMember(a2,p) CoAuthor(a1,a2) CoAuthor(a2,a1)

S1(a1,p,_) S1(a2,p,_) S2(a1,a2) S2(a2,a1)

q

r0 r1 r1

r3 r3r2 r2
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Example Rule-Goal Tree Expansion
q: Q(a1, a2) :- SameProject(a1,a2,p), Author(a1,w), Author(a2,w)

SameProject(a1,a2,p) Author(a1,w) Author(a2,w)

ProjMember(a1,p) ProjMember(a2,p) CoAuthor(a1,a2) CoAuthor(a2,a1)

S1(a1,p,_) S1(a2,p,_) S2(a1,a2) S2(a2,a1)

q

r0 r1 r1

r3 r3r2 r2

Q’(a1,a2) :- S1(a1,p,_), S1(a2,p,_), S2(a1,a2) 
∪ S1(a1,p,_), S1(a2,p,_), S2(a2,a1)
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Algorithm Scales Well to 
Large-Diameter PDMSs
§ Randomly generated peers, definitions (simulated infrastructure)
§ Relatively unoptimized Java implementation
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Schema Mediation: The Core of 
Peer Data Management

Sharing data across schemas is a key problem 
today
§ PDMS approach is much more flexible and extensible
§ Composition of mappings leverages others’ work

One step towards a larger vision:
§ Much of the power of the “semantic web” but scalable
� We’ll talk about the semantic web in a few weeks

§ Scalable, extensible P2P architecture for data 
sharing
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Further Ongoing Work

Applying to real bioinformatics applications!
Caching and replication
§ Intelligent placement of data
§ Updating caches [Mork et al]

Studying mappings:
§ Information loss and approximate mappings
§ Composition [Madhavan & Halevy]
§ Automatically learning mappings [Doan et al]

Reconciling updates across mappings


