Building Adaptivity into Execution

Zachary G. lves
University of Pennsylvania

April 16, 2003

Data Integration Systems

= First generation: mostly concerned with query
translation, data translation
= TSIMMIS, Information Manifold, SIMS, many others
= Automatically inferring wrappers for sources
= Mostly prototypes for integrating web data
= Assumption: this was the “hard part” and the

rest of the system would leverage
conventional/distributed DB technology

It’s Not as Easy as It Sounds...

= How do we optimize a query here?

= Conventional DBs: we control all, and we have stats on the
tables

= Distributed DBs: we control almost all, and we have stats on the
tables
= What if someone else controls all of the data?
= Statistics — how do you get them? Will they be up to date?
= Costs — what about network congestion?
= Reliability — we want maximal answers if a source fails
= ... And what if some of the sources might be large?

= Also: want to give answers as early as possible

The Tukwila System

=« “Child of the Information Manifold” @t

= Sources are described as queries over mediated schema
(“local as view”)

e Successor to the Bucket Algorithm: MiniCon [Pottinger & Levy]
(we’ll discuss later)

= Support for input bindings, etc.

= But focused on building scalable system:

= Normal DB techniques for optimization and execution don’t
work well — how do we fix that?

= Between 1999-2002:
e Added support for XML in a novel way (we’ll discuss this 3/3)
e Tried to remedy the shortcomings of our initial approach

Image: Nat'| Wildlife Federation

4

Novelties of Tukwila (in this Paper)

= Premise:

= We start with little knowledge about data, sources,
performance

= Bad idea to stick with one plan or one scheduling!

= Solution: Build a “smarter” and more flexible runtime
system!

1. Rule-based core: optimizer can specify behaviors when
events occur

2. Integrate mid-query re-optimization at the core of execution
and optimization

3. Resurrect the pipelined hash join (invented for parallel DBs),
but invent ways to handle memory constraints

Tukwila Architecture

e B

Reformulator

logical
— plan

A

source mappings
!
——

v

—»

Optimizer

(Re-)
Optimizer

MemAlloc-

Fragmenter

———------— data -----—
\J
Execution
Engine
exec Event
_“plan > Handler
<« Query
results Operators

03

—_———
Temp Store

---answer-p-

Event-Based Control

= Event-condition-action rules allow optimizer to define
changes in behavior at middle of pipeline

= EXxecution events ...
Timeout, n tuples read, operator opens, out of memory, execution
step completes, ...
= ... trigger the rules
= Test conditions
Memory free, tuples read, operator state, ...
= EXecute actions
Re-optimize, reduce memory, activate operator, ...

Interleaving Planning and

Execution

Generalization of
[Kabra/DeWitt SIGMOD98]
Integrated Into system

Check at key points
Plan in pipelined
fragments

Rules at boundaries test
conditions

Return simple statistics
to optimizer

e Optimizer does minimal re-

computation of costs

I

|

|

Materialize :

[T 7 & Test |—

|__ B Hash :
|r ______ Join :
| |
| TT] T3\
: <N

WHEN end_of_fragment(())/
IF card(result) > 100,000
THEN re-optimize

Experimental Results: Interleaving
Planning and Execution

300

m Fully pipeline
m Naive materialize

m Materialize and re-optimize
200 -

=

o

o
|

(sec)

Time
o

5 6 7

1 2 3

Que?'y ID
Four-table joins from scaled TPC-D

Adaptive Operators: Double
Pipelined Join

Hybrid Hash Join Pipelined Hash Join
X No output until hash built v Outputs data immediately
X Asymmetric (build vs. v Symmetric (why is this
probe) (why is this bad?) good?)
X More memory

10

Double Pipelined and Hash Join—

Tuples Output vs. Time - LAN

800

400

Time (sec)

— Hybrid - (Supplier pq Lineitem) pq Order
— Hybrid - (Lineitemps Supplier)p Order
— Double Pipelined

o

Tuples Output (1000's) 201

11

Double Pipelined Join -
Wide Areal/lnternet

200
—o--Hybrid - Both Slow
—a— Hybrid - Outer Slow
—— Hybrid - Inner Slow)
—— Double Pipelined - Both Slow/Inner Slow Lotk .
—— Double Pipelined - Outer Slow oo T
@'ef m—m—a— e
100 -
—
&)
)
N
N’
)
=
|_
0 Hhacd

1 Tuples Output (1000's) 21

12

Problem: Memory Usage

= \WWe need two hash tables in memory...

= Recall how a hybrid hash join works:
= Load build relation until we run out of memory

= Repeat until we've read the build relation:
» Select a few buckets, page them out
 Read some more data

» | oad data from the probe relation:
* If it hashes to a bucket that’s in memory, probe & join
» Else page to tempfile

» After probe relation consumed, join tempfile with swapped
buckets

13

Handling Overflow

Extend principles of hybrid hash algorithm:
* Incremental left flush — degrade into hybrid hash
e Pause pipelining left, flush some of its hash table
* Read remainder of right, pipeline left as in HHJ
» Abrupt pause, then steady output of tuples
= Symmetric flush — lose some “coverage”

* Flush same hash bucket in both tables
simultaneously, continue to fully pipeline

» Output production tapers off as more flushes
» Expensive, but get first tuples faster than otherwise!

14

Adaptive Operators: Collector

Utilize mirrors and
overlapping sources to
produce results quickly C

= Dynamically adjust to
source speed &

availability

= Scale to many sources /11 /1 /11
without exceeding net %
bandwidth

: : WHEN timeout(CustReviews)
" Policy expressed via DO activate(NYTimes),

rules activate(alt.nooks)

Brief Retrospective on this Paper

1. Rule-based core:

= Nicely unifies adaptive behaviors, supports custom
responses to events

= But hard to generate rules, except for basic ones
2. Integrated mid-query re-optimization
= ... Let’s defer this to last!

3. Pipelined hash join with overflow handling
= (Simultaneously resurrected by Urhan & Franklin)

= A success: everyone doing distributed querying
uses this technique now

16

Mid-Query Re-optimization in
a Data Integration Context

= Benefits:

= Can keep us from going too far down the wrong path
If we have huge intermediate results

= Drawbacks:

= How do we decide where to break the pipelines,
given that we don’t know how big anything is?

= May quickly find that we’re running a bad plan — no
way to change until we finish the 1st pipeline

= What about early initial answers?

= Can you think of some alternatives...?

17

