
Building Adaptivity into Execution

Zachary G. Ives
University of Pennsylvania

April 16, 2003

2

Data Integration Systems

§ First generation: mostly concerned with query
translation, data translation
§ TSIMMIS, Information Manifold, SIMS, many others
§ Automatically inferring wrappers for sources
§ Mostly prototypes for integrating web data

§ Assumption: this was the “hard part” and the
rest of the system would leverage
conventional/distributed DB technology

3

It’s Not as Easy as It Sounds…

§ How do we optimize a query here?
§ Conventional DBs: we control all, and we have stats on the

tables
§ Distributed DBs: we control almost all, and we have stats on the

tables

§ What if someone else controls all of the data?
§ Statistics – how do you get them? Will they be up to date?
§ Costs – what about network congestion?
§ Reliability – we want maximal answers if a source fails
§ … And what if some of the sources might be large?

§ Also: want to give answers as early as possible

4

The Tukwila System

§ “Child of the Information Manifold”
§ Sources are described as queries over mediated schema

(“local as view”)
� Successor to the Bucket Algorithm: MiniCon [Pottinger & Levy]

(we’ll discuss later)

§ Support for input bindings, etc.

§ But focused on building scalable system:
§ Normal DB techniques for optimization and execution don’t

work well – how do we fix that?
§ Between 1999-2002:
� Added support for XML in a novel way (we’ll discuss this 3/3)
� Tried to remedy the shortcomings of our initial approach

Image: Nat’l Wildlife Federation

5

Novelties of Tukwila (in this Paper)

§ Premise:
§ We start with little knowledge about data, sources,

performance
§ Bad idea to stick with one plan or one scheduling!

§ Solution: Build a “smarter” and more flexible runtime
system!

1. Rule-based core: optimizer can specify behaviors when
events occur

2. Integrate mid-query re-optimization at the core of execution
and optimization

3. Resurrect the pipelined hash join (invented for parallel DBs),
but invent ways to handle memory constraints

6

Tukwila Architecture

Optimizer

(Re-)
Optimizer

MemAlloc-
Fragmenter

Execution
Engine

Temp Store

Event
Handler

Query
Operators

Reformulator

Catalog

source mappings

query
logical
plan

exec
plan

answer

data

exec
results

7

Event-Based Control

§ Event-condition-action rules allow optimizer to define
changes in behavior at middle of pipeline

§ Execution events …
Timeout, n tuples read, operator opens, out of memory, execution

step completes, …

§ … trigger the rules
§ Test conditions

Memory free, tuples read, operator state, …
§ Execute actions

Re-optimize, reduce memory, activate operator, …

8

Interleaving Planning and
Execution

Generalization of
[Kabra/DeWitt SIGMOD98]
integrated into system
§ Check at key points
§ Plan in pipelined

fragments
§ Rules at boundaries test

conditions
§ Return simple statistics

to optimizer
� Optimizer does minimal re-

computation of costs

Fragment 1

Fragment 0

Hash
Join

East

Hash
Join

Materialize
& Test

FedExOrders

WHEN end_of_fragment(0)
IF card(result) > 100,000
THEN re-optimize

9

Experimental Results: Interleaving
Planning and Execution

Four-table joins from scaled TPC-D

0

100

200

300

1 2 3 4 5 6 7
Query ID

Ti
m

e
(s

ec
)

Fully pipeline
Naïve materialize
Materialize and re-optimize

10

Adaptive Operators: Double
Pipelined Join

Hybrid Hash Join
ÍNo output until hash built
ÍAsymmetric (build vs.

probe) (why is this bad?)

Pipelined Hash Join
üOutputs data immediately
üSymmetric (why is this

good?)
ÍMore memory

11

Double Pipelined and Hash Join—
Tuples Output vs. Time - LAN

0

400

800

1 201Tuples Output (1000's)

T
im

e
(s

ec
)

Hybrid - (Supplier Lineitem) Order
Hybrid - (Lineitem Supplier) Order
Double Pipelined

12

Double Pipelined Join -
Wide Area/Internet

0

100

200

1 21Tuples Output (1000's)

T
im

e
(s

ec
)

Hybrid - Both Slow
Hybrid - Outer Slow
Hybrid - Inner Slow
Double Pipelined - Both Slow/Inner Slow
Double Pipelined - Outer Slow

13

Problem: Memory Usage

§ We need two hash tables in memory…

§ Recall how a hybrid hash join works:
§ Load build relation until we run out of memory
§ Repeat until we’ve read the build relation:
� Select a few buckets, page them out
� Read some more data

§ Load data from the probe relation:
� If it hashes to a bucket that’s in memory, probe & join
� Else page to tempfile
� After probe relation consumed, join tempfile with swapped

buckets

14

Handling Overflow

Extend principles of hybrid hash algorithm:
§ Incremental left flush – degrade into hybrid hash
� Pause pipelining left, flush some of its hash table
� Read remainder of right, pipeline left as in HHJ
ØAbrupt pause, then steady output of tuples

§ Symmetric flush – lose some “coverage”
� Flush same hash bucket in both tables

simultaneously, continue to fully pipeline
ØOutput production tapers off as more flushes

ØExpensive, but get first tuples faster than otherwise!

15

Adaptive Operators: Collector

Utilize mirrors and
overlapping sources to
produce results quickly
§ Dynamically adjust to

source speed &
availability
§ Scale to many sources

without exceeding net
bandwidth
§ Policy expressed via

rules

C

Cust
Reviews

NY
Times

alt.books

WHEN timeout(CustReviews)
DO activate(NYTimes),

activate(alt.books)

16

Brief Retrospective on this Paper

1. Rule-based core:
§ Nicely unifies adaptive behaviors, supports custom

responses to events
§ But hard to generate rules, except for basic ones

2. Integrated mid-query re-optimization
§ … Let’s defer this to last!

3. Pipelined hash join with overflow handling
§ (Simultaneously resurrected by Urhan & Franklin)
§ A success: everyone doing distributed querying

uses this technique now

17

Mid-Query Re-optimization in
a Data Integration Context

§ Benefits:
§ Can keep us from going too far down the wrong path

if we have huge intermediate results
§ Drawbacks:
§ How do we decide where to break the pipelines,

given that we don’t know how big anything is?
§ May quickly find that we’re running a bad plan – no

way to change until we finish the 1st pipeline
§ What about early initial answers?

§ Can you think of some alternatives…?

