
Efficient Filtering of XML Documents
for Selective Dissemination of

Information
Mehmet Altinel and Micheal J. Franklin

CIS650 – Advanced Topics in Databases
Murat Cakir

Outline

Introduction to SDI systems
An XML Based SDI Structure
XFilter Implementation
Enhanced Filtering Algorithms
Performance Issues

Introduction
The development of the Internet and networking
technologies made it possible to access increasing volumes
of data in a convenient way.
As a consequence of these advances, Information
Dissemination applications are gaining popularity in
distributing data to the end users.
Increasing volume of data available in electronic format
forces the designers of ID systems to broadcast their data
in a selective manner.
Selective dissemination of information (SDI) applications
filter unnecessary data by considering user profiles.
E.g.: timely received/collected new data such as stock
quotes, traffic news, sports tickers and music

Introduction
Key challenge in SDI is to efficiently and quickly search the
huge set of user profiles to identify the relevant documents.
Traditional SDI systems:

Are based on simple keyword matching and typical
Information Retrieval techniques.
e.g. a subscriber profile containing the keyword “NBA” will
match all those news containing the keyword “NBA”
Subscriber might also receive irrelevant information such as
news with headline “Bill Gates love to watch NBA”
Effectiveness of profiles is more important than the
efficiency of filtering to produce quality results in this
context.
This limits scalability of the IR based systems.
Cannot exploit the structure of the document containing the
data

Introduction
Important observation: The roles of queries
and the data are reversed in building high-
performance, scalable SDI systems.
In a DBMS data items are indexed and stored
In a SDI system large numbers of queries are
stored , and the documents are matched
against them.
Thus, it is reasonable to index queries (user
profiles) in a SDI system.

Introduction – Use of XML in SDI
XML has emerged as a standard information
exchange mechanism on the Internet.
XML allows encoding of structural information
within documents.
This structure can be used to create more
accurate user profiles.
Matching profiles to documents will be an
additional overhead in this approach.
“XFilter” tries to exploit the structure of the XML
documents to perform more efficient and more
accurate filtering.

An XML-based SDI Architecture

Subscribers create
their profiles via a
GUI
These preferences
are treated as
standing queries
applied to all
incoming docs.
Profile model is
based on XPath
E.g.
/sports/nba//newsIncoming documents are XML-encoded.

Profiles are converted into a format that
can be efficiently stored and processed by
the Filter Engine. (XPath based)

XPath
XPath treats XML docs as a tree of nodes
XPath expressions are patterns that can be
matched to nodes in a XML tree.
Evaluation of a Xpath expression yields either
a node set, a boolean, a number or a string.
“/” parent-child operator
“//” ancestor-descendant operator
“*” wildcard: matches any element name

XPath as a Profile Language
“[…]” denote filter expressions
E.g. //product[price/msrp<300]/name
Selects name elements of the XML document
if the msrp of the product element is <300.
In XFilter , XPath is used to select entire
documents rather than parts of documents.
If the XPath exp. representing profile info
matches at least one element of a document,
then the document is passed to the user.

XFilter Architecture
Major components:
1. Event-base parser
for XML document
2. XPath parser for
user profiles
3. Filter engine,
matching between
profile and XML
documents
4. Dissemination
engine, for delivery
the filtered data

An Illustrative Example

<sports>
<nba>
<kings>…</kings>
</nba>
</sports>

Incoming_document.xml

Q1: /sports / nba //news
[Q1-1] [Q1-2] [Q1-3]

Q2: //nba/*/ news
[Q2-1] [Q2-2]

Q3: /stocks/quotes/MS
[Q3-1] [Q3-2] [Q3-3]

3 subscribers

sports

nba

news

stocks

quotes

MS

Q1-1

Q2-1
Q1-2

Q1-3 Q2-2

Q3-1

Q3-2

Q3-3

Candidate List
Wait List

Q1-1

Q1-2

Filter Engine of XFilter
XFilter converts each XPath expression
(representing user profiles) to a Finite State
Machine for efficient evaluation.
A user query matches to the incoming XML
document WHEN the FSM of the XPath query
reaches its final state. In that case the
document is sent to the user.
A Query Index is built over the elements of
the XPath queries.

Path Nodes and FSMs
XPath parser decomposes XPath expressions into a set of
path nodes.
These nodes act as the states of corresponding FSM
A node in the Candidate List denotes the current state
The rest of the states are in corresponding Wait Lists.
e.g. Q1 = /sports/nba//news
Corresponding FSM:

sports nba news

Q1_1 Q2_2 Q3_3

Decomposing Into Path Nodes
Query ID
Position
Relative Position:

=0 for 1st node if 1st node is
not preceded by “//”

=-1 for any node preceded by
“//”

Else =1+ (no of “*” nodes
between itself and
predecessor node)

Level:
If 1st node and have absolute

distance from the root, then
level = 1+ distance from
root

If Rel. Pos. is –1, it is also –1,
else =0

Q1=/sports/nba//news
Q1 Q1 Q1
1 2 3
0 1 -1
1 0 -1

Q1-1 Q1-2 Q1-3

Q2 Q2 Q2
1 2 3
-1 2 1
-1 0 0

Q2-1 Q2-2 Q2-3

Q2=//nba/*/news/Kings

Query Index All element names
appearing on the user
queries are added to the
Query Index
Each unique element
name is linked to two
lists: Candidate List and
Wait List
The current state of each
query is placed in CL,
others are in WL
Events that cause state
transition are generated
by the doc XML parser.

sports

nba

news

stocks

quotes

MS

Q1-1

Q2-1
Q1-2

Q1-3 Q2-2

Q3-1

Q3-2

Q3-3

Candidate List
Wait List

How to Build an Index on Path Nodes

Event Based XML Parsing
Events are used to drive the profile matching process.
When a XML document arrives, it runs thru the SAX
XML Parser and checks the corresponding entry in the
Query Index when encountering:

A begin element tag
An end element tag
Data internal to an element

Start document
Start element: sports
Start element: news
Start element: nba
Start element: kings
Characters: “Kings:112 – Lakers:100”
End element: kings
End element: nba, … , End element: sports
End document

<?xml version=“1.0”>
<sports><news>
<nba>
<kings>
Kings:112 – Lakers:100
</kings>
</nba>
</news></sports>
</doc>

SAX APIInput XML

Event Based XML Parsing (cont)
Start_Element_Handler
(element_name, element level,
attribute name, attribute values)

{
Lookup the element name in the
Query Index and examine all nodes
in the CL and perform LEVEL CHECK
and ATTRIBUTE FILTER CHECK
}

Q1
1
0
1

Q1-1

Level Check and Attribute Check
Level check is made to ensure that the element appears in
the document matches the expected level in the user
query
Recall:

- If the level of a path node is –1 relative pos is –1 i.e. a “//” is
before this node unrestricted (can be dynamically updated)
- else the level of path node must = the level of the input element

The attribute filter check applies any simple predicates
that reference the attributes of the element

Level Check and Attribute Check
If both level check and attribute check
succeeds, we continue to process that query.
If that node is the final path node (final state)
of the query (e.g. Q1-3) then the document
matches the query; else the FSM is moved to
the next state.
State transition is done by copying the next
node of the query from WL to CL and update
the corresponding relative position and level

End Element Handler and
Element Characters Handler

When an end element (i.e. closing tags in
XML) is encountered in SAX parser, the path
node of that element is deleted from CL.
When element data is encountered in SAX
parser, it works like the start element handler
except it performs a content check rather
than an attribute check.

List Balancing
Recall:

The first path node of the XPath query is placed
on the CL and remaining path nodes are placed
on corresponding WLs. Problems?
Inefficient for many situations in an XML doc as
the 1st element usually have poor selectivity.
Some CL will be very long as compared to
others (e.g. if we are broadcasting news, the
length of CL of element “news” will be very long
since all subscribers will be interested in
element “news”)

List Balancing
For each query, we need to choose a path node to
place in the Candidate List, so that the length of each
list in the index will be roughly the same.
List balancing introduce a “pivot” node

When a new query is added to the index, the element node
of the query whose entry in the index has shortest CL is
chosen as pivot and placed it on the CL (instead of the 1st

node)
E.g. When a new subscriber add /sports/worldcup//news,
if the length of “worldcup” element is shortest compared
to “sports” and “news”, “worldcup” is the pivot and
added to CL. (the first node to be checked for this query)
The prefix “sports” will then be a precondition and use a
stack to hold it, the filter will stop is the precondition for
the node fails

List Balancing (cont)

Q3=/*/sports/news//worldcup

Q3 Q3 Q3
1 2 3
0 1 -1
1 0 -1

Q1-1 Q1-2 Q1-3

Q3 Q3
1 2
0 -1
1 -1

Q1-1 Q1-2

•Assume the element “news” has the shortest
CL among the 3 elements
•Tradeoff: Additional work needs to be done to
handle the prefix “sport”

Stack: “sport”

List Balancing (Cont)

Prefiltering
Path exps are processed a level at a time.
Unnecessary work may be done for queries
that fails at later elements during evaluation.
Prefiltering eliminates those queries
containing an element name that is not
present in the input document to avoid
unnecessary work done
Prefiltering is done before order and filter
checking (so every incoming document is
parsed twice)

Prefiltering (Cont)
A “key” element is chosen from the element
names of each query during initial parsing
The key is chosen like List Balancing whereas
a hash table(call occurrence table) containing
an entry of <element name, QueryID1, …,
QueryIDn> is constructed when a document
arrives
The queries referenced by the table are
checked to see if all of the element names
exist in the document, only the successful
queries would go further

Prefiltering Example
Assume the selected key for each query is in blue
Q1: /sports/nba//news/scores
Q2: /sports/NFL//news
Q3: /sports/nba/Kings//news
Q4: /sports//Kings/ranking

<sports>
<nba>

<Kings>
<news>Stojakovic…</news>

</Kings>
<Lakers>

<news>Kings beat Lakers</news>
</Lakers>

</nba>
</sports>

Sports1.xml

Q3,Q4Kings

news

Lakers

Q1nba

sports

Occurrence Table

Q3
All elements in
Queries exists in
The document?

Element names occurring in
the incoming document

Proceed with
Basic or List
Balance Alg.

Performance Evaluation
Evaluate the performance by varying:
Number of user profiles
Depth of subscriber queries and incoming XML
documents
Probability of wildcards
Filter placement and selectivity
List Balance with Prefiltering has the best
performance

The End

