
Fall, 2003 CIS 550

Database and Information SystemsDatabase and Information SystemsDatabase and Information SystemsDatabase and Information Systems

MidtermMidtermMidtermMidterm

80 minutes, 80 pts; please look at both sides of the paperboth sides of the paperboth sides of the paperboth sides of the paper....
Question Question Question Question 5555 is extra is extra is extra is extra----credit and should be done last!credit and should be done last!credit and should be done last!credit and should be done last!

1. (10pts) Given the relations (where underlined attributes represent the
key):

CustomerCustomerCustomerCustomer(custid: integer, name: string)
BuysBuysBuysBuys(custid: integer, itemno: integer, rating: char(2))
ItemItemItemItem(itemno: integer, description: string, seller: string)

write a relational algebra expression to obtain the custids and names of
customers who buy the item with description “Memento movie” from seller
“Hollywood Video” .

πcustid,name(σdescription=“Memento movie” ∧ seller=“Hollywood Video”(Item) ⋈ Buys ⋈ Customer)

2. (30pts) Given the relations from Problem 1, write SQL queries to
compute the following:

a. (10pts) All item descriptions and sellers for items rated “A” by anyanyanyany
customer. Ensure there are no duplicate tuples in the output (hint:
this can be done several ways).

SELECT description, seller
FROM Item I
WHERE EXISTS (SELECT *
 FROM Buys B
 WHERE B.itemno = I.itemno AND rating = “A”)

b. (10pts) For each item, the descriptions, sellers, and the number of
CCCCustomerustomerustomerustomers who bought that item.

SELECT I.itemno, description, seller, COUNT(custid)
FROM Item I, Buys B
WHERE I.itemno = B.itemno
GROUP BY I.itemno, description, seller

c. (10pts) Give (in English, not SQL!) an example of the kind of query that
can be expressed in SQL but not with the relational algebra or relational
calculus.

Perhaps the simplest example we’ve seen is aggregation. Recursion is
another common example.

3. (20pts) Given the relation:

DataDataDataData(custid: integer, name: string, itemno: integer, count: integer,
rating: char(2), cost: real, description: string, seller: string)

and a minimal cover:

custid � name
itemno, seller � cost
itemno � description
itemno, custid � rating

a. (7pts) Is DataDataDataData in 3NF?

 No

b. (13pts) If not, decompose it into a set of relations that are in 3NF.

Recall that the 3NF algorithm starts with the minimal cover, which
is already provided for you.

(There was a typo in that the count field should not actually have
been in the relation. I will ignore it in this list; some of you
counted it as an additional key, which was fine.)

 Customer(custid, name)
 Cost(itemno, seller)
 Description(itemno, description)
 Rating(itemno, custid, rating

 CustomerSaleSeller(itemno, custid, seller) determines Data

4. (20pts) Given the XML fragment:

<books>
 <story key= “123”>
 <author>Aesop</author>
 <title>The Hare and the Tortoise</title>
 <crossref>Aesops-fables</crossref>
 </story>
 <book key=“Aesops-fables”>
 <editor>Bob McBob</editor>
 <title>Aesop’s Fables</title>
 <publisher>Fabu-lous Publishers</publisher>
 </book>
…
</books>

a. (10pts) Write an XPath to return the editor of every book.

/books/book/editor

b. (10pts) Write an XQuery to return a sequence of <book-story>

elements containing the following data:

- The <editor> and <title> element content of a book.
- Nested within, all stories that have a <crossref> element whose
 content matches the key of the book.

for $bk in doc(“current-file.xml”)/books/book,
 $t in $bk/title,
 $e in $bk/editor,
 $k in $bk/@key/text()
return <book-story>
 { $e }
 { $t }
 {
 for $st in doc(“current-
file.xml”)/books/story,
 $cref in $st/crossref/text()
 where $cref = $k
 return $st
 }
 </book-story>

5. (5 pts extra credit) You have seen both the XML and relational data

models thus far. It has been claimed that the relational model is truly
general – hence there is nothing that can be captured in XML that can’t
also be represented in relational data.

Suppose we have an XML document of the form:

<parts>
 <part key=“123” name=“WheelAssembly”>
 <part key=“124” name=“Wheel”>
 <part key=“125” name=“Bearing”></part>
 <part key=“126” name=“Disc”></part>
 </part>
 <part key=“127” name=“Tire”></part>
 <part key=“128” name=“AirStem”></part>
 </part>
</parts>

This is a so-called recursive XML schema. Such a schema can be easily
encoded in a single relation; show the relational schema and how it would
encode the above XML data.

R(key: integer, name: string, parent: integer)

Key Name Parent
123 WheelAssembly (NULL)
124 Wheel 123
125 Bearing 124
126 Disc 124
127 Tire 123
128 AirStem 127

