Fall, 2004 CIS 550

Database and Information Systems

Midterm Solutions

The exam is 80 minutes long. There are 100 points total, plus 10 points extra credit. Please
look at both sides of the paper. The last problem is extra credit and should be attempted
last.

Problem 1 [30 points]: Consider the following relational schema representing a database
of email messages with a keyword index:

Email(eid:integer, from:string, to:string, date:string, subject:string, body:string)
Occurrence(kid:integer, eid:integer, keyword:string, position:integer)

For each of the following queries, translate the query to (i) SQL, (ii) the relational algebra, if
it can be expressed that way, and (iii) the domain relational calculus, if it can be expressed
that way.

1. Find all documents older than 2004-12-01. (Assume that dates can be compared using
lexicographic string comparison.)

Answer:

(i) SELECT =
FROM Email
WHERE date < ’2004-12-017;

(i) odate<-2004-12-01 (Email)

(iii) {(e, f,t,d,s,b) | (e, f,t,d,s,b) € Email A d < ‘2004 — 12 — 01"}

2. Find all keywords occurring within 10 positions of “Oracle” in the same document.

Answer:

(i) SELECT ol.keyword
FROM Occurrence ol, Occurrence o2
WHERE o02.keyword = ’Oracle’ AND ol.eid = o02.eid AND
ol.position - o2.position >= -10 AND ol.position - o2.position <= 10;

(11) Tkeyword (U|p1 —p2|<10 (pposition>—>p1 (Occurrence) N
Teid, position (Ukeyword:‘Oracle’ (ppositiom—mz (Occurrence)))))

(iii) {(w1) | (3k1, ko, €, p1, p2)({k1, €, w1, p1) € Occurrence/(ksy, e, ‘Oracle’, po) € Occurrence/
Ip1 — p2| < 10)}

3. Find the word most commonly occurring with “Oracle”.

Answer:

(i) SELECT ol.keyword
FROM Occurrence ol, Occurrence o2
WHERE ol.eid IN (
SELECT DISTINCT o02.eid
FROM Occurrence o2
WHERE o2.keyword = ’0Oracle’
)
GROUP BY o1l.keyword
HAVING COUNT(ol.keyword) >= ALL (
SELECT COUNT (03.keyword)
FROM Occurrence o3 WHERE o03.eid IN (
SELECT DISTINCT o4.eid
FROM Occurrence o4
WHERE o4.keyword = ’0Oracle’
)
GROUP BY o03.keyword
);

(ii) Can’t be expressed

(iii) Can’t be expressed

Problem 2 [30 points]: Suppose we would like to extend the schema from the previous
question to represent the following situation:

An email message has a unique identifier, a from field, a to field, a date field, a subject
field, and a body field.

A user has a unique identifier, a name field, and an email address field.

Each email message corresponds to exactly one user.

A keyword occurrence has an identifier, a keyword and a position.

Additionally, every occurrence is either in: the from field; the to field; the subject field;
or the body field.

Each occurrence corresponds to exactly one message.

1. Draw an ER-diagram satisfying these requirements. Specify any covering or overlap
constraints.

Answer:

occurrence

/

message from to subject body

user

from AND to AND subject AND body COVER occurrence

2. Write down the corresponding relational schema, normalized to 3NF.

Answer:

Email(eid:integer, from:string, to:string, date:string, subject:string, body:string)
User(uid:integer, name:string, email:string)

Occurrence(kid:integer, keyword:string, position:integer)
Owns(uid:integer,mid:integer)

Appears(kid:integer,mid:integer)

From/(kid:integer)

To(kid:integer)

Subj(kid:integer)

Body (kid:integer)

The only FDs are the key dependencies indicated by underlining. The schema is
already in 3NF.

Problem 3 [10 points|: Answer briefly the following question:

What is the difference between a key and a functional dependency?

Answer:

A functional dependency is a rule that says some attributes in a relation determine some
other attributes in the relation. In the special case where all attributes in the relation
are determined, we call the determining attributes a key. Formally, given a relation R on
attributes U, and a set of functional dependencies I, we say that a set X C U is a superkey
for Riff X — U € F7, the closure set of F. If, in addition, X is minimal (i.e. there is no
Y C X st. Y — U), then we call X a key.

Problem 4 [30 points]: Consider the following fragment of the XML document guide . xml
representing an online city guide:

<cityguide>
<city key="phila">
<name> Philadelphia </name>
<country> USA </name>
<lang> en </lang>
</city>

<restaurant>
<name> Jim’s Steaks </name>
<number> 400 </number>
<street> South St </street>
<cuisine> American </cuisine>
<rating> 5 </rating>
<description> A memorable cheese steak experience. </description>
<city> phila </city>
</restaurant>

</cityguide>
Translate the following queries to XQuery, nesting the results inside an <answer> tag:

1. Find the names of all restaurants serving American cuisine.

Answer:

<answer> {

for $r in document("guide.xml")/cityguide/restaurant
where $r/cuisine = "American"

return $r/name

} </answer>

2. Find the number of restaurants on South St.

Answer:

<answer> {

let $c := fn:count(document("guide.xml")/cityguide/restaurant [/street/text()
= "South St"])

return $c

} </answer>

3. Find the names of all restaurants in the USA with a rating of at least 5.

Answer:

<answer> {

for $r in document("guide.xml")/cityguide/restaurant,

$c in document("guide.xml")/cityguide/city

where $r/rating >= 5 and $r/city = $c/@key and $r/country = "USA"
return $r/name

} </answer>

Problem 5 [10 extra credit points]: Consider the subset of XQuery containing simple
FLWOR expressions, but no aggregate functions or user-defined functions.

1. Propose a simple logical programming language for this subset of XQuery, analogous
to the domain relational calculus. Hint: Observe that an XQuery FLWOR block is
very similar to a relational select-project-join block, except:

(a) Variables are bound based on path expressions (which may require new primi-
tives),

(b) Query block output should be a collection of trees with bound variables within
tags, rather than a collection of tuples.

Answer:

The variables in our language are bound to trees or sets of trees. We allow XPath
expressions as primitives in the language, which we interpret as functions from trees
to sets of trees, in the usual way. We also take as a primitive the document function.
For simplicity, we ignore order. A query result is a set of trees. The head of the
expression in our language is a template corresponding to the XQuery return clause,
composed of a variable or list of variables, possibly nested inside XML tags. For
example, return <answer > $t </answer > would map to { <answer > $t </answer >
| ...}. The body of the expression contains quantifiers and conditions corresponding
to the quantifiers and conditions in the XQuery for, let, where clauses. For example,
for $p in document(“db-inproc.xml")/dblp/inproceedings translates to {... | (Ip)(p €
document(“db — inproc.xml”) /dblp/inproceedings)}.

2. Hlustrate your language by translating the following query to it:

for $p in document(‘dblp-inproc.xml’)/dblp/inproceedings,
$a in $p/author

let $t := $p/title

where $a = ‘Serge Abiteboul’

return $t;

Answer:
{t] (3p,a,t) (p e document(‘dblp — inproc.xml’)/dblp/inproceedings
A a € p/author
At =p/title
A a = ‘Serge Abiteboul’) }

