
Fall, 2007 CIS 550

Database and Information Systems

Midterm

The exam is 80 minutes long. There are 100 points total.

Problem 1 [60 points]: Suppose we are building a Web crawler to index pages. We need
to keep track of the following attributes:

R(docID,docURL,docTitle,docDate,linkedDocID,linkText,wordID,wordText)

where each document has an (integer) ID, URL, title, and date; documents link to other
documents with a particular text label on their link; and documents contain words (each of
which has a word ID) and text (which is potentially different for each word ID).

You are given the following FDs:

docID → docURL, docT itle, docDate
docID, linkedDocID → linkText
wordID → wordText
wordID, wordText → wordID
docID, docDate → docT itle

1. (7pts) Specify the (or a) minimal cover for the functional dependencies.

Answer:
docID → docURL
docID → docT itle
docID → docDate
docID, linkedDocID → linkText
wordID → wordText
docID, docDate → docT itle

2. (7pts) Is the FD docID,wordID → docDate, wordText in the closure of the functional
dependencies?

Answer:
Yes.

1



3. (7pts) Provide a relational schema in 3NF for the domain, using the R(A, B, C) no-
tation, indicating keys with underlines under the attributes. Is the decomposition
lossless? Dependency preserving?

Answer:
docs(docID, docURL, docDate)
titles(docID, docDate, docT itle)
words(wordID, wordText)
links(docID, linkedDocID, linkText)
occurs(wordID, docID, linkedDocID). occurs(wordID, docID) also works although
it will not be the result of the normal 3NF Synthesis algorithm.
The result is lossless and dependency preserving.

4. (8pts) Show an ER diagram for your relational schema. Indicate any participation
constraints that make sense.

5. (7pts) Write a relational calculus expression that re-joins all of your normalized rela-
tions to build the single original relation R. You may use either the tuple or domain
relational calculus.

{Q|∃d ∈ docs, t ∈ titles, w ∈ words, o ∈ occurs, l ∈ links ∧ d.docID = t.docID ∧
d.docDate = t.docDate ∧ o.docID = d.docID ∧ o.wordID = w.wordID ∧ d.docID =
l.docID ∧Q.docID = o.docID ∧Q.docURL = d.docURL ∧Q.docDate = d.docDate ∧
Q.docT itle = t.docT itle ∧ Q.wordID = o.wordID ∧ Q.wordText = w.wordText ∧
Q.linkedDocID = l.linkedDocID ∧Q.linkText = l.linkText}

6. (24 pts) Write each of the following queries in (i) SQL, (ii) the relational algebra, if it
can be expressed that way, and (iii) the tuple relational calculus, if it can be expressed
that way.

(a) (6pts) Find the documents in which the words “apartment” or “house” appear.

SQL:

SELECT DISTINCT O.docID

FROM words W, occurs O

WHERE W.wordID = O.wordID

AND W.wordText = ’apartment’

UNION

SELECT DISTINCT O.docID

FROM words W, occurs O

WHERE W.wordID = O.wordID

AND W.wordText = ’house’

Relational Algebra:

ΠdocID(occurs ./ (σ
wordText=“apartment”∨wordText=“house”words)).

2



Tuple Relational Calculus:

{Q | (∃W ∈ words, O ∈ occurs(W.wordID = O.wordID∧Q.docID = O.docID∧
(W.wordText = “apartment” ∨W.wordText = “house”)))}

(b) (6pts) Find the ID of the most-common word indexed in the database.

SELECT wordID

FROM occurs

GROUP BY wordID

HAVING COUNT(*) >= ALL (

SELECT count(*)

FROM occurs

GROUP BY wordID

)

It should be count(*) or count(docID). Many people wrote count(wordID) which
is meaningless when you group by wordID.

(c) (6pts) Find the titles of the oldest documents in the database.

SQL:

SELECT T.docTitle

FROM docs D, titles T

WHERE D.docID = T.docID

AND D.docDate <= ALL (

SELECT docID

FROM docs

)

Relational Algebra:

ΠdocT itle((ΠdocID(docs)−ΠdocID((ρdocID→odID,docDate→odDate((ΠdocID,docDate(docs))) ./odDate<docDate

docs)) ./ titles).

Tuple Relational Calculus:

{Q | ∃D1 ∈ docs, T ∈ titles((∀D2 ∈ docs(D2.docDate ≥ D1.docDate)) ∧
D1.docID = T.docID ∧Q.docT itle = T.docT itle)}

(d) (6pts) Find the document IDs of documents containing the second-most-common
word indexed in the database.

SELECT docID

FROM occurs

WHERE wordID NOT IN (

SELECT wordID

FROM occurs

GROUP BY wordID

3



HAVING COUNT(*) >= ALL (

SELECT count(*)

FROM occurs

GROUP BY wordID

)

)

GROUP BY wordID

HAVING COUNT(*) >= ALL (

SELECT count(*)

FROM occurs

GROUP BY wordID

WHERE wordID NOT IN (

SELECT wordID

FROM occurs

GROUP BY wordID

HAVING COUNT(*) >= ALL (

SELECT count(*)

FROM occurs

GROUP BY wordID

)

)

)

4



Problem 2 [20 points]: Given a relation T(A,B,C,D,E,F) and a set F of functional
dependencies, F = {BC → A, AC → DE,F → E}:

1. (6 pts) What are the candidate keys? Answer:
BCF

2. (7 pts) What attributes are not in the attribute closure of BC? Answer:
F

3. (7pts) Is T in 3NF? BCNF? 1NF (i.e., neither 3NF nor BCNF)? Answer:
1NF

5



Problem 3 [20 points]: Briefly answer the following questions:

1. (4 pts) Provide at least two arguments for why XML is a useful model in lieu of, or in
addition to, the relational model.

Answer:
XML can capture hierarchical data in a way that mirrors the way many people would
like to think of their data. It also provides a way of importing and exporting data —
part of a solution to interoperability.

2. (4 pts) What are two physical or access path properties that the relational database
exploit, which are not visible at the logical (data model) level?

Answer:
Some examples would be indices, sort order, mirroring on a RAID system, how densely
pages are packed with tuples.

3. (4 pts) Can one look at a database instance and determine a set of functional depen-
dencies? Why or why not?

Answer:
No: FDs should depend on any possible instance, not just the one given to us. A user
might modify some of the data, making some of the FDs we “inferred” by looking at
the data invalid.

4. (4 pts) Between dependency preservation and losslessness, which is more important
and why?

Answer:
Losslessness, as this ensures that the instance can be properly re-assembled without
losing data. Dependency preservation is useful for validating new user input — but
this is much less important than being able to keep the data that was given to us!

5. (4 pts) Why is there a difference between Third Normal Form and Boyce-Codd Normal
Form?

Answer:
Because the requirements of BCNF are at odds with dependency preservation in certain
cases where there exists an FD from a non-key attribute back to part of a compound
key. 3NF relaxes the definition of normalization to allow a relation to have this type
of FD.

6


