
Course Project Description and Overview

CIS 550 — Fall 2007

September 4, 2007

1 Overview

In this course, we will have covered not only how databases are useful in managing structured
information, but also how they can be used to facilitate information retrieval (search), and
how database techniques can be useful in integrating data.

In the commercial/open-source space of Web sites and Web applications, special-purpose
information integration is often performed using mash-ups. (The term derives from music
mash-ups, which sample from others’ recordings.)

A Web mash-up is typically built over XML-based Web services provided by sites such as
Google, Amazon, etc., and it assembles content in an interesting application-specific way. A
humorous example of this is the New York City Smell Map, http://www.gawker.com/maps/smell/.

For the course project, you will use the skills you learned related to XML and XQuery,
relational database design, SQL, and Java programming in order to provide an apartment
search mashup for Philadelphia. This mashup will integrate maps from Google Maps with
apartment rental listings from Craigslist and the Philadelphia Inquirer. (For extra credit,
you will also integrate Flickr photos in the proximity of the listings.)

2 Requirements

Your mashup service will broadly include the following modules:

• User login, authentication, and management. You should be able to support
both unregistered users, who do not log into the system, and registered users. They
should also have the ability to change their password, add or remove bookmarks, and
so on.

• Apartment-search screen. Users will have the ability to query based on a combina-
tion of keywords and attribute constraints (price, location, number of bedrooms, pets
allowed). Keyword searches will be expanded to include synonyms. The results will
be projected onto a Google Map and should also have clickable “detailed” entries.

• Apartment detail view. When a user clicks on a listing, he or she should be taken to
a detailed view that shows the apartment listing, a street-level map of the apartment,
and a list of other query results that share the same zipcode. For extra credit, photos
from Flickr that are geocoded to be within the same neighborhood should be shown.

1



• Bookmarks. Queries can be saved as “bookmarks.” For unregistered users, book-
marks will expire with the session. With registered users, when they log in, they
should see a summary page of all listings related to their bookmarks (updated to the
current time). Users should be able to remove bookmarks or edit the queries that lie
underneath them.

• Listing fetcher / crawler. You will need to build a tool to go to www.phillyforrent.com
and extract listings from the HTML in order to populate a database of rental listings.
Likewise, you will need to build a tool to fetch the philadelphia.craigslist.org/apa/index.rss
RSS feed for apartment listings, and to try to extract the location, price, etc.

• Data warehouse / index. All listings will be archived in a database, with entries for
price, number of bedrooms, location, contact info, and so on. They will additionally
be indexed by keyword so users can search. We expect the keyword inverted index to
be stored in relational tables.

3 Example

A simple example that should give you some ideas is:
http://www.housingmaps.com/

However, your project will go beyond this in terms of capabilities, including user accounts
and saved bookmarks.

4 Implementation

We expect you to use Java Servlets running on the SEAS Apache Tomcat server for your
project. We also expect your listing fetcher to convert from HTML to XML before loading
the data into the data warehouse (which should be a database on the SEAS Oracle instance
used for your homework assignments).

We expect that the keyword search capabilities will be implemented using an inverted
index implemented over relational tables, and that your keyword search will be based on
SQL queries.

Additionally, you may use Eclipse and SAXON (installed in the computer labs) to do your
Java and XQuery development.

2


