
Spring, 2009 CIS 455 / 555

Internet and Web Systems

Assignment 1: Web and Application Servers

Milestone 1 due February 3, 2009
Milestone 2 due February 17, 2009

Background

We are all familiar with how one accesses a Web server via a browser. The big question is what is
going on under the covers of the Web server: how does it serve data, what is necessary in order to
provide the notion of sessions, how is it extended, and so on.

This assignment focuses on developing an application server, i.e., a Web (HTTP) server that
runs Java servlets, in two stages. In the first stage, you will implement a simple HTTP server for
static content (i.e., files like images, style sheets, and HTML pages).

In the second stage, you will expand this work to emulate a full-fledged application server that
runs servlets. Java servlets are a popular method for writing dynamic Web applications. They
provide a cleaner and much more powerful interface to the Web server and Web browser than
previous methods, such as CGI scripts.

If you have taken CIS 330 or 550, you should already be familiar with servlet programming;
if you have not, it should not be too difficult to catch up. A Java servlet is simply a Java class
that extends the class HttpServlet. It typically overrides the doGet and doPost methods from
that class to generate a web page in response to a request from a Web browser. An XML file,
web.xml, lets the servlet developer specify a mapping from URLs to class names; this is how the
server knows which class to invoke in response to an HTTP request. Further details about servlets,
including a tutorial and API reference, as well as sample servlets and a corresponding web.xml file,
are available on the course web site on the Assignments page. We have also given you code to parse
web.xml.

You can also find a more comprehensive description of servlets at:
http://www.novocode.com/doc/servlet-essentials/

and the servlet API 2.4 JavaDoc at:
http://tomcat.apache.org/tomcat-5.5-doc/servletapi/index.html

Developing and running your code

For development and testing, you should ssh to the machines mod1.seas.upenn.edu through
mod24.seas.upenn.edu1, from which you should have access to your normal (eniac) home di-
rectory. The mod machines are dedicated to distributed systems courses, and they all have ports
8080+ unblocked. One should be able to open a Web server at one of those ports, and to access
the Web server from any browser via:

http://mod1.seas.upenn.edu:8080
(or whatever your hostname may be, and what port your Web server uses). Note that, because
these machines are shared, you may need to change from port 8080 to 8081, etc. simply because
someone else is using the other port!

1Note that not all machines may be functional on any given day. If you can’t get to one of the machines, simply
use another.

1



While you can use any Java IDE you like (or none at all), we recommend that you develop using
Eclipse. In Eclipse, you will need to create a new project, copy in the supplied source files, and add
the provided file servlet-api.jar as an “External JAR” under Project properties → Java build
path → Libraries.

We will expect you to turn in your project by giving us access to a subdirectory in your home
directory on the mod servers (note that this is actually the same as your eniac directory). This code
should run directly from that directory, so we don’t need to do any special setup to make it execute.
You will need to coordinate with Mengmeng to ensure that she has sufficient access permissions to
view your homework files.

Milestone 1: due February 3

For the first milestone, your task is relatively simple. You will develop a Web server that can be
invoked from the command-line, taking the following parameters, in this order:

1. Port to listen for connections on. Port 80, the default HTTP port, is generally blocked by
the SEAS firewall (at least from outside Penn). You should probably use the conventional
secondary port, 8080, or perhaps 8081, etc.

2. Root directory of the static web pages. For example, if this is set to the directory /website,
a request for /mysite/index.html will return the file /website/mysite/index.html.

Your program will accept incoming GET requests from a Web browser, and it will make use
of a thread pool (as discussed in class) to invoke a worker thread to process each request. The
worker thread will parse the HTTP request, determine which file was requested (relative to the
root directory specified above) and return the file. If a directory was requested, the request should
return a listing of the files in the directory.

If a GET request is made that is not a valid UNIX path specification, you should return the
appropriate HTTP error. If no file is found, you should return the appropriate HTTP error. See
the HTTP Made Really Easy paper for more details.

MAJOR SECURITY CONCERN: you should make sure that users are not allowed to
request absolute paths or paths outside the root directory. We will validate, e.g., that we cannot
get hold of /etc/passwd!

HTTP protocol

Your application server must be fully HTTP 1.1 compliant, as described in the document HTTP
Made Really Easy given out in class; this means that it must be able to support HTTP 1.0 clients
as well as 1.1 clients. It must also support persistent connections, which is mentioned as being
optional for HTTP 1.1 servers.

Implementation techniques

For efficiency, your application server must be implemented using a thread pool, as discussed in
class. Specifically, there should be one thread that runs the interactive menu, one to listen for
incoming TCP requests and enqueue, and some number of threads that process the requests from
the queue and return the responses. We will examine your code to make sure it is free of race
conditions and the potential for deadlock, so code carefully! We expect you to write your own
thread pool code, not use one from the Java system library or an external library.

2



Milestone 2: due February 17

The second milestone will build upon the Web server from Milestone 1, with support for POST
and for invoking servlet code. To ease implementation, your application server will need to support
only one web application at a time. Therefore, you can simply add the class files for the web
application to the classpath when you invoke you application server from the command line, and
pass the location of the web.xml file as an argument. Furthermore, you need not implement all of
the methods in the various servlet classes; details as to what is required may be found below.

Invocation of the application server

You should add a third command-line argument: the location of the web.xml file for your web
application.

You may accept additional optional arguments after the initial three (such as number of worker
threads, for example), but the application should run with reasonable defaults if they are omitted.
In addition, the application server must present (using the console) some sort of interactive menu.
This must at least provide a way to shutdown the application server (after calling each servlet’s
destroy method, of course!), view the error log, and see the status of each thread in the pool. It
may provide other (e.g., extra-credit) features as you see fit.

Implementation techniques

Dynamic loading of classes in Java — which you will need to do since a servlet can have any arbitrary
name, as specified in web.xml — can be a bit tricky. Start by calling the method Class.forName,
with the string name of the class as an argument, to get a Class object representing the class you
want to instantiate (i.e. a specific servlet). Since your servlets do not define a constructor, you
can then call the method newInstance on that Class object, and typecast it to an instance of your
servlet. Now you can call methods on this instance.

Required application server features

Your application server must provide functional implementations of all of the non-deprecated meth-
ods in the interfaces HttpServletRequest, HttpServletResponse, ServletConfig, ServletContext,
and HttpSession of the Servlet interface version 2.4 (see the URL on the first page of this assign-
ment), with the following exceptions:

• HttpServlet.getUserPrincipal

• HttpServlet.isUserInRole

• HttpServletRequest.getRequestDispatcher

• HttpServletRequest.getInputStream

• HttpServletResponse.getOutputStream

• ServletContext.getNamedDispatcher

• ServletContext.getRequestDispatcher

This means that your application server will need to support cookies, sessions (using cookies —
you don’t need to provide a fall-back like path encoding if the client doesn’t support cookies), servlet

3



contexts, initialization parameters (from the web.xml file); in other words, all of the infrastructure
needed to write real servlets. It also means that you won’t need to do HTTP-based authentication,
or implement the ServletInputStream and ServletOutputStream classes.

We suggest you start by determining what you need to implement:

1. Print the JavaDocs for HttpServletRequest, HttpServletResponse, ServletConfig,
ServletContext, and HttpSession, from the URL given previously.

2. Create a skeleton class for each of the above, with methods that temporarily return null
for each call. Be sure that your HttpServletRequest class inherits from the provided
javax.servlet.HttpServletRequest (in the jar file), and so forth.

3. Print the sample web.xml from the Servlets/web/WEB-INF directory in the Servlets.tgz
file. There is very useful information in the comments, which will help you determine where
certain methods get their data.

You can find a simple parser for the web.xml file from the TestHarness code provided to you (see
the last page of this handout). For the ServletConfig and ServletContext, note the following:

• There is a single ServletContext per “Web application,” and a single ServletConfig per “servlet
page.” (For the base version of Milestone 2, you will only need to run one application at a
time.) Assuming a single application will likely simplify some of what you need to implement
in ServletContext (e.g., getServletNames).

• Most of the important ServletConfig info — servlet name, init parameter names, and init
parameter list — come directly from web.xml. Note that the init parameters for ServletConfig
come from init-param elements within the servlet element.

• The ServletContext init parameters come from the context-param elements within web.xml.

• The ServletContext attributes are essentially a hash map from name to value, and can be used,
e.g., to communicate between multiple instances of the same servlet. By default, these can
only be created programmatically by servlets themselves, unlike the initialization parameters,
which are set in web.xml.

• The real path of a file can be getting the canonical path of the path relative to the Web root.
It is straightforward to return a stream to such a resource, as well. The URL to a relative
path can similarly be generated relative to the Servlet’s URL.

• The ServletContext name is set to the display name specified in web.xml.

• You can simply return null for all deprecated methods.

Resources

We have provided you with a JAR file containing version 2.4 of the servlet API. You have also been
given the source code for a simple application server that accepts requests from the command line,
calls a servlet, and prints results back out. It will give you a starting point, though many of the
methods are just stubs, which you will need to implement.

We have also provided a suite of simple test servlets and an associated web.xml file and directory
of static content; it should put your application server through its paces. We will, however, test
your application server with additional servlets.

4



Extra credit

Multiple applications and dynamic loading (+25%)

The project described above loads one web application and installs it at the root context. Extend
it to dynamically load and unload other applications at different contexts. Add options to the main
menu of the server to list installed applications, install new applications, and remove an installed
applications. You’ll need to take special care to ensure that static variables do not get shared
between applications (i.e. the same class in two different applications can have different values for
the same static variable). Each application should have its own servlet context as well. (Since each
application may have its own classpath, be sure to add the capability to dynamically modify the
classpath, too.)

Performance testing (+10%)

The supplied servlet BusyServlet performs a computationally intestive task that should take a
number of seconds to perform on a modern computer. Experimentally determine the effect of
changing the thread pool size on performance of the application server when many requests for
BusyServlet come in at the same time. Comment on any trends you see, and try to explain them.
Suggest the ideal thread pool size and describe how you chose it. Include performance measures
like tables, graphs, etc.

5



TestHarness: A Primitive App Server

TestHarness gives you a simple command-line interface to your servlets. It reads your web.xml file
to find out about servlets. Thus, in order to test a servlet you need to add the appropriate entry
in web.xml first (as you would do in order to deploy it). You can then specify a series of requests
to servlets on the command line, which all get executed within a servlet session.

Suppose you have a servlet which you’ve given the name ‘demo’ in your web.xml file.
To run this servlet:

1. Put the TestHarness classes and the servlet code in the same eclipse project.

2. Make sure the file servlet-api.jar has been added to the project as an ‘external jar file.’

3. Create a new run profile (Run → Run...), choose TestHarness as the main class, and give the
command line arguments path/to/web.xml GET demo to have the testHarness program run
the demo servlet’s doGet method. The servlet output is printed to the screen as unprocessed
HTML. You can set the profile’s root directory if it makes writing the path to the web.xml
easier; it defaults to the root of the Eclipse project.

More interestingly, if you had a servlet called login, you could also run it with the arguments:
path/to/web.xml POST login?login=aaa&passwd=bbb
This will call the doPost method with the parameters login and passwd passed as if the servlet was
invoked through tomcat.

Finally, TestHarness also supports sequences of servlets while maintaining session information
that is passed between them. Suppose you had a servlet called listFeeds, which a used can run only
after logging in. You can simulate this with the harness by doing:
path/to/web.xml POST login?login=aaa&passwd=bbb GET listFeeds
In general, since your servlets would normally expect to be passed the session object when executed,
in order to test them with this harness you should simulate the steps that would be followed to get
from the login page to that servlet. If for example after login you go to formA and enter some values
and click a button to submit formA to servletA, and then you enter some more values in formB and
click a button and go to servletB, to test servletB (assuming you use post everywhere) you would do:
path/to/web.xml POST login?login=aaa&passwd=bbb POST servletA?...attributes-values
of formA... POST servletB?...attributes-values of formB...

6


