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Fig. 1. Our method allows MPM to handle world space material cu�ing, complex thin boundaries and natural two-way rigid body coupling.

In this paper, we introduce the Moving Least Squares Material Point Method
(MLS-MPM). MLS-MPM naturally leads to the formulation of A�ne Particle-
In-Cell (APIC) [Jiang et al. 2015] and Polynomial Particle-In-Cell [Fu et al.
2017] in a way that is consistent with a Galerkin-style weak form discretiza-
tion of the governing equations. Additionally, it enables a new stress di-
vergence discretization that e�ortlessly allows all MPM simulations to run
two times faster than before. We also develop a Compatible Particle-In-Cell
(CPIC) algorithm on top of MLS-MPM. Utilizing a colored distance �eld rep-
resentation and a novel compatibility condition for particles and grid nodes,
our framework enables the simulation of various new phenomena that are
not previously supported by MPM, including material cutting, dynamic open
boundaries, and two-way coupling with rigid bodies. MLS-MPM with CPIC
is easy to implement and friendly to performance optimization.
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1 INTRODUCTION
Since the pioneering work of Terzopoulos et al. [1988], simulat-
ing topologically changing materials has been a popular research
topic in graphics. Among various topics, fracture and cutting of
deformable objects are most intensively explored. The goal of break-
ing mesh connectivity has led to techniques such as local remesh-
ing [O’Brien et al. 2002; O’Brien and Hodgins 1999], the Virtual Node
Algorithm (VNA) [Hegemann et al. 2013; Molino et al. 2005; Wang
et al. 2014] and the eXtended Finite Element Method (XFEM) [Koschier
et al. 2017]. Maintaining remeshing quality e�ciently and robustly
can be however very complicated. While VNA and XFEM reduce
some di�culty, they impose additional challenges like �oating point
arithmetic in degenerate scenarios and self-collision on embedded
surfaces.

Compared to mesh-based approaches, meshless animation of solid
topology change was shown to be promising by Pauly et al. [2005].
More recently, the Material Point Method (MPM) [Sulsky et al. 1995]
emerged as an e�ective choice for various materials and gained
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popularity in VFX and in animations such as Disney’s Frozen [Stom-
akhin et al. 2013]. Utilizing both meshless Lagrangian particles
and a background Eulerian grid, MPM has become advantageous
in simulating multi-physics phenomena, as shown in [Stomakhin
et al. 2014] and [Tampubolon et al. 2017]. In contrast to FEM, MPM
automatically supports arbitrarily extreme topologically changing
dynamics including material split and merge. It also does not su�er
from boundary di�culties such as the tensile instability in Smoothed
Particle Hydrodynamics (SPH).

Despite its high e�cacy in many situations, traditional MPM fails
to model sharp separation of material points and cannot represent
discontinuous velocities. We show a 2D cutting example in Fig. 2.
Directly colliding with a thin level set (Fig. 2a) fails due to the
under-resolution of the collision object. Plastic softening (Fig. 2b),
which is common for modeling material failure, results in too many
debris particles. Finally, particle deletion (Fig. 2c) requires removing
a noticeable number of particles, which causes visual artifacts. The
main issue is that particle kernels in MPM are nonconforming to
boundaries. Each particle exchanges data with grid nodes in its entire
kernel support across the boundary which naturally causes velocity
�eld smoothing. This issue is more pronounced in MPM than FLIP-
based �uids [Zhu and Bridson 2005] due to the wider kernel support
of quadratic or cubic B-splines required for solids [Ste�en et al.
2008].

1.1 Contributions
For resolving these fundamental issues, we develop a Compatible
Particle-In-Cell (CPIC) algorithm that allows for material point dis-
continuity and in�nitely thin boundaries based on relative locations
between particles and grid nodes. Unlike node-visibility-based al-
gorithms that are common in element-free Galerkin (EFG) crack
simulations [Belytschko et al. 1994; Belytschko and Tabbara 1996]
or the transparency method used by Pauly et al. [2005], our formu-
lation does not require any expensive ray mesh intersection queries.
Additionally, CPIC facilitates two-way rigid-MPM coupling in a
straightforward fashion.

Our framework is based on a novel weak form discretization of
MPM. We show that the low dissipation A�ne PIC[Jiang et al. 2015,
2017b] and Polynomial PIC [Fu et al. 2017] methods can be derived
from a Galerkin-style Moving Least Squares (MLS) discretization of
the governing equations. We extend the idea and use MLS to further
replace the shape functions in the stress divergence term. This leads
to a new force computation scheme that does not require evaluating
the gradients of nodal shape functions. Compared to traditional
MPM, the resulting Moving Least Squares Material Point Method
(MLS-MPM) provides almost identical visual results and enables an
e�ortless 2× speed up with easier implementation.

2 RELATED WORK

2.1 Deformable Objects Fracture and Cu�ing
Fracture simulation was pioneered by Terzopoulos et al. [1988]. With
FEM, the most simple and e�cient approach for handling cutting
and fracture is to split surfaces along element boundaries [Müller
and Gross 2004]. A more accurate strategy splits individual ele-
ments, as pioneered by O’Brien et al. for brittle [1999] and ductile

fracture [2002] via locally remeshing tetrahedral elements according
to the embedded fracture surface. Their algorithm preserves the
orientation of fracture surfaces during the remeshing process. Bao
et al. [2007] presented a novel algorithm for e�cient fracture of
nearly rigid materials. Kaufmann et al. [2009] used Discontinuous
Galerkin Finite Element Method (DGFEM) for handling disconti-
nuities. Hegemann et al. [2013] minimizes the Gri�th’s energy
for ductile fracture of embedded level sets. Pauly et al. [2005] pre-
sented a meshless framework for elastoplastic fracture, where ex-
plicit crack surfaces are initiated with stress criteria on particles.
Chen et al. [2014] developed an e�cient adaptive remeshing method
based on gradient descent �ow, which automatically re�nes fracture
surfaces. Pfa� et al. [2014] also performed adaptive remeshing for
fracturing thin sheets. Hahn and Wojtan [2015; 2016] used Bound-
ary Element Method (BEM) and Lagrangian crackfronts to produce
highly detailed fracture surfaces.

For material cutting, the Virtual Node Algorithm (VNA) by Molino
et al. [2005] duplicates (instead of splitting) simulation elements
that intersect the cutting geometry. The original VNA only allows
one cut per face and does not handle degenerate cases. To over-
come these shortcomings, Sifakis et al. [2007] improved it to allow
arbitrarily generalized cutting surfaces at smaller scales than tetra-
hedron resolution. Wang et al. [2014] further developed a robust
adaptive VNA with robust �oating point arithmetic for degener-
ate intersections. Recently, Koschier et al. [2017] presented a new
remeshing-free cutting algorithm with XFEM, which was shown to
better preserve physical plausibility such as mass conservation and
correctly maintained sti�ness properties. We refer to the survey by
Wu et al.[2015] for more detailed previous work on cutting.

2.2 Fluid Boundaries and Rigid-Fluid Coupling
While there exists a lot of previous work on resolving solid �uid
interaction and complex boundaries, we will focus on reviewing
the treatment of thin shell rigid boundaries, which is most rele-
vant to our work. Carlson et al. [2004] presented the Rigid Fluid
method where rigid bodies are resolved on the Eulerian grid through
a rigidity projection. This approach works best when the rigid body
is not extremely thin. The �rst work considering thin solid/�uid
coupling is by Guendelman et al. [2005]. They used a robust ray
casting algorithm to augment the velocity interpolation and ker-
nel computation near surfaces. Later work further improved the
stability [Robinson-Mosher et al. 2008; Shinar et al. 2008] and accu-
racy [Robinson-Mosher et al. 2009] near boundaries. Chentanez et
al. [2006] combined �uid pressure projection and elasticity integra-
tion into simultaneous equations and enabled the usage of large time
steps. To obtain higher accuracy of boundary handling, Klingner et
al. [2006] proposed two-way rigid-�uid coupling based on conform-
ing unstructured meshes and remeshing. Feldman et al. [2005] also
adopted boundary conforming tetrahedral meshes for discretizing
the domain. However these approaches have not been investigated
for treating thin shell, dynamic, rigid bodies. Batty et al. [2007]
proposed a variational pressure projection (at sub-grid resolution)
to account for partial cell volume. Narain et al. [2010] adopted this
formulation for coupling frictional stress of granular media with
rigid bodies. Azevedo et al. [2016] extended the cut-cell approach
to enable one way coupling between hybrid Lagrangian/Eulerian
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Fig. 2. (a) Traditional level set collision objects cannot cut the elastic object even if they only cover one layer of grid nodes; (b) Plastic so�ening allows material
separation, but introduces a lot of visually unappealing damaged debris; (c) Particle deletion either does not work or causes too much volume loss; (d) Our
method successfully handles both progressive and instant cu�ing.

�uids with arbitrarily thin solid boundary obstacles. They also ad-
dressed the treatment of thin gaps between multiple objects. Zari�
et al. [2017] developed positive-de�nite cut-cell method for strong
coupling between elastic objects and incompressible �uids.

Particle-based methods are also popular in �uid simulation. Tra-
ditional Smoothed Particle Hydrodynamics (SPH) [Müller et al.
2003] provides very limited control over solid boundaries. Becker
et al. [2009] achieved two-way coupling of compressible SPH and
rigid bodies by sampling boundary particles on rigid bodies and
using a predictor-corrector scheme to compute forces on particles.
Akinci et al. [2012] also sampled particles on rigid boundaries, but
proposed a more versatile method that handles pressure and fric-
tion directly with hydrodynamic forces. Their approach works well
for thin shell rigid bodies. Koschier et al. [2017] recently proposed
density maps for SPH boundaries. Using precomputed density maps,
their approach eliminated the need for sampling rigid boundary
particles. Macklin et al. [2013] proposed position-based �uids un-
der the position-based dynamics (PBD) framework [Müller et al.
2007] where collisions against boundaries are formulated as non-
penetration constraints. The approach is further extended in [Mack-
lin et al. 2014] to allow solid-�uid coupling through density con-
straints.

Fig. 3. Cu�ing cheese with a wavy knife shows appealing peeling behavior.

Fig. 4. An elastic bunny is split by two intersecting thin plates.

2.3 Material Point Method
MPM [Sulsky et al. 1995] is a hybrid Lagrangian/ Eulerian discretiza-
tion scheme for solid mechanics. It is also recognized as a generaliza-
tion of the FLIP [Brackbill and Ruppel 1986] method, which is widely
used for liquid animation [Zhu and Bridson 2005]. More recently,
MPM has been applied to various computer graphics applications
including snow [Stomakhin et al. 2013], sand [Daviet and Bertails-
Descoubes 2016; Klár et al. 2016], foam [Ram et al. 2015; Yue et al.
2015], cloth [Jiang et al. 2017a], and solid-�uid mixture [Stomakhin
et al. 2014; Tampubolon et al. 2017]. Notably, Daviet et al. [2016]
presented a semi-implicit frictional boundary condition for coupling
MPM sand with rigid bodies. Due to the adoption of a single veloc-
ity �eld, it remains challenging to separate continuum materials in
MPM. Wretborn et al. [2017] animated MPM crack propagation by
gluing multiple grids together. It assumes pre-fracturing and purely
elastic materials. In engineering literature, MPM material disconti-
nuity is sometimes achieved by explicit front tracking [Nairn 2003],
which performs multiple ray intersection tests per particle across an
explicit mesh. Most other approaches achieve material separation
through strain softening or material damaging [Banerjee et al. 2012].
This is similar to element deletion in FEM, and causes mesh depen-
dent volume loss as well as undesirable debris. Gao et al. [2017]
developed spatially adaptive MPM. They resolved thin features by
locally re�ning the computational grid and particles. Moutsanidis
et al. [2018] modeled strong discontinuities in MPM using a sin-
gle velocity �eld. They locally modify interpolation functions near
discontinuity.
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2.4 Moving Least Squares
As a local �tting scheme, Moving Least Squares (MLS) has been
widely adopted in computer graphics, including for image deforma-
tion [Kanamori et al. 2011; Schaefer et al. 2006], surface reconstruc-
tion [Lancaster and Salkauskas 1981; Levin 2004], particle-based
simulation [Band et al. 2017; Müller et al. 2004], and data compres-
sion [Langlois et al. 2014]. We refer to Levin’s book [Levin 1998] for
a more detailed introduction to MLS.

MLS is most popular in the areas of deformation and surface
reconstruction. The pioneering work of Schaefer et al. [2006] de-
rived a closed-form expression for least-squares image deformation.
Kanamori et al. [2011] extended this idea to reduce distortion in
wide-angle images. Zhu et al. [2007] generalized it to 3D deforma-
tion problems. Sato et al. [2014] proposed a relevant method for
deforming �uid �ow �elds based on physical laws. As for surface
reconstruction, Levin et al. [2004] introduced a MLS projection
procedure for constructing smooth surfaces from potentially noisy
point cloud data. Fleishman et al. [2005] augmented this algorithm
with robust statistical tools, yielding piecewise smooth surfaces.

MLS has also been applied to particle-based simulations, espe-
cially for interpolating continuous functions on sampled particles.
Müller et al. [2004] provided a local MLS approximation to the
gradient of the displacement �eld for evaluating stress, strain and
other mechanical values. Pauly et al. [2005] extended their work to
modeling fracture surfaces. Martin et al. [2010] used Generalized
Moving Least Squares (GMLS) for discretizing the displacement
�eld in elastica. More recently, Band et al. [2017] embedded MLS
into SPH boundary handling. Their method allows particles to slip
along boundaries without any distortion. Plus, MLS is also powerful
in data compression. For example Langlois et al. [2014] presented
an eigenmode compression of modal sound based on non-linear
optimization of MLS.

MLS is a core idea behind meshless methods such as the element-
free Galerkin (EFG) method [Belytschko et al. 1994; Huerta et al.
2004] and the Reproducing Kernel Particle Method (RKPM) [Liu et al.
1995]. In §3 we review the main idea of MLS function reconstruction,
and derive APIC, PolyPIC and MLS-MPM from this point of view.

3 MOVING LEAST SQUARES MPM
In this section we derive MLS-MPM as a new spatial discretization
that uni�es APIC, PolyPIC and force computation consistently with
the weak form of the momentum equation. Interestingly, our deriva-
tion shows that MPM, although seemingly quite di�erent from
purely Lagrangian meshless methods, can be treated as a modi�ed
element-free Galerkin (EFG) method [Belytschko et al. 1994], where
the background Eulerian grid merely acts as a helper structure for
accelerating MLS interpolation from particle neighbor regions.

We use subscript i to denote grid node quantities and p to denote
particle quantities. We provide a list of important notations used in
this section in Table 1.

3.1 Discrete MLS in element-free Galerkin
We start with reviewing MLS in purely meshless methods such as
element-free Galerkin (EFG) [Belytschko et al. 1994]; see [Huerta
et al. 2004] for more details.

Variable Type Meaning
u any any continuous function approximated with MLS
xi vector the location of sample/node i
xp vector the location of particle p
z, x vector an arbitrary continuous location
P(x) vector the polynomial basis
c(x) vector all basis coe�cients
M(x) matrix the moment matrix
Mp matrix M(xp )
ξi (x) scalar weighting function centered at xi
Φi (x) scalar MLS shape function centered at xi
Ni (x) scalar B-spline basis function centered at xi
ρ (x, t ) vector the continuous density �eld
v(x) vector the continuous velocity �eld
mi scalar mass of node i
vi vector velocity of node i
vni vector velocity of node i at time n over domain Ωtn

v̂ni vector velocity of node i at time n + 1 over domain Ωtn

mp scalar mass of particle p
vp vector velocity of particle p
Cp matrix a�ne matrix of particle p
q vector test function in the weak form

qα ,β scalar derivative of qα wrt. xβ
σ matrix Cauchy stress
Fp matrix the deformation gradient on particle p
fi vector the force on grid node i

Table 1. Important notations used in the MLS-MPM derivation (§3).

Fig. 5. Two dimensional sand inflow is two-way coupled with a wheel. The
wheel is made of intersecting thin boundaries, allowing clean separation
for materials on di�erent sides and corners.

Suppose one is given a set of samples at some locations xi for
a continuous function ui = u (xi ), the idea behind MLS [Lancaster

Fig. 6. Our method enables two-way coupled simulation of splashing water
and rigid blocks with di�erent densities.
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and Salkauskas 1981] is that for a �xed x, one can approximate u
at any location z in the continuous space near x using a polyno-
mial least-squares �t of u from the samples in this local region
with u (z) = PT (z)c(x), where P(z) = [p0 (z),p1 (z), . . . ,pl (z)]T
forms an l dimensional subspace of polynomials of degreem, and
c(x) = [c0 (x), c1 (x), . . . , cl (x)]T are the basis coe�cients. In prac-
tice, to avoid numerical instabilities caused by large entries in the mo-
ment matrix (see M below), the polynomial basis can be re-centered
around a �xed point x by replacing PT (z) with PT (z − x) (see e.g.
[Liu et al. 1995]), leading to

u (z) = PT (z − x)c(x). (1)

In EFG, c(x) is evaluated using weighted least squares that min-
imizes the functional Jx (c) =

∑
i ∈Bx ξi (x)

(
PT (xi − x)c(x) − ui

)2
,

where ξi (x) is a localized weighting function centered at xi , and Bx
denotes the set of indices satisfying ξi (x) , 0. The solution is

c(x) = M−1 (x)b(x), (2)

where b(x) =
∑
i ∈Bx ξi (x)P(xi−x)ui andM(x) =

∑
i ∈Bx ξi (x)P(xi−

x)PT (xi − x). Note that when P only contains linear polynomials, a
more intuitive form of c(x) is given in §3.1.1.

Substituting Eq. 2 back into Eq. 1 gives

u (z) =
∑
i ∈Bx

ξi (x)PT (z − x)M−1 (x)P(xi − x)ui , (3)

which can also be expressed asu (z) =
∑
i ∈Bx Φi (z)ui , whereΦi (z) =

ξi (x)PT (z − x)M−1 (x)P(xi − x) can be de�ned as the nodal shape
function of xi in EFG. Interestingly this is exactly the shape function
used in the Reproducing Kernel Particle Method (RKPM) [Liu et al.
1995].

The polynomial subspace is usually composed of monomials up to
degreem. In 2D this corresponds to P(x) = [1]T for the constant ba-
sis, P(x) = [1,x ,y]T for linear basis, and P(x) = [1,x ,y,xy,x2,y2]
for quadratic basis. Since the constant function is always a basis,
we automatically have partition of unity, i.e.

∑
i Φi (x) = 1. With

a complete degree-m polynomial basis (l = m), MLS is m-order-
consistent† and reproduces all polynomials in P [Huerta et al. 2004].
Additionally, if ξi (x) is of class Ck , then Φi (x) is of Cmin(k,m) .

3.1.1 The case of a linear polynomial basis. In the simple case
of a complete linear polynomial basis (m = l = 1) as done by
Müller et al.[2004] for meshless solids, MLS is a 1st-order-consistent
interpolation scheme for scattered data and derivatives. With P(xi −
x) = [1, (xi − x)T ]T , Eq. 2 gives the reconstructed function value
and its gradient estimation at x:

[
û
∇û

]
= M−1 (x)QTΞ(x)



u1
...

uN



, (4)

where N is the total number of sample data points, Ξ(x) is the
diagonal weighting matrix with Ξii = ξi (x), and Q(x) = [P(x1 −
x), . . . , P(xN − x)]T , M(x) = QTΞQ.

† If the approximation reproduces exactly a basis of the polynomials of degree less than
or equal to m, then the approximation is said to have m-order consistency [Huerta
et al. 2004].

3.2 Equivalence of APIC/PolyPIC and MLS on velocities
MPM discretizes the governing equations using interpolation func-
tions on the grid as shape functions and particles as quadrature
points. Each particle (subscripted with p) has mass mp , position xp ,
velocity vp , deformation gradient Fp and other parameters related
to its material constitutive model. A grid (subscripted with i) acts
as a scratch pad and stores mass mi and velocity vi . In each time
step, particles transfer mass and velocity to the grid. Grid velocity
is then integrated over time and transferred back to particles.

APIC [Jiang et al. 2015] and PolyPIC [Fu et al. 2017] are equivalent
to applying MLS to velocity v(x) with B-splines as the weighting
function ξi (x). We give a detailed discussion in the supplementary
document [Hu et al. 2018]. Unlike EFG or RKPM where reconstruc-
tion and data sample locations are colocated, MPM uses Cartesian
lattice nodes for data samples without particle neighbor search.

3.3 MLS-MPM as a special EFG discretization
In this section we derive the MLS-MPM discretization from the con-
tinuous weak form of the governing equations. Implicit summation
convention on indices is assumed.

3.3.1 Governing equations. We start with the Eulerian governing
equations:

Dρ

Dt
+ ρ∇ · v = 0 (conservation of mass), (5)

ρ
Dv
Dt
= ∇ · σ + ρg (conservation of momentum), (6)

where ρ is mass density, v is velocity, g = (0,−9.8, 0)T is gravity,
σ is Cauchy stress, and Dϕ

Dt =
∂ϕ
∂t + v · ∇ϕ denotes the material

derivative of any function ϕ (x, t ).

3.3.2 Weak form. As in standard Finite Element Methods [Hughes
2012], the weak formulation of the governing PDE involves multi-
plying the di�erential equation by a test function, integrating by
parts, and applying boundary conditions.

Denoting the material domain at time tn with Ωtn , an updated
Lagrangian time discretization of the weak form of Eq. 6 following
[Jiang et al. 2016] leads to (we drop g here for simplicity)

1
∆t

∫
Ωtn

ρ (x, tn )
(
v̂n+1α (x) −vnα (x)

)
qα (x, tn )dx

=

∫
∂Ωtn

qα (x, tn )Tα (x, tn )ds −
∫
Ωtn

qα,β (x, t
n )σα β (x, t

n )dx,

(7)

where q(·, t ) : Ωtn → Rd is an arbitrary vector-valued test function
that vanishes at the Dirichlet boundary ∂ΩD , d = 2 or 3 is the
problem dimension, T (x, t ) is the traction �eld along the boundary.
Here we have used vn to denote the current Eulerian velocity at time
n. v̂n+1 denotes the updated velocity �eld after forces are applied.
Both vn and v̂n+1 are de�ned for x ∈ Ωtn as Ωtn → Rd . Notice
that we choose the notation v̂n+1 instead of vn+1, since vn+1 is
only de�ned on the domain of the next time step Ωtn+1 . The weak
form is also expressed using index notations, where vnα ,qα ,Tα are
α components of vn , q,T and qα,β =

∂qα
∂xβ

. Implicit summation on
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Fig. 7. We dissect an initially stretched elastic armadillo with two progressive cuts.

α , β = 1, . . . ,d is also assumed, where d is the problem dimension
(2 or 3).

Typically in FEM, both the unknown variable and the test function
can be approximated by functions in a �nite-dimensional function
space as linear combinations of some basis shape functions. The
main di�erence between traditional MPM and MLS-MPM is the
choice of this function space. Traditional MPM uses B-spline basis
functions while MLS-MPM uses MLS shape functions (Φi (x) in §3.1).
This choice is the key contribution of MLS-MPM and will be shown
to provide important advantages.

3.3.3 Traditional MPM discretization. MPM discretizes all spa-
tial terms using B-spline grid basis functions Ni (x) as (with im-
plicit summation): qα (x, tn ) = Ni (x)qniα , vnα (x) = Nj (x)vnjα , and
v̂n+1α (x, tn ) = Nj (x)v̂n+1jα . This further induces the lumped mass for-
mulationmn

i =
∑
p Ni (xnp )mp (see [Jiang et al. 2016] for a detailed

derivation).

3.3.4 MLS-MPM momentum term. In this section we show how
MLS-MPM discretizes the left hand side of the weak form Eq. 7. We
�rst divide the continuum domain with particle partitions Ωtn

p as

∫
Ωtn

ρ (x, tn )vnα (x)qα (x, t
n )dx

=
∑
p

∫
Ωtn
p

ρ (x, tn )vnα (x)qα (x, t
n )dx.

Fig. 8. An elastoplastic von-Mises Jello block is two-way coupled with rigid
blocks with di�erent density ratios.

In each integral over Ωtn
p since x is near xnp , we can approximate

the continuous equations with nodal data samples

vnα (x) =
∑
j
Φj (x)vnjα (8)

and

qα (x, tn ) =
∑
i
Φi (x)qniα , (9)

where we used the MLS shape function (§3.1)

Φi (x) = ξi (xnp )P
T (x − xnp )M

−1 (xnp )P(xi − x
n
p ). (10)

Therefore∑
p

∫
Ωtn
p

ρ (x, tn )vnα (x)qα (x, t
n )dx =

∑
p,i, j

qniαv
n
jαmi j , (11)

where mi j =
∫
Ωtn
p
ρ (x, tn )Φi (x)Φj (x)dx is the mass matrix. Mass

lumping further approximates it with a diagonal matrix by summing
each row. The diagonal entry is

mn
i =

∑
p

∫
Ωtn
p

ρ (x, tn )Φi (x)dx ≈
∑
p

mpΦi (xnp ) =
∑
p

mpNi (xnp ),

which is consistent with traditional MPM. See [Jiang et al. 2016] for
further derivations which are applicable to MLS-MPM as well.

The grid velocity is evolved from vni to v̂n+1i . Intuitively, we can
approximate time tn+1 velocities around time tn particle locations
xnp using MLS expression v̂n+1α (x) = PT (x − xnp )cv̂n+1α

(xnp ), where
the subscript in c denotes the reconstructed physical quantity. As ex-
plained in §3.2, evaluating cv̂n+1α

corresponds to the grid-to-particle
transfer in APIC/PolyPIC.

3.3.5 MLS-MPM stress term. The key contribution of MLS-MPM
is on the stress term, i.e., the right hand side of Eq. 7 without the
boundary traction term. Note that the boundary integral evaluates
to 0 assuming a zero Neumann boundary condition (no prescribed
traction at the boundary).

Choose the test function. Similarly to the momentum term, we can
express the stress integral through the summation over individual
particle domains:

−

∫
Ωtn

qα,β (x, t
n )σα β (x, t

n )dx

= −
∑
p

∫
Ωtn
p

qα,β (x, t
n )σα β (x, t

n )dx. (12)

Recall in Eq. 9, we have chosen to express the test function q(x, t )
from a �nite-dimensional function space (the discretized test space).
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This allows us to apply standard Finite Element procedures [Hughes
2012] to convert Eq. 12 into a system of equations by letting q be,
in turn, each of the basis functions in the test space. The resulting
system contains Nдd equations for all the degrees of freedom, where
Nд is the total number of grid nodes and d is the problem dimension.
For the degree of freedom corresponding to any grid node î ∈
{1, . . . ,Nд } and component α̂ ∈ {1, . . . ,d }, we can enforce such a
choice of q by setting

qniα = δi îδα α̂ =



1 if α = α̂ and i = î

0 otherwise

in Eq. 9. Combining this with the MLS shape function from Eq. 10
leads to

qα (x, tn ) = PT (x − xnp )M
−1 (xnp )ξî (x

n
p )P(xî − x

n
p )δα α̂ (13)

for any x ∈ Ωtn
p . Such test functions will be enumerated over all î

and α̂ to get the resulting force components fî α̂ associated with all
degrees of freedom on the grid.

Discretizing the force. To reach the discrete force, Eq. 12 requires
the derivative of q. Di�erentiating Eq. 13 gives

qα,β (x, t
n ) =

∂PT (x − xnp )

∂xβ
M−1 (xnp )ξî (x

n
p )P(xî − x

n
p )δα α̂ . (14)

To simplify the derivation, we adopt the linear polynomial space
PT (x−xnp ) = [1,x1 −xnp1,x2 −x

n
p2,x3 −x

n
p3]. Note that it is possible

to generalize this choice to a higher order polynomial space, and
we leave such an extension to future work. We also choose ξî = Nî
to be quadratic/cubic B-splines (so that M−1 is a constant). Under
these assumptions, Eq. 14 becomes

qα,β (x, t
n ) = M−1p Ni (xnp ) (xî β − xpβ )δα α̂ , (15)

where Mp =
1
4∆x

2 for quadratic Ni (x) and 1
3∆x

2 for cubic Ni (x).
Substituting it back into Eq. 12 reveals the α̂ component force

computation on grid node î:

fî α̂ = −
∑
p

∫
Ωtn
p

qα,β (x, t
n )σα β (x, t

n )dx

≈ −
∑
p

V n
p M−1p σp

n
α̂ βNî (x

n
p ) (x

n
îβ
− xnpβ ), (16)

where V n
p is the current volume of particle p at time n. Here the

approximation comes from adopting a one-point quadrature rule to
replace σ (x, tn ) in Ωtn

p with σn
p .

Note that in contrast to our result, traditional MPM uses fî α̂ =
−

∑
p V

n
p σp

n
α̂ βNî,β (x

n
p ) which requires explicitly di�erentiating the

interpolation function Nî (x).

3.4 Deformation gradient and force

Deformation gradient F = ∂Z
∂X is usually used to characterize �nite

deformation in elastoplasticity, where X denotes the material space,
andZ (X, t ) is the deformation map. In MPM, F is evolved on each
material particle with ∂

∂t F(X, t ) =
∂v
∂x (Z (X, t ), t )F(X, t ), where

Eulerian velocity gradient ∂v
∂x is discretized on the grid. Based on

the updated Lagrangian view, particle-wise Fp is updated as Fn+1p =

Fig. 9. We stir a bowl of dry sand with two thin plates. Materials from
opposite sides experience independent dynamics even with the use of a
single shared background grid.

(
I + ∆t ∂v̂

n+1

∂x (xnp )
)
Fnp , where traditional MPM uses ∂v̂n+1

∂x (xnp ) =∑
i v̂n+1i ∇Ni (xnp )

T . In the MLS view of v(x) we can di�erentiate
Eq. 8. For linear polynomials this leads to

∂v̂n+1

∂x
= Cn+1p and Fn+1p =

(
I + ∆tCn+1p

)
Fnp , (17)

where Cn+1p is exactly the a�ne velocity matrix from APIC. Ac-
cordingly if we assume hyperelasticity with total potential energy
E =

∑
p V

0
p Ψp (Fp ) where V 0

p is particle initial volume and Ψp is the
energy density function, it can be shown that

fi = −
∂E

∂xi
= −

∑
p

Ni (xnp )V
0
pM
−1
p
∂Ψ

∂F
(Fnp )F

n
p
T (xni − x

n
p ), (18)

which is consistent with the weak form result from Eq. 16 by noticing
σ = 1

det(F )
∂Ψ
∂F F

T and det(F)V 0
p = V

n
p .

In contrast to traditional MPM, the MLS-MPM deformation gra-
dient update and force computation directly re-use quantities from
APIC and do not require any evaluation of the interpolation function
gradient throughout the algorithm. This greatly simpli�es the imple-
mentation of MPM and substantially decreases the computational
cost (see §6 for more details).

3.5 Implicit Integration
As in [Stomakhin et al. 2013], implicit time stepping is naturally sup-
ported by MLS-MPM. Implicit MPM with Newton’s method [Gast
et al. 2015] requires computing the action of the energy Hessian
on an arbitrary grid increment δu. We show in the supplementary
document [Hu et al. 2018] that

−δ fi =
∑
p

V 0
p ApFnp

TM−1p Ni (xnp ) (x
n
i − x

n
p ), (19)

where Ap =
∂2Ψ
∂F∂F :

∑
j M
−1
p Nj (xnp )δuj (x

n
j − xnp )

T Fnp . In practice
it corresponds to a grid-to-particle gather step (for computing Ap )
and a particle-to-grid scatter step (for accumulating δ fi ).
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Fig. 10. Algorithm overview from time tn to tn+1 for MLS-MPM with CPIC.
Steps: (1) Rigid-rigid collision and rigid body articulation update rigid body
velocities (§5.1); (2) Splat rigid body to grid CDF (§5.2); (3) Reconstruct
particle CDF from grid CDF (§5.3); (4) CPIC particle-to-grid transfer and
rigid body impulses (§5.4); (5) CPIC grid-to-particle transfer (§5.5); (6) MPM
particle advection (§5.5); (7) Rigid body advection (§5.6).

4 FROM MPM TO MLS-MPM
Before introducing additional considerations for material discontinu-
ity, here we summarize the essential steps in MLS-MPM, since it can
be independently used for modifying any existing MPM framework.

(1) Particles to grid.Use APIC [Jiang et al. 2015] or PolyPIC [Fu
et al. 2017] to transfer mass and momentum from the parti-
cles to the grid.

(2) Update grid momentum. Use either symplectic Euler
(with force given by Eq. 18) or backward Euler (with force
di�erential given by Eq. 19) to update grid momentum.

(3) Grid to particles. Use APIC or PolyPIC to transfer veloci-
ties and a�ne/polynomial coe�cients from the grid to the
particles.

(4) Particle deformation gradient. Update particle deforma-
tion gradient using the MLS approximation to the velocity
gradient (Eq. 17).

(5) Update particle plasticity. Project particle deformation
gradient for plasticity (if there is any).

(6) Particle advection. Particle positions are updated with
their new velocities.

The only di�erences between MLS-MPM and traditional MPM are
the force expression in step (2) and the F update in step (4). In fact,
step (4) in MLS-MPM is simpler than MPM due to the reuse of
Cn+1p constructed in step (3). Step (2) in MLS-MPM is also easier to
implement than MPM, and allows an easy-to-achieve performance
gain as discussed in §6.

5 METHOD: MLS-MPM WITH CPIC
Here we detail the steps from time tn to tn+1 for MLS-MPM, en-
hanced with a Compatible Particle-In-Cell (CPIC) algorithm for
material discontinuity and rigid-body coupling (see Fig. 10 for a
diagram of the logic steps). Note that we use the term “rigid body”
to denote either a dynamic rigid body or a rigid collision bound-
ary with scripted kinematics motion. We use p,q for MPM particle
indices, r , s for rigid body indices, and i, j for grid node indices.

5.1 Rigid-rigid collision
This step includes rigid-rigid collision detection/resolution and rigid
body articulation. It is independent from our MPM algorithm, and
any external rigid body dynamics package can be used. We will skip
the details and denote the updated velocity and angular velocity of
rigid body r as v∗r ← vnr and ω∗r ← ωnr . Note that v∗r and ω∗r are still
intermediate rigid body velocities. They will be further updated to
vn+1r and ωn+1r at the end of time step n (see §5.6).

5.2 Splat grid-wise colored distance field (CDF)
Traditional signed distance functions (SDFs) are convenient for
performing inside/outside queries and normal estimations. As such,
SDFs are widely used as the implicit surface representation for
volumetric collision geometries in both FEM [Irving et al. 2004]
and MPM [Stomakhin et al. 2013]. Traditional SDF level sets such
as OpenVDB [Museth 2013] can be easily constructed from closed
surfaces. Lossaso et al. [2006] developed an algorithm for treating
the interface of multiple level sets.

To represent intersecting open boundaries, we extend discrete
SDFs to Colored Distance Fields (CDFs) with unsigned distanced (xi )
and color information. The color at each point encodes both the set
of nearby surfaces and which side xi locates at. As a result CDFs can
discretely represent multiple regions using a single Cartesian lattice.
Note that for sub-grid accuracy and more non-trivial topology such
as non-manifold bifurcation, it is a better choice to construct the
distance �eld using the algorithm by Xu and Barbič [2014], or use
the non-manifold level set proposed by Mitchell et al. [2015] which
stores SDF on a hexahedral mesh.

Fig. 11. Spla�ing the unsigned distance field from a rigid particle on a
segment to 9 grid nodes. The u axis is the normal to the plane defined by
the primitive. The value of ui,rη for each grid node thus represents the
signed point-plane distance between grid node i and the plane that rigid
particle rη lies on. Note that such a distance is only considered to be valid
(or existing) if the projection onto the plane actually lies inside the primitive
geometry.
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Fig. 12. (a) Three intersecting thin rigid boundaries; (b) Grid unsigned distance field; (c) Grid colors (relationship to boundaries); (d) Maintained particle color;
(e)(f) Particle distances to the boundary and the normals reconstructed with MLS.

5.2.1 Grid unsigned distance. In this section we describe our fast
algorithm for constructing a narrow-band unsigned distance �eld
on the grid from rigid body surfaces.

Rigid particles. For each oriented rigid surface r , we adaptively
sample auxiliary rigid particles on the mesh. We index these points
as r1, r2, . . . , rR , where R is the total number of rigid particles on
surface r . We also use E (rη ) to denote the primitive (segment in 2D
and triangle in 3D) index for rigid particle rη .

Valid distance. For computing a narrow-band distance �eld, we
allow each rigid particle rη to in�uence the closest grid node and the
surrounding 3× 3× 3 grid nodes in 3D. We can quickly project these
27 grid nodes onto the plane de�ned by E (rη ) and calculate the
signed point-plane distance ui,rη determined by grid node xi and
rigid particle rη . We illustrate this operation in Fig. 11. For e�ciency,
the distance is only considered valid and stored if the projection
point lies inside the primitive (i.e. when point-plane distance equals
point-primitive distance).

Distance rasterization. The minimum unsigned distance from xi
to the boundary is then

di = min
r,η
|ui,rη |.

During the process of computing all point-plane distances, we also
keep track of the closest rigid body to xi using index r∗ (xi ). This
index will be used in §5.4 for determining which rigid body we apply
impulses on from grid velocities. Since each rigid body contains
many rigid particles, we also track the rigid particle index rη∗ (xi )
that results in the smallest point-plane distance for node i and rigid
body r . This index will be used in §5.2.2 for uniquely deciding the
relative side relationship between them.

Trade-o�. While there will be missing values at certain corners
(which will be robustly handled as discussed in §5.3.2), this splat-
ting process from rigid particles to grid nodes provides a very fast
construction of a narrow band unsigned distance �eld with only
point-plane projection computations. This process requires much
less computation compared to the exact distance evaluation between
points and meshes.

Rigid particle seeding. Note that our algorithm is not sensitive to
the distribution of the rigid particles, as long as on each triangle
there is at least one particle, and the whole triangle is covered by
the kernel range of the particles. Speci�cally, we uniformly seed a

lattice of particles on each triangle so that the minimum particle
distance is smaller than grid spacing ∆x .

5.2.2 Grid color field. The color of each grid node contains its
a�nity (closeness) to each rigid surface and a tag labeling the side
it is on. A�nity Air for surface r and grid node i is

Air =



1, ∃η with valid ui,rη ,

0, otherwise.
(20)

Note that the validity of the signed distanceui,rη between grid node
i and rigid particle rη is de�ned in §5.2.1. The tag Tir is determined
by the signed distance of the closest rigid particle rη∗ (xi ) , i.e.,
Tir = sign(ui,rη∗ (xi ) ).

5.2.3 E�icient CDF storage. Ideally one would like to have one
CDF for each rigid body, but this is expensive in both computation
and storage. Therefore, we store only one unsigned distance (32-bit
�oat) and an extra 32-bit encoding of Air ,Tir (2 bits for each rigid
body). This allows us to compress the CDF into 64 bits per grid node.

5.3 Reconstruct particle-wise colored distance field
Once we have the grid CDF (di , Air and Tir ), they can be recon-
structed at other locations near the rigid surfaces. In our case we
look at MPM particle locations xp . In Fig. 12 we show the recon-
struction result for three intersecting rigid boundaries in 2D.

5.3.1 Particle color field. The color information can be recon-
structed relatively easily. Speci�cally, a particle’s a�nities to rigid
surfaces Apr are directly inherited from grid a�nity Air , where
grid node i is any node within particle p’s MPM support kernel. For
particle tag Tpr , we take a distance weighted average

Tpr = sign *
,

∑
i

Ni (xp )diTir +
-
, (21)

where incorporating di in the weight reduces the in�uence of grid
nodes that are near the rigid body whose tags can be ambiguous
due to �oating point error.

5.3.2 Particles distance and normal. As a particle approaches the
surface boundary, it is not guaranteed to have a complete set of
grid CDFs in its entire kernel support. Our fast distance splatting
algorithm (§5.2.1) also tends to miss a small number of nodes near
mesh corners. Therefore we cannot directly interpolate di to the
particles. Instead, we use the robust MLS reconstruction technique
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described in §3.1. According to the tag information on the particle
and its associated grid nodes, we locally convert the grid unsigned
distances to signed distances. Then we adopt Eq. 4 to reconstruct
particle distance dp and its gradient ∇dp , where particle normal np
is given by np = ∇dp/|∇dp |.

5.3.3 Particle color persistence and penalty force. Particle p’s
color Apr and Tpr associated with rigid surface r will persist after
being obtained, until all nodes inp’s kernel lose a�nities with r . This
is important since a particle may slightly penetrate a surface due
to numerical advection error, in which case we should not �ip the
tag. When this happens (see Fig. 13), we will then get a negative dp
with a correct normal np along which we could �x the penetration.
Speci�cally, we detect negative dp occurrences and keep track of a
weak penalty force on these particles as

fP,np = −khdpnp , (22)

where kh is the penalty sti�ness parameter.

5.3.4 Particle grid compatibility. The reconstructed color infor-
mation immediately allows us to partition all grid nodes within a
particle’s kernel. We use Si to denote the set of surfaces that has
non-zeroAir and Sp for that of particlep. A grid node i and a particle
p are compatible if and only if for all surfaces shared by the particle
and the grid node, all tags are the same (Tir = Tpr ,∀r ∈ Si ∩ Sp ).

5.4 CPIC particle-to-grid transfer
We use ip+ to denote nodes that are compatible with particle p,
and ip− for the incompatible nodes. Similarly, pi+ are the particles
that are compatible with grid node i , and pi− are the incompatible
particles.

We will assume the usage of APIC, although the extension to
PolyPIC is straightforward. Near rigid surfaces, particles only trans-
fer to compatible grid nodes:

mn
i =

∑
q∈{pi+ }

Ni (xnq )mq , (23)

(mv)ni =
∑

q∈{pi+ }

Ni (xnq )mq
(
vnq + C

n
q (xi − x

n
q )

)
. (24)

Velocity projection operator. For each rigid body, we can compute
its world-space velocity at position x as Vn

r (x) = vnr +ωnr × (x−xnr ).

Fig. 13. Here we show the motion of a particle slightly penetrating a bound-
ary due to numerical advection error. In this case, our method robustly
maintains a persistent particle color (Apr , Tpr ) and normal np . The recon-
structed distance becomes negative when penetration happens. This allows
us to apply a weak penalty force as explained in §5.3.3.

Fig. 14. A vertical Drucker-Prager plastic sand flow is two-way coupled
with four rigid paddles, revealing intricate dynamics and flow pa�erns.

We also de�ne a boundary projection operator for projecting an
input velocity v given normal n and boundary condition B (sticky,
slip, or separate):

Proj(v,n,B, µ ) =




~0, B is sticky,
vt , B is slip,
ζ v̂t , B is separate and v · n ≤ 0,
v, B is separate and v · n > 0,

(25)

where ζ = max(0, |vt | + µv · n), vt = v − (v · n)n, v̂t = vt
|vt |

. Here
µ ≥ 0 is the dynamic friction coe�cient.

Velocity projection and impulses on rigid bodies. Given a particle
p and rigid body r , the velocity contribution to the incompatible
grid node i is projected to Projr (v

n
p ,np , xi ) = Vn

r (xi ) + Proj(vnp −
Vn
r (xi ),np ,Br , µr ), where Br and µr are the boundary type and fric-

tion coe�cient of rigid body r . In CPIC, each incompatible grid node
j ∈ ip− results in an impulse mp (vnp − Projr ∗ (v

n
p ,np , xj ))Nj (xnp )

applied to the closest rigid body r∗ (xj ) (tracked in §5.2.1) at xj .

MLS-MPM grid momentum update. The grid momentum is up-
dated as (assuming symplectic Euler)

(mv̂)n+1i = (mv)ni + ∆t
(
mn
i g + f

n
i

)
, (26)

where g is gravity and fni is the MLS-MPM hyperelastic force given
by Eq. 18. Note that we use notation (mv̂)n+1i instead of (mv)n+1i
since the later refers to the grid momentum in time tn+1 transferred
from the particles. Implicit discretization of the hyperelastic force
can be achieved similarly to [Stomakhin et al. 2013]. Then we up-
date the velocities by dividing the momentum by mass: v̂n+1i =

(mv̂)n+1i /mn
i .

5.5 CPIC grid-to-particle transfer
Normally for level set-based collision objects, boundary conditions
are applied at grid nodes inside the level set. In our case for each
particle, the velocities on incompatible grid nodes are however non-
associated with the particle due to the enforcement of discontinuity.
We take a ghost velocity approach, where we assume for any node
j ∈ ip−, its velocity is simply vj = vnp through a constant extrapola-
tion from particle p. Thus the CPIC transfer from grid to particle
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which gathers contributions from both incompatible and compatible
nodes is given by

vn+1p =
∑
j ∈ip−

Nj (xnp )ṽp +
∑
j ∈ip+

Nj (xnp )v̂
n+1
j , (27)

Cn+1p = D−1p
*.
,

∑
j ∈ip−

Nj (xnp )ṽpz
n
jp
T
+

∑
j ∈ip+

Nj (xnp )v̂
n+1
j znjp

T +/
-
,

(28)

where znjp = xj − xnp . Here we include ghost velocities on incompat-
ible nodes to prevent potential singularity of Dp .

The collided particle velocity is given by ṽp = Projr (v
n
p ,n

n
p , xj )+

∆tcnp , where r denotes the closest rigid boundary to the particle and
c is non-zero when there is need to push the particle away from the
boundary. Particle advection is then given by xn+1p = xnp + ∆tv

n+1
p .

With MLS-MPM, particle deformation gradient is updated as Fn+1p =

(I + ∆tCn+1p )Fnp . Then we apply the penalty impulse ∆tfP,np (see
Eq. 22) to the particle and the reverse impulse to the rigid body for
conservation of momentum.

5.6 Rigid body advection
Dynamic rigid body velocities can be updated from the impulses
computed in §5.4: vn+1r ← v∗r and ωn+1r ← ω∗r , where v∗r and ω∗r are
evolved from vnr and ωnr as described in §5.1. Then the rigid bodies
are advected in a standard way.

6 A HIGH PERFORMANCE IMPLEMENTATION
E�ciency is a key concern in MPM since simulating a large number
of particles can be time-consuming. The transfer operation from
particle to grid (P2G) and that from grid to particle (G2P) are the
bottlenecks for traditional MPM, which usually takes more than 85%
of time based on our experience. In this section, we discuss our high-
performance implementation of these two operations. Particularly,
we decompose the performance gain into two parts: performance
engineering and algorithmic improvement.

Performance engineering. We adopt low-level performance opti-
mization techniques to accelerate the program with no algorith-
mic change. We use SPGrid [Setaluri et al. 2014] for background
grid storage, and adopt techniques including blocked transfer and

Fig. 15. We sweep a pile of sand with a kinematic thin shell object.

Timing (ms) Reference Ours (MPM) Ours∗ (MPM) Ours∗ (MLS-MPM)

P2G (1 thread) 4760 (1×) 5744 (0.83×) 2685 (1.77×) 1283 (3.71×)
P2G (4 threads) 1220 (1×) 1525 (0.80×) 688 (1.77×) 328 (3.72×)

G2P (1 thread) 8255 (1×) 7476 (1.10×) 1144 (7.21×) 589 (14.01×)
G2P (4 threads) 2070 (1×) 2011 (1.03×) 313 (6.61×) 163 (12.70×)

Table 2. Benchmarks of MPM transfer operations. Reliable reference im-
plementation is from [Tampubolon et al. 2017]. Superscript ∗ is with our
performance optimization. All performance data are collected on an PC
with an Intel Core i7-7700K CPU with four cores at 4.2GHz, and 4 × 8 GB
DDR4 memory at 2400 MHz. Intel Turbo Boost is disabled for stable CPU
frequency.

eight-colored P2G for lock-free multi-threading, as detailed in the
supplementary document [Hu et al. 2018].

Algorithmic improvement. MLS-MPM halves the number of FLOPs
needed for each particle. The uni�cation of a�ne velocity �eld
and deformation gradient eliminates the necessity for evaluating
∇Ni (xnp ), which speeds up both P2G and G2P. During P2G, MLS-
MPM fuses the scattering of the a�ne momentum and particle force
contribution into Ni (xnp )Qp (xi − xnp ), where

Qp = ∆tV 0
pM
−1
p
∂Ψ

∂F
(Fnp )F

n
p
T
+mpCp ,

so that only one matrix-vector multiplication is needed for the inner
loop (27 iterations for 3D and quadratic B-spline); and during G2P,
it avoids evaluating ∂v

∂x with ∇Ni (x).

6.1 Benchmark and discussion
We optimize the code for both traditional MPM and MLS-MPM.
We also examine the generated assembly code to ensure that the
compiler (gcc 5.4.1) correctly translates ideas mentioned above into
machine instructions. Note that MLS-MPM is also easier to optimize
thanks to its simplicity. To evaluate our implementation, we set up a
benchmark with 8×106 uniformly distributed particles, and measure
P2G and G2P time consumption for di�erent implementations. More
details on the benchmark is given in the supplementary document
[Hu et al. 2018]. Results are summarized in Table 2, showing we
achieve 3.71× and 14.01× higher performance for P2G and G2P
respectively compared to a reliable implementation of the MPM
solver in [Tampubolon et al. 2017] (with OpenVDB [Museth 2013]).

To further validate this signi�cant improvement, we measure
the �oating point unit (FPU) utilization using Intel VTune on our
optimized MLS-MPM and [Tampubolon et al. 2017]. Our P2G and
G2P implementations lead to 1.93× and 7.38× FPU utilization com-
pared with [Tampubolon et al. 2017]. Note that the performance
improvement of our optimized traditional MPM over [Tampubolon
et al. 2017] is proportional to the gain in FPU utilization.

Notably, the usage of MLS-MPM directly enhances MPM perfor-
mance by 2× in the case of explicit time integration, regardless of
whether low-level performance engineering is performed. Consid-
ering its ease of implementation, MLS-MPM can be easily imported
to any existing MPM solvers with APIC/PolyPIC transfers.
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Fig. 16. Our rigid-MPM coupling allows us to simulate terradynamics to predict legged robot’s locomotion on granular media. We 3D print the model from [Li
et al. 2013], equip it with motors, and demonstrate how our simulation results (top) match real world footage (bo�om) on di�erent motion pa�erns.

For implicit integration, e�cient Krylov-solver-based implicit
MPM usually adopts a matrix-free implementation to avoid recon-
structing a sparse matrix in every time step. Each Krylov multipli-
cation is essentially equivalent to a grid-to-particle-to-grid transfer
cycle for velocity di�erentials. Transfers therefore remain the bot-
tleneck. Similarly to the explicit force, our force di�erential also
eliminates the necessity of evaluating kernel gradients and allows
algorithmic performance gain. The gain is however less signi�cant,
because only in explicit time integration it bene�ts from unifying
a�ne momentum and particle force contribution.

We developed our system based on Taichi [Hu 2018]. Our high-
performance code will be open-sourced with the publication of this
work. Please refer to our supplementary code and document [Hu
et al. 2018] for more detailed discussion on implementation.

7 RESULTS
Our experiments show that MLS-MPM produces visually compara-
ble dynamics with traditional MPM. We also perform two standard
hyperelasticity tests: initially stretched oscillating cube and colliding
balls. The total energy evolution curves for MLS-MPM and MPM are
plotted in Fig. 17 showing almost identical numerical dissipation.

We present various examples to demonstrate the e�cacy of MLS-
MPM with CPIC. Timing, statistics and material parameters are
given in Table 3. We show world space cutting of elastic and elasto-
plastic objects including a progressively cut armadillo (Fig. 7), a
dissected bunny (Fig. 4), a banana (Fig. 1) and a goat cheese block
(Fig. 3). Similarly, our method handles thin boundary meshes, as
demonstrated with sweeping (Fig. 15) and stirring (Fig. 9) gran-
ular materials. Two-way coupling with rigid bodies is naturally
supported, and shown by dropping rigid blocks onto goo (Fig. 8),
testing buoyancy in water (Fig. 6) and hitting paddles with sand
(Fig. 14). A sand wheel (Fig. 5) and several water wheels (Fig. 1)
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Fig. 17. Total energy evolution curves for MPM and MLS-MPM in the oscil-
lating jello (le�) and colliding balls (right) test cases. Numerical dissipation
from the two methods are nearly identical.

simultaneously demonstrate the robust treatment of in�nitely thin
boundaries and two-way rigid body coupling.

Two-way coupled rigid-MPM simulation is also useful for robotics
and terradynamics. In Fig. 16 we simulate and validate locomotion
for robot navigating in granular media. We provide more details
about the 3D printed robot in the supplementary document [Hu
et al. 2018].

CPIC enables powerful new features for MPM at low cost since
only a narrow band near the rigid boundaries needs CPIC. In the
banana example (Fig. 1), each frame takes around 131.9s if the cutter
is removed, while it takes 140.5s when cutting is enabled, with only
6% CPIC overhead. (For fair comparison in this experiment, CPIC
and regular MPM transfers are optimized with equal e�orts.)

8 LIMITATIONS AND FUTURE WORK
While CPIC tackles in�nitely thin boundaries, it only resolves fea-
tures at a scale of grid ∆x . Thus we cannot handle sub-grid level
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Example sec/Frame ∆x ∆t Particle # Density Young’s Modulus Bulk Modulus Yield Stress Friction Angle

(Fig. 7) Cutting armadillo 107.0 5.0 × 10−3 5 × 10−6 1.3M 400 1 × 105 - - -
(Fig. 4) Bunny split 16.7 3.3 × 10−3 3 × 10−4 2.0M 400 1.5 × 103 - - -
(Fig. 1) Water wheel 120.3 2.5 × 10−3 5 × 10−5 1.4M 1000 - 1 × 104 - -
(Fig. 6) Buoyancy 122.9 3.1 × 10−3 1 × 10−4 5.3M 1000 - 1 × 104 - -
(Fig. 3) Cheese 227.1 3.3 × 10−3 2 × 10−5 1.8M 400 4 × 105 - 10 -
(Fig. 8) Goo blocks 105.3 4.2 × 10−3 1 × 10−4 1.8M 400 5 × 104 - 10 -
(Fig. 1) Banana 140.5 4.2 × 10−3 5 × 10−5 1.2M 400 4 × 105 - 5 -
(Fig. 5) Sand wheel (2D) 0.3 2.5 × 10−3 1 × 10−4 4.1K 1000 3.5 × 105 - - 45
(Fig. 15) Sand sweep 288.3 2.0 × 10−3 2 × 10−5 2.6M 400 3.5 × 105 - - 35
(Fig. 9) Sand stir 158.3 3.1 × 10−3 1 × 10−4 5.2M 400 3.5 × 105 - - 10
(Fig. 14) Sand paddles 20.0 2 × 10−3 1 × 10−4 1.0M 400 3.5 × 105 - - 30
(Fig. 16) Robot 112.4 3.3 × 10−3 1 × 10−4 3.4M 2000 1.8 × 106 - - 45
(Fig. 16) Robot (reverse) 116.8 3.3 × 10−3 1 × 10−4 3.4M 2000 1.8 × 106 - - 45

Table 3. Particle count and time per frame are provided as average values. All are measured on an Intel Core i7-7700K CPU with four cores at 4.2GHz. We use
the Poisson’s ratio ν = 0.3 for all the examples. Elastic materials are simulated with the fixed Corotated hyperelasticity [Stomakhin et al. 2013]. Weakly
compressible water is done as in [Tampubolon et al. 2017]. Plastic materials adopt St. Venant-Kirchho� elasticity with von Mises plasticity [Gao et al. 2017].
Granular materials use St. Venant-Kirchho� elasticity with Drucker-Prager plasticity [Klár et al. 2016].

boundary con�gurations such as sharp corners and narrow gaps
as done by Azevedo et al. [2016] with cut-cells. Our compatibility
condition between particles and grids nodes is a binary decision and
essentially grid-aligned. One possible future direction for increasing
the accuracy would be enforcing a smoother transition region based
on sub-grid features. Also, it is hard to reconstruct sharp cutting sur-
faces from particles. Incorporating embedded meshes as in [Wojtan
et al. 2009] would be worth investigating. Fully implicit rigid-MPM
strong coupling is not formulated in this work and we leave that as
future work.

MLS-MPM provides a new perspective for discretizing the gov-
erning equations that is consistent with other meshless approaches.
We believe it also builds a foundation for devising higher order
MPM schemes for enhanced accuracy and visual vividness. It is also
a promising direction to look into reducing the cell-crossing error
when multilinear kernels are used. While traditional MPM readily
goes unstable in this case, MLS-MPM provides possible solutions
due to its freedom in choosing the function space and weighting
functions. E�cient spatial adaptivity with [Gao et al. 2017] would be
another interesting topic for further study, since MLS-MPM does not
need a regular grid or intricate discretization strategies on hanging
nodes. Due to its robust nature, moving least squares would work
on any unstructured (or even non-manifold) grid. For example it
would be interesting to investigate applying MLS-MPM to power
diagrams [de Goes et al. 2015] for solids and granular media. Further-
more, coupling MPM particles and mesh-based solvers (e.g. cloth)
with CPIC would be a potential future direction, since the boundary
particles can represent arbitrary codimension-1 manifolds.
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