Ziyin Qu

4125 Chestnut Street, Philadelphia PA, 19104

EDUCATION	University of Pennsylvania , Philadelphia, PA Ph.D. in Computer and Information Science, 2019-Present
	University of Pennsylvania, Philadelphia, PAMaster of Science, Scientific Computing, 2016-2018GPA: 3.41
	Harbin Institute of Technology, Harbin, ChinaBachelor of Engineering, Mechanical Engineering, 2012-2016GPA: 84/100
PROJECTS	Conditional Variational Autoencoder FEM (C++, PyTorch): Spring, 2018 - A 2D Finite Element Method simulation with linear basis and quadratic basis is implemented, with the investigation of using Conditional Variational Autoencoder to generate quadratic FEM results based on linear FEM results.
	Monte Carlo Path Tracer(C++, Qt): Spring, 2018 - A Monte-Carlo path tracer for photorealistic renders. Feature includes multiple im- portance sampling, photon mapping, volumetric rendering and different BSDFs.
	Material Point Method Simulator(C++): Fall, 2017 - Material Point Method solver with PIC/FLIP and APIC transfer scheme for sim- ulating elastic objects, weakly compressible fluid, and snow. Analytic levelset and a Poisson Disk sampler are also implemented.
	Large Eddy Simulation of Film Cooling Flow(OpenFOAM): Spring, 2016 - Investigating film cooling flow using LES Smagorinsky model through PIMPLE algo- rithm, compared LES model with RANS, DNS simulation results using fully-developed channel flow.
COMPUTER SKILLS	Languages: C++, CUDA, Python, MATLAB, SQL, IAT _E X. Applications: Houdini, Git, Qt Creator, CMake
EXPERIENCE	Light Chaser Animation Internship June, 2019 - July, 2019 - Developing high-fidelity muscle simulation.
	AICFVE Research InternshipSep, 2018 - Present- Developed a new conservative and efficient fluid advection scheme.
	Teaching AssitantSpring, 2018CIS 563: Physically Based Animation- Course topics include mass-spring systems, Finite Element Methods, Position-basedDynamics, Position-based Fluids, Semi-lagrangian smoke and Material Point Method.
RESEARCH INTERESTS	Physically based simulation, numerical methods, deep learning, data driven modeling and simulation
PUBLICATION	Ziyin Qu* , Xinxin Zhang, Ming Gao, Chenfanfu Jiang, Baoquan Chen. <i>Efficient</i> and Conservative Fluids Using Bidirectional Mapping ACM Transactions on Graphics (SIGGRAPH), 2019
	Yuan ming Hu, Yu Fang, Ziheng Ge, ${\bf Ziyin}~{\bf Qu},$ Yixin Zhu, Andre Pradhana, Chenfanfu

Jiang. A Moving Least Squares Material Point Method with Displacement Discontinuity and Two-Way Rigid Body Coupling. ACM Transactions on Graphics (SIGGRAPH), 2018