Pediatric Dynamometer
for Pediatric Bone Health Studies

Armand O'Donnell
Advisor: Dr. Jay Zemel
Motivation for Pediatric Dynamometer

- Children's Hospital of Philadelphia:
- Certainly a correlation between strenuous exercise and bone density—but difficult to measure accurately with current technology.
- Surveys unreliable, treadmills not practical for studying children.
- Peak force important: need to monitor each step
- Ideally, need a customizable device.
- Modular: algorithm and sensors can be changed
Background

- **Sunfest 2004- Olivia Tsai began project**
 - Laid the groundwork for beginning the project:
 - Piezoelectric polyVinyliDene Fluoride (PVDF)
 - Mechanical testing of sensors

- **Senior Design 2004-2005**
 - Progress in software, using C for programming PIC
 - Analog properties of PVDF and amplifiers
 - Wear device around ankle, wireless link w/PC

- **Senior Design 2005-2006**
 - Reduced size of dynamometer
 - Small enough to fit inside of a child's shoe!
Goals for Sunfest 2006

Main priority:
Develop software for pediatric dynamometer

- With a functioning program inside of the dynamometer's microcontroller, testing can begin.
- Store data to serial flash memory, 16MBit
- Intelligent sampling: when a step begins and ends
- PC Communications (upload data when done)

Also: Improve hardware design

- Functional design: simple but versatile
- Low power consumption is vital (battery power)
- Make it smaller
Charge Amplifier/Analog Integrator

- Integration in hardware, smooth measurements of force on PVDF
- Continuous integration means no missed samples
- Output proportional to force:
- Simpler calculations

PVDF Sensor

Integral of PVDF
Analog-to-Digital Conversion

- Five usable ADC's
- 10-bit conversion
- 200 samples/sec

Self-calibrates with respect to reference voltage every 256 samples

ADC measurements to serial interface
8-bit, 100 samples/sec
Serial Communications

Serial Communications Port of PC:
- Not used much anymore because of slow data rate
- Advantage: no drivers needed, relatively simple protocol-good enough here

Serial Module:
- Used to interface microcontroller and personal computer
- Amplifies low-level signals from PIC to higher voltages required for Serial Communications Port.
- Cheap and quick to make.
2004-2005 Senior Design

Prototype lacks battery but 5-pin In-Circuit Serial Programming (ICSP) connector can be removed to save space.

2005-2006 Senior Design

2006 Sunfest
Results – Software (Sampling)

This system uses hysteresis: Threshold (1) is higher than (2)
Results – Software (Interface)

Data Organized in 10-byte Packets:
(In hexadecimal)

3A 8C 48 00 DC 00 15 7C 00 EB

Beginning of Step:
5:19.45 (timestamp)

Length (time) of Step:
220 * 5 ms = 1.1 second

Accumulated Force, divide by time to obtain average force

Peak Force
Range: 0-511
Acknowledgements

- **Dr. Jay Zemel**
 - My advisor for this project

- **Sid Deliwala** from the RCA lab
 - For his support in providing the necessary parts and advice

- **Dr. Haim Bau** and **Dr. Howard Hu**
 - For tolerating our obnoxiously loud milling machine in their laboratory—Thanks!

- **Dr. Stephen Judd**
 - For reviewing and debugging my code
Lessons Learned

Build accurate prototypes.
Update design frequently.

Some signal processing problems can be solved with a combination of analog and digital circuits.

Low-level devices like the serial flash memory are becoming increasingly standard and “user friendly”. Who would have thought?