
Generalised Algebraic
Data Types

Simon Peyton Jones
 Microsoft Research

Geoffrey Washburn
 University of Pennsylvania

Stephanie Weirich
 University of Pennsylvania

A typical evaluator

data Term = Lit Int
| Succ Term
| IsZero Term
| If Term Term Term

data Value = VInt Int | VBool Bool

eval :: Term -> Value
eval (Lit i) = VInt i
eval (Succ t) = case eval t of { VInt i -> VInt (i+1) }
eval (IsZero t) = case eval t of { VInt i -> VBool (i==0) }
eval (If b t1 t2) = case eval b of

VBool True -> eval t1
VBool False -> eval t2

Richer data types
What if you could define data types with richer return types?
Instead of this:

data Term where
Lit :: Int -> Term
Succ :: Term -> Term
IsZero :: Term -> Term
If :: Term -> Term -> Term -> Term

Now (If (Lit 3) ...) is ill-typed.

data Term a where
Lit :: Int -> Term Int
Succ :: Term Int -> Term Int
IsZero :: Term Int -> Term Bool
If :: Term Bool -> Term a -> Term a -> Term a

we want this:

Type evaluation

eval :: Term a -> a
eval (Lit i) = i
eval (Succ t) = 1 + eval t
eval (IsZero i) = eval i == 0
eval (If b e1 e2) = if eval b then eval e1 else eval e2

Now you can write a cool typed evaluator

 You can’t construct ill-typed terms
 Evaluator is easier to read and write
 Evaluator is more efficient too

What are GADTs?

data T a = T1 | T2 Bool | T3 a a

gives rise to constructors with types
T1 ::T a
T2 :: Bool -> T a
T3 :: a -> a -> T a

Return type is always (T a)

Normal Haskell or ML data types:

GADTs

Generalised Algebraic Data Types (GADTs):
 Single idea: allow arbitrary return type for

constructors, provided outermost type
constructor is still the type being defined

 Programmer gives types of constructors
directly

data Term a where
Lit :: Int -> Term Int
Succ :: Term Int -> Term Int
IsZero :: Term Int -> Term Bool
If :: Term Bool -> Term a -> Term a -> Term a

GADTs have many names

 These things have been around a while, but are
recently becoming popular in fp community

 Type theory (early 90’s)
 inductive families of datatypes

 Recent Language design
 Guarded recursive datatypes (Xi et al.)
 First-class phantom types (Hinze/Cheney)
 Equality-qualified types (Sheard et al.)
 Guarded algebraic datatypes (Simonet/Pottier)

GADts have many applications

 Language description and implementation
eval :: Term a -> a
step :: Config a -> Config a

Subject reduction proof embedded in code for step!

 Domain-specific embedded languages
data Mag u where

Pix :: Int -> Mag Pixel
Cm :: Float -> Mag Centimetre

circle :: Mag u -> Region u
union :: Region u -> Region u -> Region u
tranform :: (Mag u -> Mag v) -> Region u -> Region v

More examples

 Generic programming
data Rep a where

RInt :: Rep Int
RList :: Rep a -> Rep [a]
...

zip :: Rep a -> a -> [Bit]
zip RInt i = zipInt i
zip (RList r) [] = [0]
zip (RList r) (x:xs) = 1 : zip r x ++ zip (RList r) xs

 Dependent types:
cons :: a -> List l a -> List (Succ l) a
head :: List (Succ l) a -> a

Just a modest extension?

Yes....
 Construction is simple: constructors are just

ordinary polymorphic functions
 All the constructors are still declared in one

place
 Pattern matching is still strictly based on the

value of the constructor; the dynamic
semantics can be type-erasing

Just a modest extension?

 But: Type checking
Pattern matching
is another matter

eval :: Term a -> a
eval (Lit i) = i
eval (Succ t) = 1 + eval t
eval (IsZero i) = eval i == 0
eval (If b e1 e2) = if eval b then eval e1 else eval e2

In here, a=Int.
Notice rhs::Int

In here, a=Bool
Notice: rhs::Bool

data Term a where
Lit :: Int -> Term Int
Succ :: Term Int -> Term Int
IsZero :: Term Int -> Term Bool
If :: Term Bool -> Term a -> Term a -> Term a

 In a case alternative, we may know more about ‘a’;
we call this “type refinement”

 Result type is the anti-refinement of the type of
each alternative

Our goal

 Add GADTs to Haskell
 Application of existing ideas -- but some new

angles
 All existing Haskell programs still work
 Require some type annotations for pattern

matching on GADTs
 But specify precisely what such annotations

should be

Two steps

Explicitly-typed System F-style language with
GADTs

Implicitly-typed source language
(Simon’s talk!)

Explicitly typed
GADTs

Explicitly typed System F

Result type
of case

Explicitly
typed

binders

fff
Type

abstraction
and

application

Patterns bind type
variables

Impredicative

Patterns bind type variables
data Term a where

Lit :: Int -> Term Int
Succ :: Term Int -> Term Int
IsZero :: Term Int -> Term Bool
If :: Term Bool -> Term b -> Term b -> Term b
Pair :: Term b -> Term c -> Term (b,c)

eval :: Term a -> a
eval a (x::Term a)
 = case(a) x of

Lit (i::Int) -> i
Succ (t::Term Int) -> 1 + eval Int t
IsZero (i::Term Int) -> eval Int i == 0

Pair b c (t1::Term b) (t2::Term c) -> (eval b t1, eval c t2)

If c (x::Term Bool) (e1::Term c) (e2::Term c)
 -> if eval Bool b then eval c e1 else eval c e2

Typing rules

Just exactly what you would expect....

...even for case expressions

 Auxiliary judgement checks each alternative

Case alternatives
Instantiate
with fresh

type
variables

Unify
constructor

result type with
context type

Apply
unifier to

this
alternative

c is arity of C
t is arity of T

Observations:

 Constructing unifier and
applying it is equivalent
to typing RHS in the
presence of the refining
constraint

 Unification works fine
over polymorphic types

Partial unifiers

Definition. θ is a partial unifier of σ1 and σ2 iff
for any unifier φ of σ1 and σ2 there is a
substitution θ’ such that

 φ = θ’ ◦ θ
E.g. (Bool, b) = (a, [(d,e)])

[a=Bool]

[a=Bool,
b=[f]]

[a=Bool,
b=[(d,e)]]

[a=Bool,
b=[(Int,Int)]]

Unifiers

Most general unifier

Partial unifiers

Case alternatives

eval :: Term a -> a
eval a (x::Term a)
 = case(a) x of

Lit (i::Int) -> i
Succ (t::Term Int) -> 1 + eval Int t
IsZero (i::Term Int) -> eval Int i == 0

Pair b c (t1::Term b) (t2::Term c) -> (eval b t1, eval c t2)

If c (x::Term Bool) (e1::Term c) (e2::Term c)
-> if eval Bool b then eval c e1 else eval c e2

{a->Int}

{a->Bool}

{a->(b,c)}

{a->c} or {c->a}

A heffalump trap

\(x:a). case x of
True -> False
False -> True

 This should jolly well be rejected! (Or: forget Haskell
and treat all constructors as drawn from some
universal data type.)

 Conclusion: the outermost type constructor is special

τ
τ

Case alternatives

 Failure case needed for subject reduction

If unification fails,
ignore RHS
altogether

Nested patterns

Nested patterns

Extend substitution θ
and bindings Δ

Avoid heffalump trap

Sadly, we cannot require φ to
be of form T ξ, as we did

before

Thread
substitution
through sub-

patterns

Nested patterns

Three possible outcomes:
 Success, producing substitution.
 Failure (θ=⊥): this alternative cannot match

e.g. \(x::Term Int) -> case x of { IsZero a -> a; ... }
 Type error: the program is rejected

e.g. case 4 of { True -> 0; ... }

data Term a where
Lit :: Int -> Term Int
Succ :: Term Int -> Term Int
IsZero :: Term Int -> Term Bool

The source language

The ground rules

 Programmer-supplied type annotations are OK
 Whether or not a program is typeable will

depend on type annotations
 The language specification should nail down

exactly what type annotations are sufficient
(so that if Compiler A accepts the program,
then so will Compiler B)

 The language specification should not be a type
inference algorithm

Polymorphic recursion

data Tree a = MkTree a (Tree (Tree a))

collect :: Tree a -> [a]
collect (MkTree x t) = x : concatMap collect (collect t)

concatMap :: (a->[b]) -> [a] -> [b]

Polymorphic recursion

data Tree a = MkTree a (Tree (Tree a))

collect :: Tree a -> [a]
collect a (MkTree x t) = x : concatMap (collect a) (collect (Tree a) t)

concatMap :: (a->[b]) -> [a] -> [b]
:: [Tree a]

 Hard to infer types from un-annotated program
 Dead easy to do so with annotation
 Express by giving two type rules for letrec f=e:

 one for un-decorated decl: extend envt with (f::τ)
 one for annotated decl: extend envt with (f:σ)

Goal

 The typing rules should exclude too-lightly-
annotated programs, so that the remaining
programs are “easy” to infer

 Type annotations should propagate, at least in
“simple” ways

Here information propagates from the type
signature into the pattern and result types

eval :: Term a -> a
eval (Lit i) = i
eval (Succ t) = 1 + eval t
eval (IsZero i) = eval i == 0
eval (If b e1 e2) = if eval b then eval e1 else eval e2

Syntax

No compulsory types on
binders, or on case

Type annotations on terms

Internal types are stratified
into polytypes and monotypes.

All predicative

Source types are part of
syntax of programs

Syntax

Exciting new feature:
wobbly types

IDEA 1: Wobbly types

 Simple approach to type-check case expressions:
 form MGU as specified in rule
 apply to the environment and RHS
 type-check RHS

 Problem: in type inference, the types develop
gradually, by unification

\x. (foo x, case x of
Succ t -> 1
IsZero i -> 1 + True)

foo :: Term Int -> Bool

 Type inference guesses (x:a56), then (foo x)
forces a56=Term Int, so the IsZero case can’t
match

Wobbly types \x. (foo x, case x of
Succ t -> 1
IsZero i -> 1 + True)

 We do not want the order in which the type
inference algorithm traverses the tree to
affect what programs are typeable.

 MAIN IDEA: boxes indicate guess points

Box indicates a
prescient guess by
the type system

Wobbly types: intuition

 Wobbly types correspond precisely to
the places where a type inference
algorithm allocates a fresh meta
variable

 The type system models only the place in the
type where the guess is made, not the way in
which it is refined by unification

Effect of wobbly types

 Wobbly types do not affect “normal Damas-
Milner” type inference

 Wobbly types do not contribute to a type
refining substitution:

Effect of wobbly types

 Wobbly types are impervious to a type-refining
substitution

\(x::Term a). \y. case x of { ... }
y will get a boxed type, which will not be refined

IDEA 2: directionality flag δ

 We want the type annotation on eval to
propagate to the \x.

eval :: Term a -> a
eval = \x. case x of

Lit i -> i
Succ t-> 1 + eval t
...etc...

Directionality flags

In environment Γ, term t has type τ

In environment Γ and supplied
context τ, term t is well-typed

Guess No guess

Local Type
Inference
(Pierce/Turner)

Typechecking functions

Guess the
function type

(probably
from Γ)

Check the
argument type

So if f :: Term Int -> Int
then in the call (f e), we use checking mode for e

Higher rank types

 Directionality flags are used in a very similar
way to propagate type annotations for higher
rank types.

 Happy days! Re-use of existing technology!
 Shameless plug: “Practical type inference for

arbitrary rank types”, on my home page
http://research.microsoft.com/~simonpj

Bore 1: must “look through” wobbles

τ might not be an arrow type: it might wobbly!

Bore 2: guess meets check

 Guessing mode is easy: τ2 = τ’2
 Checking mode is trickier: τ2 might have

different boxes than τ’2
We want strip(τ2) = strip(τ’2)

Bore 2: guess meets check

The good news

 Just like before, modulo passing on
directionality flags

Abstraction

 Lambdas use the same auxiliary
judgement as case

Guess here

Case alternatives

Only refine
result type

when in
checking mode

Patterns

Bindings and
type

refinement
from “earlier”

patters

Augmented
with bindings

and type
refinements

from p

Patterns

Ensure the
pattern type
has the right

shape

Perform
wobbly

unification
Same as before except...

Wobbly unification

 Goal: θ makes the best refinement it can using
only the rigid parts of Π

 A type is “rigid” if it has no wobbly parts.

Soundness of the source

 The type system is sound
 Proved by type-directed translation in the core

language

Our typing
judgements also

do a type-directed
translation

Strip boxes

Core-language
judgement

Conclusions

 Wobbly types seem new
 Rigid types mean there is a programmer-

explicable “audit trail” back to a programmer-
supplied annotation

 Resulting type system is somewhat complicated,
but much better than “add annotations until the
compiler accepts the program”

 Claim: does “what the programmer expects”
 Implementing in GHC now

http://research.microsoft.com/~simonpj

MGU

 Must θ be the most-general unifier in a sound
typing rule?

 Yes and no: It does not have to be a unifier,
but it must be “most general”.

 θ is a partial unifier of Π iff
for any unifier Φ of Π, there is a substitution
θ' such that: Φ = θ' o θ

